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Abstract

The paper introduces a notion of support for real-
valued functions. It is shown how to approximate
supports of a large class of functions based on supports
of so called polynomial itemsets, which can efficiently
be mined using an Apriori-style algorithm. An upper
bound for the error of such an approximation can be
reliably computed. The concept of an approximating
representation was introduced, which extends the idea
of concise representations to numerical data. It has
been shown that many standard statistical modelling
tasks such as nonlinear regression and least squares
curve fitting can efficiently be solved using only the
approximating representation, without accessing the
original data at all. Since many of those methods
traditionally require several passes over the data, our
approach makes it possible to use such methods with
huge datasets and data streams where several repeated
scans are very costly or outright impossible.

1 Introduction and notation

Association rule mining [1] is primarily concerned with
discrete data. The prevalent approach to numerical at-
tributes is discretization, see for example [9]. Unfortu-
nately discretization always leads to information loss,
and has other problems such as difficulty in selecting
appropriate interval widths. In [10] a definition of sup-
port capable of handling numerical data without dis-
cretization has been presented. Further work in this
area includes [3] where rank methods have been used
and [4] where the notion of support has been defined
for polynomials.

This work significantly extends [4] by defining sup-
port of arbitrary real-valued functions. Furthermore,
we show how to approximate support for a large class
of functions using supports of so called polynomial item-
sets introduced in [4], thus extending the notion of con-
cise representations to numerical data. Approximation
error can also be computed based on supports of poly-
nomial itemsets.
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We describe a modification of the well known Apri-
ori algorithm [1] which is capable of finding a collection
of frequent polynomial itemsets together with so called
extended border, which is required to estimate approx-
imation error.

We evaluate the performance and accuracy of our
approach experimentally and show potential applica-
tions to nonlinear regression and curve fitting. We show
that those tasks can often be expressed in terms of sup-
ports of functions on a given dataset, thus supports of
a collection of polynomial itemsets can be used to build
approximate models quickly without accessing the orig-
inal dataset at all. All information needed to build the
model is taken from the precomputed supports. The
performance gain is especially visible when several mod-
els are built from a single dataset or when building a
model requires several scans of the dataset.

Let D be a dataset with the set of attributes H =
{X1, . . . , Xn}. Elements of D are called transactions
following data-mining conventions. Sets of attributes
will be denoted with uppercase letters I, J . We assume
that sets of attributes are ordered by the indices of
attributes, e.g. if I = {Xi1 , Xi2 , . . . , Xir}, then i1 <
i2 < . . . < ir. Vectors of variable values from the
domain of a set of attributes I will be denoted with
boldface letter x = (x1, . . . , xr). We further define
0r = (0, . . . , 0) as a sequence of r zeros. The index
r will be omitted when clear from context.

Let I = {Xi1 , . . . , Xir} ⊆ H be a set of attributes
and t a transaction. Define t[I] = (t.Xi1 , . . . , t.Xir ),
where t.X denotes the value of attribute X in t.

We will make heavy use of the so called multi-index
notation, which makes it easy to concisely represent
expressions involving several variables. Multi-indices
will be denoted by lowercase boldface Greek letters
α,β. A multi-index α is a sequence of integers α =
(α1, . . . , αr). We define the following expressions:

|α| = α1 + α2 + . . . + αr

α! = α1!α2! · · ·αr!
xα = xα1

1 xα2
2 · · ·xαr

r

Iα = Xα1
i1

Xα2
i2
· · ·Xαr

ir

Dα
I =

∂|α|

∂Xα1
i1

∂Xα2
i2
· · · ∂Xαr

ir



We will now make a crucial assumption that all
attributes in H are numerical (real-valued) and their
values are always in the interval [−1, 1]. If the data
does not meet this assumption, it is converted as
follows: numerical attributes having values which fall
outside of the [−1, 1] range are scaled appropriately,
i.e. an attribute Xi is multiplied by a positive constant
ci = (maxt∈D |t.Xi|)−1. An analysis of the influence
of such scaling on concepts introduced later in the
paper will be given in Section 6. Binary attributes are
treated as real-valued attributes with domain {0, 1}.
Categorical attributes are converted into a number of
binary attributes (one binary attribute per category).

2 Support of real-valued functions, polynomial
itemsets

In this section we will introduce key notions of the
paper, the definition of support for arbitrary real valued
functions and review the concept of polynomial itemsets
from [4].

Definition 2.1. Let I ⊆ H be a set of attributes,
and let f(I) be a function of attributes in I. We
define support and absolute support of f in a dataset
D respectively as

suppD(f) =
∑
t∈D

f(t[I])

suppD(|f |) =
∑
t∈D

|f(t[I])|.

It is easy to see that the following inequalities
relating support with absolute support hold

(2.1) suppD(f) ≤ |suppD(f)| ≤ suppD(|f |).

Definition 2.2. Let I = {Xi1 , . . . , Xir} ⊆ H be a set
of attributes. A polynomial itemset is an expression of
the form

Iα = Xα1
i1

Xα2
i2
· · ·Xαr

ir
,

where α = (α1, α2, . . . , αr) is a multi-index. I is called
the base of the polynomial itemset and α its exponent.
Further, r is called the length of the polynomial itemset
and |α| its degree.

Since a polynomial itemset is a real-valued function,
the definitions of support and absolute support apply to
it automatically.

