

Support Approximations Using Bonferroni-type Inequalities

Szymon Jaroszewicz, Dan A. Simovici

University of Massachusetts at Boston,
Department of Computer Science,
Boston, Massachusetts 02125, USA

Inspiration

H. Manilla et al. [1996,2001]: Use frequent itemsets to get support of arbitrary queries, e.g.:

$$\operatorname{supp}(\bar{A}\bar{B}) = 1 - \operatorname{supp}(A) - \operatorname{supp}(B) + \operatorname{supp}(AB)$$

(inclusion-exclusion principle)

Questions:

- How to obtain such a formula for an arbitrary query?
- Guarantee of accuracy if some supports are unknown?

Bonferroni inequalities

$$\operatorname{supp}(\bar{A}_1 \wedge \bar{A}_2 \wedge \ldots \wedge \bar{A}_n) \leq \sum_{k=0}^{2m} S_k$$

$$\operatorname{supp}(\bar{A}_1 \wedge \bar{A}_2 \wedge \ldots \wedge \bar{A}_n) \ge \sum_{k=0}^{2m+1} S_k$$

where

$$S_k = \sum_{i_1 < \dots < i_k} \text{supp}(A_{i_1} A_{i_2} \dots A_{i_k})$$

Previous results

DM&DM Workshop, SIAM Conference on Datamining 2002:

1. Derive Bonferroni inequalities for exclusive-or:

$$\operatorname{supp}(p_1 \oplus \ldots \oplus p_m) \leq \sum_{k=1}^{2t+1} (-2)^{k-1} \sum_{i_1 \leq \ldots \leq i_k} \operatorname{supp}(p_{i_1} \wedge \ldots \wedge p_{i_k}),$$

$$\operatorname{supp}(p_1 \oplus \ldots \oplus p_m) \geq \sum_{k=1}^{2t} (-2)^{k-1} \sum_{i_1 \leq \ldots \leq i_k} \operatorname{supp}(p_{i_1} \wedge \ldots \wedge p_{i_k}),$$

where p_1, \ldots, p_k are arbitrary Boolean expressions.

- 2. Express support of arbitrary queries using supports of itemsets.
- 3. Give bounds (not always tight) for support of arbitrary queries.
- 4. Prove that support of some queries cannot be approximated (based on supports of itemsets)

Support of parity function $A_1 \oplus A_2 \oplus \ldots \oplus A_n$ can't be approximated even if support of a single itemset is unknown.

Parity function can't be approximated

$$H = A_1 A_2 \dots A_n$$

$$Q = A_1 \oplus A_2 \oplus \dots \oplus A_n$$

Let $\rho_{even} = \{t \in \mathsf{Dom}(H) : n_1(t) \text{ is even}\}$ Let $\rho_{odd} = \{t \in \mathsf{Dom}(H) : n_1(t) \text{ is odd}\}$ Then for every $I \subset H$

$$\operatorname{supp}_{\rho_{even}}(I) = \operatorname{supp}_{\rho_{odd}}(I)$$

but $\operatorname{supp}_{\rho_{even}}(Q) = 0\%$ and $\operatorname{supp}_{\rho_{odd}}(Q) = 100\%$ $\operatorname{supp}(H)$ unknown $\Rightarrow \operatorname{supp}(Q)$ can be anywhere between 0% and 100%.

- 1. Parity function not a typical query. Can we get useful bounds for more common queries?
- 2. Bonferroni inequalities require supports of all itemsets of size k not typical for DM

Trivial bounds for unknown itemset supports

$$supp(I) \ge 0$$

$$\operatorname{supp}(I) \leq \operatorname{minsupp}$$

$$supp(I) \le \min\{supp(J) : J \subset I\}$$

Bonferroni-type bounds for unknown itemset supports

The following inequalities hold for any natural number *t*:

$$\sum_{k=0}^{2t+1} (-1)^{k+1} \binom{m-k-1}{2t+1-k} S_k$$

$$\leq \sup(A_1 A_2 \dots A_m) \leq$$

$$\sum_{k=0}^{2t} (-1)^k \binom{m-k-1}{2t-k} S_k$$

Example

We have

$$supp(ABC) \ge supp(A) + supp(B) + supp(C) - 2$$

and

$$supp(ABC) \le 1 - supp(A) - supp(B) - supp(C) + supp(AB) + supp(AC) + supp(BC)$$

