A General Measure of Rule Interestingness

Szymon Jaroszewicz and Dan A. Simovici

Department of Computer Science University of Massachusetts at Boston

Motivation:

- Data Mining algorithms produce 10s of thousands of rules
- Need to assess rules quality, need for measures of interestingness
- Several measures are used: entropy gain, gini gain, chi squared

Our work: A new measure or rule interestingness Υ generalizing the 3 above.

Rule:

$$P \to Q$$

where P and Q are sets of attributes.

What we know about the rule:

- Estimate of joint distribution $\Delta_P = (p_i)$ of P
- Estimate of joint distribution $\Delta_Q = (q_j)$ of Q
- Estimate of joint distribution $\Delta_{PQ} = (p_{ij})$ of PQ

Different from association rules where only some of the probabilities are known.

Examples of measures of interestingness using full probability distributions:

1. entropy gain

$$\mathsf{gain}_{\mathsf{shannon}}(P \to Q) = -\sum_{j=1}^n q_j \log q_j + \sum_{i=1}^m \sum_{j=1}^n p_{ij} \log \frac{p_{ij}}{q_j}$$

2. gini gain

$$\mathsf{gain}_{\mathrm{gini}}(P \rightarrow Q) = \sum_{i=1}^m \sum_{j=1}^n \frac{p_{ij}^2}{q_j} - \sum_{i=1}^m p_i^2$$

3. Chi squared

$$\chi^{2}(P \to Q) = |\rho| \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(p_{ij} - p_{i}q_{j})^{2}}{p_{i}q_{j}}$$

Notion of divergence (distance) between two probability distributions $\Delta = (p_1, p_2, \dots, p_n)$, and $\Delta' = (q_1, q_2, \dots, q_n)$

• Kullback-Leibler divergence (cross-entropy)

$$D_{\mathrm{KL}}(\Delta, \Delta') = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}$$

• χ^2 divergence

$$D_{\chi^2}(\Delta, \Delta') = \sum_{i=1}^n \frac{(p_i - q_i)^2}{q_i}$$

Rule: $P \to Q$

- Assume Δ_P estimated from data is the true distribution of P
- Uniform prior distribution \mathcal{U} of Q
- Laplace estimate for a posteriori distribution Θ of Q, where

$$\Theta = \frac{|\rho|\Delta_Q + M\mathcal{U}}{|\rho| + M}$$

M=0 total confidence in the estimate $M\to\infty$ no confidence, use the apriori distribution

• To avoid limits, denote $a = \frac{|\rho|}{|\rho| + M}$, and

$$\Theta_a = a\Delta_Q + (1-a)\mathcal{U}$$

a=1 total confidence in the estimate a=0 no confidence, use the apriori distribution

Rule: $P \to Q$

- Δ_P the distribution of P
- Θ_a a posteriori distribution of Q depending on the degree a of confidence in the data

Assumptions:

1. The more P and Q depend on each other the more interesting the rule. Use distribution divergence D to measure dependence:

$$D(\Delta_{PQ}, \Delta_P \times \Theta_a)$$

2. When P and Q are independent, interestingness should be 0

Our measure of interestingness:

$$\Upsilon_{D,a}(P \to Q) = D(\Delta_{PQ}, \Delta_P \times \Theta_a) - D(\Delta_Q, \Theta_a)$$

Special cases

Entropy gain $D = D_{KL}$, any value of a

$$\Upsilon_{D_{\mathrm{KL}},a}(P \to Q) = \mathrm{gain}_{\mathrm{shannon}}(P \to Q)$$

$$= D_{\mathrm{KL}}(\Delta_{PQ}, \Delta_P \times \Delta_Q)$$

$$= \mathrm{mutual\ information}(P, Q)$$

Gini gain $D = D_{\chi^2}$, a = 0 (no confidence in estimate of Δ_Q)

$$\Upsilon_{D_{\chi^2},0}(P \to Q) \propto \mathrm{gain}_{\mathrm{gini}}(P \to Q)$$

Chi squared $D = D_{\chi^2}, a = 1$ (total confidence in estimate of Δ_Q)

$$\Upsilon_{D_{\chi^2},1}(P \to Q) \propto \chi^2(P \to Q)$$

For $a \in [0,1]$ we obtain a continuum of measures between $gain_{gini}$ and χ^2

Properties of intermediate measures

• For any value of $a \in [0, 1]$,

$$\Upsilon_{D_{\chi^2},a}(P \to Q) \ge 0$$

with equality iff P and Q are independent.

• R is a set of attributes independent of P and QFor any value of $a \in [0, 1]$

$$\Upsilon_{D_{\chi^2},a}(PR \to Q) = \Upsilon_{D_{\chi^2},a}(P \to Q)$$

For a=1

$$\Upsilon_{D_{\chi^2},a}(P \to QR) = \Upsilon_{D_{\chi^2},a}(P \to Q)$$

• Independent attributes in P do not affect interestingness. Generally not true about Q.

a = 1	a = 0
symmetric (unconditional)	asymmetric (conditional)
not affected by	affected by independent
independent attributes	attributes in consequent

Why use intermediate measures?