Let Iα, Iβ, where α = (α1, . . . , αr), β =
(β1, . . . , βr), be two polynomial itemsets. We say that
Iα is a subset of Iβ, denoted Iα v Iβ, if αi ≤ βi for
all i ∈ {1, . . . , r}. Similarly we say that Iα is a strict

subset of Iβ, denoted Iα @ Iβ if in addition αi < βi for
some i ∈ {1, . . . , r}.

Notice that for a polynomial itemset Iα we can form
an equivalent itemset Jβ based on any H ⊇ J ⊃ I.
The coefficients in β corresponding to attributes not in
I will be simply set to 0. For example a polynomial
itemset X5

1X2
3 based on {X1, X3} can equivalently

be written as X5
1X0

2X2
3X0

4 based on {X1, X2, X3, X4}.
This implies that the definition of polynomial itemset
inclusion can be applied to arbitrary two polynomial
itemsets regardless of their bases.

Neither support of polynomial itemsets, nor its ab-
solute value are monotone w.r.t. inclusion. Fortunately,
this property is true for absolute support.

Theorem 2.3. Absolute support of polynomial itemsets
is monotone w.r.t. inclusion, that is Iα v Jβ implies
suppD(Iα) ≥ suppD(Jβ).

Proof. Take two polynomial itemsets Iα v Jβ. It is
easy to see that there is a polynomial itemset Iα2

2 such
that Jβ = Iα · Iα2

2 . Recall that all attributes in H are
in the range [−1, 1], consequently, in every transaction
t, the absolute value of Iα2

2 does not exceed 1, and the
absolute value of Jβ is not greater than that of Iα.
Summing over all t ∈ D the result follows.

Thus, to find all itemsets with absolute value of
support greater than or equal to ε, we can first use an
Apriori style algorithm (see below) to find all polyno-
mial itemsets whose absolute support is greater than or
equal to ε. Next we compute the support of all itemsets
found, and prune those whose support’s absolute value
is below ε (see Inequality 2.1).

In [4], the following properties of absolute support
were presented. If a table contains only binary at-
tributes, the definitions of support and absolute sup-
port of polynomial itemsets both reduce to the standard
definition of support. If all attributes are independent
and uniformly distributed on [0, 1], absolute support be-
haves analogously to standard support of independent
binary attributes with distribution

(
1
2 , 1

2

)
. These analo-

gies show that polynomial itemsets are a natural exten-
sion of standard definition of support [1]. An interpre-
tation of absolute support of polynomial itemsets as the
number of records in which the value of the itemset is
close to its maximum was also given in [4].

The algorithm for finding all polynomial itemsets
with given minimum absolute support is given in Fig-
ure 1. This is a modified version of the algorithm pre-
sented in [4]. The algorithm is similar to the well known
Apriori algorithm [1], but has some important modifica-
tions. Itemsets are generated in the order of increasing
degree, at each iteration, the degree of itemsets consid-



Input: dataset D with set of attributes H, minimum
support threshold ε
Output: all frequent polynomial itemsets with abso-
lute support ≥ ε

1: k ← 1; C0 ← {1}; F0 ← {1}; C1 ← {X1
i : Xi ∈ H}

2: loop
3: compute absolute support of all itemsets in Ck

4: Fk ← {Iα ∈ Ck : suppD(|Iα|) ≥ ε}
5: compute support of all itemsets in Fk

6: Ck+1 ← ∅
7: for all Iα = Xα1

i1
. . . Xαr

ir
∈ Fk do

8: for all j ≥ ir do
9: Ck+1 ← Ck+1 ∪ {Iα ·Xj}

10: end for
11: end for
12: k ← k + 1
13: end loop

Figure 1: The PolyApriori algorithm

ered is increased by one. Support counting in steps 3, 5
is done by a simple database scan.

Candidate generation is done in steps 7 to 11. Note
step 8, which increases the exponent of the last attribute
in the itemset or adds a new attribute with exponent 1.
Unlike the Apriori candidate generation, an attribute
can be added to the same itemset more than once to
allow for higher exponents.

Another difference is that instead of combining two
frequent itemsets to produce a new candidate we simply
add single attributes to them, and we don’t prune
itemsets with infrequent subsets. We thus compute
absolute support for a larger collection of itemsets than
it first seems necessary. However, as we shall see in
the next section, those supports will be very useful
for computing approximation accuracy. A possible
optimization is to only use the exponent of 1 for
attributes with values in {0, 1} (i.e. converted binary
attributes).

Let us now examine in more detail the collec-
tion of itemsets whose supports are computed by the
PolyApriori algorithm.

Let F be a downward closed (i.e. Iα ∈ F implies
Jβ ∈ F for all Jβ v Iα) collection of polynomial
itemsets and let I be a set of attributes. Define

F ∩ I = {Jβ ∈ F : J ⊆ I}.

It is the set of those polynomial itemsets in F whose
bases are subsets of I.

Let J = {Xl1 , . . . , Xlk} be a set of attributes.
Define an I-extension of a polynomial itemset Jβ as

extI(Jβ) = {Jβ ·Xij for all Xij ∈ I such that ij ≥ lk}.

For a downward closed collection of itemsets F , define
its I-extended border as

Bext
I (F) =

⋃
{extI(Jα) : Jα ∈ F} \ F .