Conjunctions with negated attributes

 $r < i_1 < ... < i_k < m$

$$\sum_{k=0}^{2t+1} (-1)^k \sum_{r < i_1 < \dots < i_k \le m} \operatorname{supp}(A_1 \dots A_r A_{i_1} \dots A_{i_k})$$

$$\leq \operatorname{supp}(A_1 \dots A_r \bar{A}_{r+1} \dots \bar{A}_m) \le$$

$$\sum_{r < i_1 < \dots < i_k \le m} \operatorname{supp}(A_1 \dots A_r \bar{A}_{r+1} \dots \bar{A}_m) \le \operatorname{supp}(A_1 \dots A_r A_{i_1} \dots A_{i_k})$$

Example

We have

$$\operatorname{supp}(A\bar{B}\bar{C}) \ge \operatorname{supp}(A) - \operatorname{supp}(AB) - \operatorname{supp}(AC)$$

and

$$supp(A\bar{B}\bar{C}) \leq supp(A) - supp(AB) - supp(AC) + supp(ABC)$$

Recursive application of Bonterroni inequalities

After finding frequent itemsets, not all itemsets of given size k have known supports \Rightarrow Bonferroni-type inequalities cannot be applied directly.

Our approach: If for a given k some supports are unknown we apply the inequalities 'recursively'.

Example

Table over ABC

Α	В	С	Frequency
0	0	0	0
0	0	1	0
0	1	0	0.10
0	1	1	0.25
1	0	0	0.10
1	0	1	0.25
1	1	0	0.05
1	1	1	0.25

Frequent itemsets

(minsupp = 0.35)

Itemset	support		
Α	0.65		
В	0.65		
С	0.75		
AC	0.50		
ВС	0.50		

Example ctd.

$$supp(ABC) \le 1 - supp(A) - supp(B) - supp(C) + supp(AB) + supp(AC) + supp(BC)$$

Estimate supp(AB) recursively.

Trivial bound: $\mathrm{supp}(AB) \leq \mathrm{minsupp} = 0.35$ giving

$$supp(ABC) \le 0.30$$

better than any trivial bound.

Method is useful for dense datasets and itemsets with high support

- UCI mushroom dataset
- Elderly people census data

Experimental results

Mine frequent itemsets of size ≤ 2 Try to estimate if larger itemsets are frequent

size	minsupp:	18%	25%	37%	43%	49%	61%
3	Frequent	1761	893	308	152	70	23
	Estimated	19.59%	27.32%	41.23%	56.58%	77.14%	82.61%
4	Frequent	4379	1769	368	147	48	16
	Estimated	6.81%	11.42%	23.10%	36.05%	64.58%	62.50%

Conclusion: large percentage of itemsets with high supports can be discovered based on supports of their subsets (without any data access).

Percentage of itemsets with non-trivial bounds

census dataset, 9% minimum support Mine frequent itemsets of size ≤ 2 , estimate larger ones.

itemset size	3	4	5	6
average upper bound	0.235	0.223	0.225	0.231
average lower bound	0.063	0.018	0.002	0
itemsets w. nontrivial bounds	48.55%	16.79%	3.40%	0.14%

Conclusion: Bonferroni-type inequalities provide nontrivial results

Itemsets with negations

census data with 1.8% Minimum Support supports of frequent itemsets of size ≤ 2 known 2 negated items in each itemset

itemset size	3	4	5	6
avg interval width	0.0405	0.082	0.067	0.039
average upper bound	0.171	0.121	0.069	0.039
average lower bound	0.131	0.0387	0.001	2.73e-05

Conclusion: Fairly tight bounds can be obtained

- Bonferroni type inequalities provide useful bounds in dense datasets, for itemsets with large support
- For sparse databases / itemsets with low support Bonferroni-type inequalities seem not to produce useful results.

Future research

- Bounds for other types of queries
- Other methods for the case when not all itemsets of given size are known
- Investigate more sophisticated variants of Bonferroni-type inequalities