Choosing value of a close to (but less than) 1

- Asymmetric, may suggest the direction of dependence
- Affected in a very small degree by independent attributes

Synthetic dataset 3 attributes: $A \to C, B$

Probability distributions:

$$\Delta_A = \begin{pmatrix} 0 & 1 & 2 \\ 0.1 & 0.5 & 0.4 \end{pmatrix}, \Delta_B = \begin{pmatrix} 0 & 1 \\ 0.2 & 0.8 \end{pmatrix}$$

$$\Delta_C|_{A=0} = \begin{pmatrix} 0 & 1 \\ 0.2 & 0.8 \end{pmatrix}, \Delta_C|_{A=1} = \begin{pmatrix} 0 & 1 \\ 0.5 & 0.5 \end{pmatrix}, \Delta_C|_{A=2} = \begin{pmatrix} 0 & 1 \\ 0.7 & 0.3 \end{pmatrix}$$

B independent of A, C and jointly of AC

Rules from the synthetic dataset sorted by Υ_{χ^2} for various a

rule	$\Upsilon_{D_{\chi^2},0}$	rule	$\Upsilon_{D_{\chi^2},0.9}$	rule	$\Upsilon_{D_{\chi^2},1}$
$A \rightarrow BC$	0.122	$A \rightarrow BC$	0.090	$BC \rightarrow A$	0.090
$C \rightarrow AB$	0.090	$AB \rightarrow C$	0.090	$A{\rightarrow}BC$	0.090
$AB \rightarrow C$	0.090	$A \rightarrow C$	0.090	$C \rightarrow AB$	0.090
$A{\rightarrow}C$	0.090	$C \rightarrow AB$	0.083	$AB \rightarrow C$	0.090
$BC \rightarrow A$	0.065	$BC \rightarrow A$	0.082	$A{\rightarrow}C$	0.090
$C \rightarrow A$	0.065	$C \rightarrow A$	0.082	$C \rightarrow A$	0.090
$B \rightarrow AC$	≈ 0	$B \rightarrow AC$	≈ 0	$AC \rightarrow B$	≈ 0
$B \rightarrow A$	≈ 0	$B \rightarrow A$	≈ 0	$B \rightarrow AC$	≈ 0
$AC \rightarrow B$	≈ 0	$AC \rightarrow B$	≈ 0	$A{\rightarrow}B$	≈ 0
$A{\rightarrow}B$	≈ 0	$A \rightarrow B$	≈ 0	$B{\rightarrow}A$	≈ 0
$B \rightarrow C$	≈ 0	$B \rightarrow C$	≈ 0	$C \rightarrow B$	≈ 0
$C \rightarrow B$	≈ 0	$C \rightarrow B$	≈ 0	$B \rightarrow C$	≈ 0

The mushroom dataset (3 attribute rules)

$\Upsilon_{D_{\chi^2},0}$	class→odor ring-type			
	class→odor spore-print-color			
	class→odor veil-color			
	class→odor gill-attachment			
	${ m class}{ ightarrow}{ m gill}{ m -color}$ spore-print-color	7.82		
$\Upsilon_{D_{\chi^2},0.9}$	$odor {\rightarrow} class \ stalk\text{-root}$	3.62		
	class stalk-root \rightarrow odor			
	$odor \rightarrow class \ cap-color$	2.60		
	$\operatorname{odor} \rightarrow \operatorname{class} \operatorname{ring-type}$	2.55		
	$\operatorname{odor} { ightarrow} \operatorname{class} \operatorname{spore-print-color}$	2.55		
$\Upsilon_{D_{\chi^2},1}$ *	class stalk-root→odor			
	class stalk-color-below-ring-stalk-color-above-ring			
	stalk-color-below-ring-class stalk-color-above-ring			
	class ring-type→odor			
	${\it class\ cap\text{-}color}{\rightarrow} {\it odor}$	2.85		

^{*} symmetric rules removed

Further generalizations

Using the Havrda-Charvát divergence

$$D_{\mathcal{H}_{\alpha}} = \frac{1}{\alpha - 1} \left(\sum_{i=1}^{n} p_i^{\alpha} q_i^{1 - \alpha} - 1 \right)$$

Special cases:

 D_{χ^2} is obtained when $\alpha=2$

 $D_{\rm KL}$ is obtained when $\alpha \to 1$

Define:

$$\Upsilon_{\alpha,a}(P \to Q) = \Upsilon_{D_{\mathcal{H}_{\alpha}},a}(P \to Q)$$

This way by changing 2 parameters we can obtain **entropy gain**, **gini gain**, **chi squared** as special cases of a single general measure.

Prior distributions

Assume arbitrary prior distribution of Q e.g. reflecting background knowledge.

Let Θ be a posteriori distribution of Q

The following hold

• For every distribution Θ

$$\Upsilon_{D_{\chi^2},\Theta}(P \to Q) \ge 0$$

with equality iff P and Q are independent.

• For every distribution Θ

$$\Upsilon_{D_{\mathrm{KL}},\Theta}(P \to Q) = \mathsf{gain}_{\mathrm{shannon}}(P \to Q)$$

Prior distributions

Assume a prior/posterior distribution also on P:

$$\Upsilon_{D,\Theta,\Psi}(P \to Q) = D(\Delta_{PQ}, \Psi \times \Theta) - D(\Delta_{Q}, \Theta) - D(\Delta_{PQ}, \Psi).$$

Properties:

• For all distributions Θ, Ψ

$$\Upsilon_{D_{\mathrm{KL}},\Theta,\Psi}(P \to Q) = \mathrm{gain}_{\mathrm{shannon}}(Q \to P)$$

• We **cannot** guarantee that if P and Q are independent, then $\Upsilon_{D_{\mathrm{KL}},\Theta,\Psi}(P\to Q)=0.$

Further research

- 1. More experimental work is necessary
- 2. Apply the measure to decision tree induction
- 3. Investigate how the measure behaves if background knowledge is used as a prior for Q
- 4. More work on rule interestingness with respect to background knowledge