Theorem 2.4. Let F = {Iα : supp(|Iα|) ≥ ε}. After
the PolyApriori algorithm (with minimum support ε)
terminates,

F =
⋃

Fk = F , and
⋃

Ck = F ∪ Bext
H (F).

The proof is given in the Appendix.

3 Approximating supports of functions
through polynomial expansions

In this section we restrict ourselves to a set of attributes
I = {Xi1 , . . . , Xir} ⊆ H. We assume that multi-indices
α, β have r elements.

We will show how to obtain approximations of
support of a function based on supports of polynomial
itemsets using the function’s polynomial expansion.
The idea is based on the following observation.

Theorem 3.1. Let f(I) be a function which can be
expressed by a power series1

(3.2) f(I) =
∞∑

i=0

∑
{α:|α|=i}

cαIα.

Then

suppD(f) =
∞∑

i=0

∑
{α:|α|=i}

cαsupp(Iα).

Proof. The proof is obtained by summing both sides
of (3.2) over all t ∈ D and changing the order of
summations.

suppD(f) =
∑
t∈D

f(t[I]) =
∑
t∈D

∞∑
i=0

∑
{α:|α|=i}

cα(t[I])α

=
∞∑

i=0

∑
{α:|α|=i}

cα

∑
t∈D

(t[I])α

=
∞∑

i=0

∑
{α:|α|=i}

cαsupp(Iα).

Since, as we know, a large family of functions can be
approximated by polynomials, the above theorem tells

1In fact the observation is true for any absolutely convergent
series expansion, not only power series.



us that supports of those functions can be approximated
using supports of polynomial itemsets.

We now present a theorem about computing sup-
port of a function based on its Taylor expansion and
estimating the approximation error. We will use abbre-
viated notation

∑
α∈F for summing over all exponents

of polynomial itemsets in F .

Theorem 3.2. Let F be a downward closed collection
of polynomial itemsets, and n = maxα∈F |α|. Let f(I)
be a function with has continuous partial derivatives of
order up to n + 1 at every point in [−1, 1]r. Then

suppD(f) =
∑

α∈F∩I

Dα
I f(I)|I=0

α!
suppD(Iα) + R,

where

|R| ≤
∑

α∈Bext
I (F∩I)

Mα

α!
suppD(|Iα|)

≤ M · ε ·
∑

α∈Bext
I (F∩I)

1
α!

and

Mα = max
x∈{0}(jα−1)×[−1,1](r−jα+1)

|Dα
I f(x)|,

and jα, where α = (α1, . . . , αr), is the largest integer
such that αjα > 0. M is an absolute upper bound on
[−1, 1]r of all partial derivatives of f of order up to n+1,
and ε is the minimum absolute support.

The proof can be found in the Appendix. At the end of
this section we show an example illustrating the way it
proceeds.

Let us now discuss the consequences of the above
Theorem. It is possible to first find all polynomial item-
sets with a given value of minimum absolute support ε,
and then estimate the support of arbitrary (sufficiently
differentiable) function from the supports of the poly-
nomial itemsets without using the data at all. The es-
timation error may be large for some functions but it
can be reliably estimated, without accessing the orig-
inal dataset. Notice that the PolyApriori algorithm
computes supports of all polynomial itemsets in the
extended border of the collection of frequent itemsets.
This is a superset of Bext

I (F ∩ I) needed to compute the
error in Theorem 3.2. It is thus always possible to com-
pute the Taylor sum over F ∩ I and estimate the error
by summing over Bext

I (F ∩ I).
Of course to find support of a function we need

to obtain its Taylor coefficients and upper bound its
derivatives. Those tasks may be time consuming for

complicated functions of many variables, but do not
require accessing the data, and thus will pay off for large
databases. Moreover, as we show in the experimental
section, finding supports of arbitrary functions of few
variables is very useful and Taylor coefficients of such
functions can be computed quickly.

A few remarks are now in place on how the coef-
ficients of Taylor expansions can actually be computed
automatically. One option is to symbolically compute
function’s derivatives and thus obtain the expansion.
Symbolic derivation is fully automatic for all elemen-
tary functions and their combinations so obtaining the
coefficients is straightforward. Another option is to ob-
tain expansions for all elementary functions involved
and combine them using operations on series. For exam-
ple to obtain a series of a product of two functions, we
can first expand each of them separately and then mul-
tiply the resulting series. Wikipedia’s article on Taylor
series [11] gives several examples of this procedure. We
have tried both approaches and found the second to be
much more efficient.

Let us now give an example which illustrates the
proof of Theorem 3.2.

Example 3.3. Let I = {X, Y }, and the collection of
frequent itemsets F ∩ I = {1, X1, X2, Y 1, X1Y 1}. We
want to approximate the support of a function f(X, Y ).
We first treat f as a function of X and apply Taylor’s
Theorem on X. For every Y ∈ [−1, 1] we have

f(X, Y ) = f(0, Y ) +
X1

1!
∂f(X, Y )

∂X1

∣∣∣∣
X=0

+
X2

2!
∂2f(X, Y )

∂X2

∣∣∣∣
X=0

+ R(3,0),(3.3)

where R(3,0) = X3

3!
∂3f(X,Y )

∂X3

∣∣∣
X=ξ

for some ξ ∈ (−1, 1),

and

|R(3,0)| ≤
|X3|
3!

max
(x,y)∈[−1,1]2

∣∣∣∣∣∣∂
3f(X, Y )

∂X3

∣∣∣∣ X = x
Y = y

∣∣∣∣∣∣
=
|I(3,0)|
(3, 0)!

