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Motivation:
e Data Mining algorithms produce 10s of thousands of rules

e Need to assess rules quality, need for measures of

interestingness

e Several measures are used: entropy gain, gini gain, chi squared

Our work: A new measure or rule interestingness Y generalizing
the 3 above.




P — Q

where P and () are sets of attributes.

What we know about the rule:

e Estimate of joint distribution Ap = (p;) of P

e Estimate of joint distribution Ag = (g;) of @

e Estimate of joint distribution Apg = (p;;) of PQ

Different from association rules where only some of the
probabilities are known.




Examples of measures of interestingness using full probability
distributions:

1. entropy gain

gainshannon(P — Q) — =

2. gini gain
gain

gini(

3. Chi squared




Notion of divergence (distance) between two probability

distributions A = (p1,p2,.--,Pn), and A" = (¢1,q2, ..., qn)

e Kullback-Leibler divergence (cross-entropy)
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Rule: P — @)
e Assume Ap estimated from data is the true distribution of P
e Uniform prior distribution U of ()

e Laplace estimate for a posterior: distribution © of (), where

M = 0 total confidence in the estimate
M — oo no confidence, use the apriori distribution

rd
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e To avoid limits, denote a =

O, =alg + (1 —a)d

a = 1 total confidence in the estimate

a = 0 no confidence, use the apriori distribution




Rule: P — ()
e Ap the distribution of P

e O, a posteriori distribution of () depending on the degree a of
confidence in the data

Assumptions:

1. The more P and () depend on each other the more interesting
the rule. Use distribution divergence D to measure dependence:

D(APQ, Ap X @a)

2. When P and () are independent, interestingness should be 0

Our measure of interestingness:

TDﬂ(P — Q) = D(APQ, Ap X @a) — D(AQ, @a)




Special cases

Entropy gain D = Dy, any value of a

TDKL,G(P — Q) gainshannon(P — Q)
Dx1,(Apg,Ap x Ag)

mutual information(P, Q)

Gini gain D = D,2, a = 0 (no confidence in estimate of Ag)

TDXQ,O(P — Q) X gaingini(P — Q)

Chi squared D = D,2, a = 1 (total confidence in estimate of Ag)
Tp,1(P = Q) x x*(P = Q)

For a € [0,1] we obtain a continuum of measures between

gain_. . and x?

gini




Properties of intermediate measures

e For any value of a € [0, 1],
TDXQ,CL(P — Q) > 0

with equality iff P and () are independent.

e R is a set of attributes independent of P and ()
For any value of a € [0, 1]

Tp_,a(PR—Q)=Tp_, (P = Q)

Tng,a(P — QR) — TDX2,CL(P — Q)

e Independent attributes in P do not affect interestingness.
Generally not true about (.




a=1 a=~0

symmetric (unconditional) | asymmetric (conditional)

not affected by affected by independent

independent attributes attributes in consequent

Why use intermediate measures?

Choosing value of a close to (but less than) 1

e Asymmetric, may suggest the direction of dependence

o Affected in a very small degree by independent attributes




Synthetic dataset 3 attributes: A - C, B

Probability distributions:

0 1 2 0 1
Ay = A =
0.1 05 04 0.2 0.8

0 1 0 1 0 1
Acla=o = ,Acla=1 = ,Ac|a=2 =
0.2 0.8 0.5 0.5 0.7 0.3

B independent of A, C' and jointly of AC




Rules from the synthetic dataset sorted by T,= for various a

rule

rule

Tp 5,09
X

rule

A—BC
C—AB
AB—C
A—C
BC—A
C—A

A—BC
AB—C
A—C
C—AB
BC—A
C—A

0.090
0.090
0.090
0.083
0.082

BC—A
A—BC
C—AB

AB—C
A—C
C—A

B—AC
B—A
AC—B
A—B
B—C
C—B

B—AC
B—A
AC—B
A—B
B—C
C—B

AC—B
B—AC
A—B
B—A
C—B
B—-C




The mushroom dataset (3 attribute rules)

class—odor ring-type
class—odor spore-print-color

class—odor veil-color

class—odor gill-attachment

class—gill-color spore-print-color

odor—class stalk-root
class stalk-root—odor

odor—class cap-color

odor—class ring-type

odor—class spore-print-color

class stalk-root—odor

class stalk-color-below-ring—stalk-color-above-ring

TDXQ 1 * stalk-color-below-ring—class stalk-color-above-ring

class ring-type—odor

class cap-color—odor

* symmetric rules removed




Further generalizations

Using the Havrda-Charvat divergence

. a_1<zp?q;l “ -1 )

D4,

Special cases:
D, is obtained when o = 2
Dx1, 1s obtained when a — 1

Define:

Ta,a(P — Q) — TDHa,a<P — Q)

This way by changing 2 parameters we can obtain entropy gain,
gini gain, chi squared as special cases of a single general

Imeasure.




Intermediate measures
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Prior distributions

Assume arbitrary prior distribution of () e.g. reflecting background
knowledge.

Let © be a posterior: distribution of ()
The following hold

e For every distribution ©

TDXQ’@(P — Q) 2 0

with equality iff P and () are independent.

e For every distribution ©

TDKL,@<P — Q) — gainshannon(P — Q)




Prior distributions

Assume a prior/posterior distribution also on P:

TD,@,\I;(P — Q) = D(APQ,\IJ X @) — D(AQ,@) — D(Ap,\If)

Properties:

e For all distributions ©,¥
TDKLa@a\II(P % Q) — gainshannon(Q % P)

e We cannot guarantee that if P and () are independent, then
TDKL,@,‘I’(P — Q) = 0.




Further research
. More experimental work is necessary

. Apply the measure to decision tree induction

. Investigate how the measure behaves if background knowledge

is used as a prior for ()

. More work on rule interestingness with respect to background
knowledge