M (3,0)

We stopped the expansion at X2 because X3 is not
in F ∩ I. Apply now Taylor’s Theorem to every term
in (3.3), except R(3,0). Each time expand till the highest
power of Y for which the corresponding polynomial



itemset is still in F ∩ I:

f(X, Y ) = f(0, 0)

+
Y 1

1!
∂f(X, Y )

∂Y 1

∣∣∣∣ X = 0
Y = 0

+ R(0,2)

+
X1

1!
∂f(X, Y )

∂X1

∣∣∣∣ X = 0
Y = 0

+
X1

1!
Y 1

1!
∂2f(X, Y )

∂X∂Y

∣∣∣∣ X = 0
Y = 0

+ R(1,2)

+
X2

2!
∂2f(X, Y )

∂X2

∣∣∣∣ X = 0
Y = 0

+ R(2,1) + R(3,0)

=
∑

α∈F∩I

Iα

α!
Dα

I f(I)|I=0 + R.

The derivation of other remainders is analogous to
the case of R(3,0) and is omitted. We have R =
R(3,0) + R(0,2) + R(1,2) + R(2,1), and |R| ≤ |R(3,0)| +
|R(0,2)| + |R(1,2)| + |R(2,1)|. Note that Bext

I (F ∩ I) =
{X3, Y 2, X1Y 2, X2Y 1}, so the remainders are indeed
computed over the extended border of F ∩ I. Summing
over all t ∈ D, as in the proof of Theorem 3.1, completes
the derivation for this case.

+

+

R
(0,2)

+

+

+

R
(1,2)

+

+

R
(2,1)

+

R
(3,0)

   f(0,0)                              

Y⋅∂f(0,0)/∂Y      X⋅∂f(0,0)/∂X      

XY⋅∂2f(0,0)/∂XY    X2/2!⋅∂2f(0,0)/∂X2

Figure 2: Graphical illustration of the Taylor expansion
in Example 3.3

The example is depicted graphically in Figure 2.
The figure shows the tree of polynomial itemsets as it
would be visited by the PolyApriori algorithm. It
can be seen that the tree coincides with the Taylor
expansion presented above. Every node in the tree
corresponds to one term of the expansion. The Taylor

expansion first expands f on X thus following the
leftmost path in the tree. Then every node on that
path is in turn expanded on Y . Leaves of the tree are
the remainder terms which form the extended border.

Approximating representations. It follows from
the above discussion, that we have obtained an ana-
logue of concise representations [7] for numerical data.
We prefer to use the name approximating representation
since our aim is to approximate support of arbitrary
functions. A formal definition is given below.

Definition 3.4. An approximating representation of a
dataset D for a class of functions G is a set of statistics
computed from D such that support in D of every
function from G can be approximated together with
upper bound on the approximation error.

Any downward closed collection of polynomial item-
sets together with its extended border is an approxi-
mating representation for the class of functions having
Taylor expansions. Theorem 3.1 can however be ap-
plied to arbitrary polynomial expansions, and Weier-
strass Theorem [8] states that every numerical function
has a polynomial approximation of arbitrary accuracy,
so the class of functions can be considerably extended.
Our approach is different from [2, 5] which focus on es-
timating support of unknown itemsets.

4 Experimental Evaluation and Applications

In this section we evaluate our approximating repre-
sentation experimentally. For performance reasons, it
is often necessary to limit the maximum number of
attributes in polynomial itemsets (denoted maxr) and
their maximum degree (denoted maxk). The value of
maxr depends on the functions we want to approximate
in the future. Elementary functions of l arguments re-
quire maxr of at least l. To approximate a sum of func-
tions, maxr needs to be at least the largest maxr needed
for any of the summed functions. For a product of func-
tions we need maxr of at least the sum of their required
maxr’s. To get useful approximations maxk needs to be
greater than maxr.

Performance evaluation of the PolyApriori algo-
rithm. The PolyApriori algorithm was implemented
in Python and ran on a 1.7GHz Pentium machine.
Figure 3 shows computation time and the number of
frequent polynomial itemsets (including the extended
border) for various datasets and support thresholds.
The maxk of 5 was used, except for the KDD Cup’04
physics dataset where maxk = 4, no maxr limit was
used.
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Figure 3: Runtime and number of frequent polynomial itemsets counted for the PolyApriori algorithm for various
datasets and minimum support thresholds. maxk = 5,maxr =∞

In a more realistic setting, Figure 4 shows algorithm
performance for maxr = 4 and maxk = 9. We found
that such a high value of maxk allows for very accurate
approximations (see below).

It can be seen from the figures, that the algorithm
allows for mining large, realistic datasets, especially
if maxr threshold is used. Large number of frequent
polynomial itemsets can be a problem in some cases.

Accuracy of approximation. We will now show es-
timated approximation accuracy for various minimum
support thresholds for waveform-5000 and KDD Cup’04
physics datasets. The charts show upper bounds on
relative support approximation accuracy obtained us-
ing Theorem 3.2; the actual errors were in fact much
smaller. We computed the upper bounds for functions
of 1, 2 and 3 variables, for each possible attribute, pair
and triple of attributes respectively for various levels
of minimum support. Figure 5 shows box plots for
each function and level of minimum support. The plots
show the minimum, maximum, median and the first
and third quartile of the error bounds taken over all
single attributes, pairs or triples of attributes respec-
tively. For example the upper left figure shows that for
waveform-5000 dataset with 2% minimum support that
the median of the upper bound of the relative approxi-
mation error of support of exp(Xi) is about 0.08% and
the maximum 0.2%. Logarithmic scale is used on the y
axis.

It should be noted that the error estimates show
relative upper bounds on errors, which are bound to be
high for functions with low support. This explains high
error rates for some sets of attributes. Also note, that
the charts show an upper bound and the true errors are
in fact much lower.

Despite those difficulties, it can be seen that the

estimation error decreases rapidly with the decrease of
minimum support, and very accurate approximations
are possible in most cases. This depends on the
properties of the function, for example sin2, whose
higher order derivatives are high, is more difficult to
estimate than exp. Also, support of functions of larger
number of variables is more difficult to approximate.

Also note that the KDD Cup’04 physics dataset
has very skewed distributions on some variables. When
going from min. support 5% to 2% this causes a jump in
accuracy for one variable functions, since a large number
of new frequent polynomial itemsets suddenly become
available.

We will now present some illustrative examples of
applications of our representation to standard statistical
modelling tasks. These are not meant to be industrial
quality statistical applications.

Nonlinear regression. In [4] an application of poly-
nomial itemsets to picking terms of polynomial regres-
sion has been presented, but regression coefficients were
still calculated from the data. In this work, regression
coefficients are calculated from the approximating rep-
resentation without accessing the data at all.

Suppose we want to construct a nonlinear regression
model Y = w0 +

∑n
i=1 wifi(Xi), where fi are arbitrary

functions, and the weights vector w = (w0, w1, . . . , wn)
is found using the least squares method. Let fD(Xi)
denote the vector of values of function f(Xi) in each
transaction of D, i.e. fD(Xi) = (f(t.Xi))t∈D, and f0D

a vector of |D| ones. The sought vector w satisfies
the matrix equation Aw = b, where A is a matrix
s.t. (A)ij = fiD(Xi)

T · fjD(Xj), and b is a column
vector with bi = fiD(Xi)

T · Y . Notice that (A)ij =
suppD(fi(Xi) ·fj(Xj)) and bi = suppD(fi(Xi) ·Y ). We
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Figure 4: Runtime and number of frequent polynomial itemsets counted for the PolyApriori algorithm for various
datasets and minimum support thresholds. maxk = 9,maxr = 4
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Figure 5: Upper bounds on relative estimation error for functions of 1, 2 and 3 variables for waveform-5000 and
KDD Cup’04 physics datasets at different levels of minimum support.



can thus find Taylor expansions of fi(Xi) · fj(Xj) and
fi(Xi) · Y , use them to approximate the matrix A and
vector b from a collection of polynomial itemsets, and
solve the matrix equation to find approximate w.

In our experiment we took f1 = sin(2.5X1),
f2 = cos(0.5X2), f3 = sin2(1.1X3), f4 = exp(0.7X4),
f5 = sin(3.1X5). We generated an artificial dataset
with attributes X1, . . . , X5 and an attribute Y =
0 − 1.5f1(X1) + 1.0f2(X2) − 2.5f3(X3) + 1.0f4(X4) −
1.5f5(X5) + N(0, 0.03), where N(0, 0.03) is a normally
distributed noise term with standard deviation 0.03.
The data values were generated independently for each
variable from a normal distribution N(0, 1). There were
200000 records.

We built a nonlinear regression model Y = w0 +∑5
i=1 wifi(Xi) based on the whole dataset and the ap-

proximation procedure described above. Table 1 shows
the root mean square errors of the model fitted directly
from data and based on polynomial approximations for
different values of minimum support.

It can be seen that for higher values of minimum
support the error of approximated model can be very
high, but as the minimum support decreases, the error
converges to that of the model built on full data. High
error values for low supports resulted in this case from
the fact that large errors caused the regression matrix
to become ill-conditioned.

Also note, that since upper bound on approximation
error is known, we are able to detect cases when the
error is too high so the procedure is reliable.

Notice that if we decide to build a new model for
different functions fi we can do it based on the approxi-
mating representation without accessing the data at all.
When a large number of models is built this can give
huge savings.

Curve fitting We can extend the approach to arbi-
trary nonlinear curve fitting, where we approximate the
value of an attribute Y using a function fw(I) of at-
tributes I = {Xi1 , . . . , Xir} with parameters w, using
the least squares criterion. More precisely, we want to
find w such that E(w) =

∑
t∈D(t.Y − fw(t[I]))2 =

suppD

(
(Y − fw(I))2

)
is minimized. The matrix equa-

tion method is not helpful here, and E(w) has to be
minimized directly. Notice that E(w) can be estimated
based on a collection of polynomial itemsets (as long as
it has a Taylor expansion), and we can apply a mini-
mization algorithm to this approximation.

Unfortunately the Taylor coefficients need to be re-
computed for every value of w used during the optimiza-
tion, but we can symbolically compute the coefficients
as functions of w, and simply recompute them after w
changes.

We generated an artificial dataset with attributes
X1, X2 and an attribute Y = 0.2 exp(1.3X1 − 0.7X2)−
0.8+N(0, 0.004). The data points were generated from
a uniform distribution on [−0.9, 0.9]× [−0.9, 0.9].

We approximated Y using the function
fw(X1, X2) = w3 exp(w1X1 + w2X2) + w4. We
used Matlab to symbolically compute the Taylor
expansion of E(w) on X1, X2, Y where each coefficient
was a function of w1, w2, w3, w4. We limited each of the
wi’s to the range [−2, 2] to avoid the loss of accuracy of
the Taylor expansion for large values of wi’s, and used
Matlab’s constrained minimization procedure fmincon
to minimize E(w). More research is needed to remove
such limitations on the values of wi parameters.

We compared our approach with Matlab’s
lsqcurvefit least-squares curve fitting function,
which had to perform a data scan at each point of
the minimization. The results are shown in Figure 6.
The times of running the PolyApriori algorithm
(minimum support of 1.5%) and performing the Taylor
expansion are included. It can be seen that using the
approximation gives significant performance gains for
databases of 100000 records or more, while the accuracy
of an approximated fit is comparable to scanning the
whole dataset. The accuracy obtained by both methods
is high, the error is significantly lower than 1%. The
running time of our method is dominated by relatively
slow symbolic computation routines.

It has to be noted that both methods are sensi-
tive to the choice of the starting values for the weights.
Choosing a wrong starting point resulted in high ap-
proximation error for either or both methods. This
problem is inherent to minimization techniques used,
not the result of polynomial approximation. We chose
w1 = 0.5, w2 = −0.5, w3 = 0.1, w4 = 0.1 as starting
weights, which gave good results for both approaches.
Repeating the fit for a number of random points would
be another good solution. For 300000 records, our
method gave weights w1 = 1.3423, w2 = −0.7168, w3 =
0.1912, w4 = −0.7927, very close to correct values. Mat-
lab’s lsqcurvefit found weights w1 = 1.3018, w2 =
−0.7007, w3 = 0.1996, w4 = −0.7996 which are a bet-
ter approximation, which however took more than three
times as long to compute. Note that our algorithm
depended on just 146 numbers (supports of frequent
itemsets), while lsqcurvefit used the whole table with
300000 records.

In this case our approach is faster even when fitting
a single model and taking the time of the PolyApriori
algorithm into account.

To test how the approach handles large datasets, we
repeated the experiment for the KDD Cup’04 physics
dataset (training part). To this end we added an extra



min. support [%] 1.58 1.17 0.86 0.63 0.46 0.34 0.25 0.18 0.14 0.1
no. of frequent itemsets 40 44 64 92 94 167 157 199 313 336
approximation 0.094 3.1e9 8.7e2 0.042 0.095 0.088 0.034 0.033 0.023 0.027
full data set 0.027 0.033 0.028 0.020 0.028 0.032 0.015 0.015 0.017 0.026

Table 1: Root mean square errors of nonlinear regression fitted directly from data and based on polynomial
approximations for different values of minimum support.
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Figure 6: Performance and accuracy of nonlinear least-squares curve fitting of an artificial dataset using full
dataset and approximation.

attribute Y computed as (after scaling all X’s to the
interval [−1, 1]):

Y =
78∑

i=1

0.3 exp(Xi).

We then fitted a function Y = a +
∑78

i=1 bi exp(ciXi) to
the data using the least squares criterion.

We used maxk = 9 and minimum support of 0.5%.
Notice that in for this particular problem the series
expansion of the squared error only contains terms of
up to two variables. We took advantage of this, setting
maxr = 2 which allowed us to raise maxk to 12 and use
no minimum support at all.

We found symbolic computations of Taylor coeffi-
cients too slow here so we used the other approach, ap-
plying operations on series to construct the coefficients
of the full series from coefficients of expansions of each
exponential function. This approach proved to be much
faster. In fact it was fast enough to allow for estimation
of the gradient of the error function, and as a result
to use a more efficient minimization routine based on
conjugate gradient descent.

Performance and accuracy of approximate curve
fitting for maxk of 9 and 12 as well as analogous results
for Matlab’s curve fitting are shown in Figure 7.

It can be seen that the Mean Squared Error of
approximated curve fitting is higher than Matlab’s. It
should however be noted that the variance of Y is 7.3,
which is much higher than the MSE of around 0.3 of our
fit for maxk = 9 and which dwarfs the 0.0049 MSE for
maxk = 12. We thus managed to obtain a successful fit
at a fraction of the cost of using traditional methods.

Notice that in Figure 7 the time of mining frequent
itemsets is included. In practice frequent polynomial
itemsets would have been mined beforehand, and the
speed advantage would have been even greater.

5 Application to data streams

A potential application area for polynomial approximat-
ing representations are data streams. Since data in a
data stream can be looked at only once, algorithms re-
quiring multiple passes over the data cannot be applied.
A solution would be to continuously update a collection
of polynomial itemsets based on the data stream. The
collection would serve as the approximating representa-
tion. Since the collection embodies information about
all data seen so far in the data stream, approximate
models could be built based on the polynomial item-
sets approximating (hopefully well) models built on the
whole stream.

The problem of course lies in maintaining a collec-
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Figure 7: Performance and accuracy of nonlinear least-squares curve fitting on the physics dataset using standard
curve-fitting and polynomial approximations.
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tion of polynomial itemsets while reading stream data.
Here we will adopt the simplest possible solution of
keeping all itemsets with given maxk and maxr. This
is equivalent to setting the minimum support to 0, but
since a full collection is being mined, this can be done by
simple counting without the overhead of PolyApriori.

Figure 8 shows the timing for finding such a col-
lection of polynomial itemsets from the KDD Cup’04
physics database. It can be seen that the approach is
feasible for maxr of 2 and 3.

Another approach would be to generalize an ap-
proach such as [6] to maintain a collection of frequent
polynomial itemsets with given minimum support. We
leave it as a topic of future research.

6 Discussion and Future Research

In the paper, a definition of support for arbitrary real-
valued functions has been presented, and shown how
supports of large a family of functions can effectively
be approximated based on supports of polynomial item-

sets. Experiments have shown that polynomial itemsets
with given minimum absolute support can efficiently
be mined by an Apriori like procedure, and that ac-
curate approximations of supports of many important
functions can be obtained.

We have shown that a number of real-life tasks such
as nonlinear regression and curve fitting can be per-
formed based only on the collection of frequent poly-
nomial itemsets without accessing the data at all. In
many cases significant performance gains over standard
procedures have been demonstrated. In fact we have
moved the difficulty related to numerical computations
on large datasets to the domain of symbolic computa-
tions related to computing series expansions of func-
tions, which is independent of database size.

The main problem of the presented concise repre-
sentation is accuracy of Taylor approximation. While
very accurate for values close to the point around which
the series was expanded (0 in our case), the approxima-
tion error increases rapidly for arguments far from the
expansion center. Consider for example an attribute T
representing time and an attribute X depending peri-
odically on T , say X = sin(aT ) for some constant a.
If the number of periods included in data is large we
will not be able to give a good approximation of the
relationship between T and X unless itemsets involving
very high exponents of T are known, which is practi-
cally impossible. Addressing such issues is a topic for
future research, and will involve examination of other
function expansions such as Fourier series and Cheby-
shev approximation, which offer good accuracy over the
whole interval (but are less accurate around 0).

In Section 1 we limited the domain of all attributes
to the range [−1, 1]. Every attribute Xi with values out-
side this range was scaled by ci = (maxt∈D |t.Xi|)−1.



This assumption was necessary to guarantee the mono-
tonicity property for absolute support. The interpreta-
tion of absolute support of polynomial itemsets given
in [4] as the number of records in which the value of an
itemset is close to its maximum remains valid after such
scaling.

It is possible to undo the effects of this scaling dur-
ing support estimation. For example if we want to
compute support of f(X1, X2, X3), where X1, X2, X3

are original (unscaled) attributes, we can instead com-
pute the support of a function f ′(X ′

1, X
′
2, X

′
3) =

f(X′
1

c1
,

X′
2

c2
,

X′
3

c3
), where X ′

1, X
′
2, X

′
3 are scaled versions of

X1, X2, X3 respectively. Unfortunately this will usually
add extra multiplicative terms to function derivatives,
and can cause a loss of estimation accuracy.

Alternative error estimation methods need to be
examined for certain cases, such as the function

√
1 + x

which has infinite derivatives around −1. For example,
if we know that a polynomial approximates a function
with accuracy ε on an interval, the support estimation
error is bounded by ε · |D|. Unfortunately estimating
ε, although can be done without accessing the table,
is more difficult than upper-bounding the derivatives,
especially for functions of many variables.

Future work also includes convergence analysis of
the expansion with decreasing minimum support, some
early results were obtained but are omitted due to lack
of space. Another topic of future research is detailed
analysis of how approximation error influences accuracy
of tasks such as nonlinear regression and curve fitting.
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A Proof of Theorem 2.4

Proof. Since only itemsets with absolute support
greater than or equal to ε are included in F , the in-
clusion F ⊆ F is obvious. We prove the converse by
induction on k. Take any element of F of degree 1,
it is obviously included in F1 since C1 is initialized to
all polynomial itemsets of degree 1 and it is frequent.
Suppose now that all itemsets of degree k from F are
included in F , and take any polynomial itemset Jβ of
degree k + 1 from F . By induction hypotheses and the
downward closed property of absolute support, all its
subsets (v) of degree k are in Fk. This implies that Jβ

will be generated in step 9, and will become a member
of Fk+1 since it is frequent.

Let us now prove the result for
⋃

Ck. The inclusion⋃
Ck ⊆ F ∪ Bext

H (F) follows easily from the candidate
generation procedure in step 9. The inclusion F = F ⊆⋃

Ck is also trivial. Take now any Iα = Xα1
i1

. . . Xαr
ir
∈

Bext
H (F) = Bext

H (F ). From the definition of Bext
H (F ),

Xα1
i1

. . . Xαr−1
ir

∈ F , and by the candidate generation
procedure in step 9, Iα ∈

⋃
Ck.

B Proof of Theorem 3.2

We begin by proving a lemma.

Lemma B.1. (Taylor’s theorem for downward closed
collections) Consider a function f(I) where I =
{Xi1 , . . . , Xir}, which has continuous partial derivatives
up to order n + 1 at every point of [−1, 1]r. For every
x ∈ [−1, 1]r we have

f(x) =
∑

α∈F∩I

Dα
I f(x)|x=0

α!
xα + R,

where

|R| ≤
∑

α∈Bext
I (F∩I)

Mα

α!
|xα|,



and

Mα = sup
x∈{0}(j−1)×[−1,1](r−j+1)

|Dα
I f(x)|,

where j is the largest integer such that αj > 0.

Proof. Let Ij = {Xi1 , . . . , Xij} for 0 ≤ j ≤ r. We will
prove a stronger result, that for every 0 ≤ j ≤ r,

(2.4) f(x) =
∑

α∈F∩Ij

Dα
I f(x)|Ij=0

α!
xα + Rj ,

where
|Rj | ≤

∑
α∈Bext

Ij
(F∩Ij)

Mα

α!
|xα|.

The proof is by induction on j. The base case j = 0
is trivially true since the only possible value of α is
0 (corresponding to the constant 1 polynomial in no
variables) and Bext

Ij
(F ∩ Ij) is empty, so the right-hand-

side becomes simply f(x).
In the inductive step, assume the lemma is true for

some j < r. Denote by (α, q) the multi-index obtained
from α by replacing αj+1 with q.

We apply Taylor’s theorem for one variable to every
term of the sum in (2.4). For a term with index
α ∈ F ∩ Ij we get that for some ξ ∈ (−1, 1)

xα

α!
Dα

I f(x)|Ij=0

=
xα

α!

mα∑
q=0

Xq
ij+1

q!
∂q

∂Xq
ij+1

Dα
I f(x)

∣∣∣∣∣ Ij = 0
Xij+1 = 0

+
xα

α!

Xmα+1
ij+1

(mα + 1)!
∂mα+1

∂Xmα+1
ij+1

Dα
I f(x)

∣∣∣∣∣ Ij = 0
Xij+1 = ξ

=
mα∑
q=0

D
(α,q)
I f(x)

∣∣∣
Ij+1=0

(α, q)!
x(α,q) + Rα,(2.5)

where mα is the highest number such that x(α,mα)

belongs to F ∩ Ij+1, and

|Rα| ≤
M (α,mα+1)

(α,mα + 1)!
|x(α,mα+1)|.

Applying (2.5) to every term of the sum in the
inductive hypothesis and we get

f(x) =
∑

α∈F∩Ij

mα∑
q=0

D
(α,q)
I f(x)

∣∣∣
Ij+1=0

(α, q)!
x(α,q)

+Rj +
∑

α∈F∩Ij

Rα.(2.6)

We will now show that the double summation above
is equivalent to summing over F ∩ Ij+1. It is easy
to see that all indices (α, q) in the double sum are
distinct. As a direct consequence of the way mα is
chosen, (α, q) ∈ F ∩ Ij+1 for every α and 0 ≤ q ≤ mα.

Conversely, take any β = (β1, . . . , βj+1, 0, . . . , 0) ∈
F ∩ Ij+1. β can be rewritten as (β′, βj+1) for some
multi-index β′ = (β1, . . . , βj , 0, . . . , 0). Since F is down-
ward closed, β′ ∈ F ∩ Ij , and since β = (β′, βj+1) ∈ F ,
it must be that 0 ≤ βj+1 ≤ mβ′ , and the term cor-
responding to β is included in the double summation
in (2.6).

Notice now that

|Rj+1| =
∣∣∣∣Rj +

∑
α∈F∩Ij

Rα

∣∣∣∣ ≤ |Rj |+
∑

α∈F∩Ij

|Rα|

≤
∑

α∈Bext
Ij

(F∩Ij)

Mα

α!
|xα|(2.7)

+
∑

α∈F∩Ij

M (α,mα+1)

(α,mα + 1)!
|x(α,mα+1)|.(2.8)

It remains to show that the sums (2.7) and (2.8) are
equivalent to summing over Bext

Ij+1
(F ∩ Ij+1).

By inductive hypothesis all terms present in Rj

have their respective polynomial itemsets in Bext
Ij

(F∩Ij)
and thus in Bext

Ij+1
(F ∩ Ij+1). Let us look at new

remainder terms added in the induction step. Take
any α ∈ F ∩ Ij . It ‘generates’ one remainder term
Rα involving a polynomial itemset Ij+1

(α,mα+1). By
definition of mα we have Ij+1

(α,mα) ∈ F ∩ Ij+1

and Ij+1
(α,mα+1) 6∈ F ∩ Ij+1, and by definition of

Bext
Ij+1

(F ∩ Ij+1), Ij+1
(α,mα+1) = Ij+1

(α,mα) · Xij+1 ∈
Bext

Ij+1
(F ∩ Ij+1).

Conversely take any β ∈ Bext
Ij+1

(F ∩ Ij+1), and let
Xil

be the last variable with a nonzero exponent in β.
If il < ij+1 then it is also true that β ∈ Bext

Ij
(F∩Ij) and

by inductive hypothesis, the term corresponding to it is
included in Rj . If il = ij+1 then there must be exactly
one multi-index α such that Ij+1

β = Ij+1
α ·Xij+1 . By

definition of Bext
Ij+1

(F ∩ Ij+1), Ij+1
α ∈ F ∩ Ij+1 and

Ij+1
β 6∈ F ∩ Ij+1, so the last nonzero exponent of β

must be mα + 1 and thus the term corresponding to it
is present in the remainder sum in (2.8) exactly once.

The result follows by proceeding with the induction
until j = r.

Proof. (of Theorem 3.2) The theorem follows by apply-
ing Lemma B.1 to f in the definition of support and
rearranging the sums.


