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Abstract. In various domains, such as meteorology or patient data,
events’ durations are stored in a database, resulting in symbolic time in-
terval (STI) data. Additionally, using temporal abstraction techniques,
time point series can be transformed into STI data. Mining STI data for
frequent time intervals-related patterns (TIRPs) was studied in recent
decades. However, for the first time, we explore here how to continu-
ously predict a TIRP’s completion, which can be potentially applied
with patterns that end with an event of interest, such as a medical com-
plication, for its prediction. The main challenge in performing such a
completion prediction occurs when the time intervals are coinciding, but
not finished yet, which introduces an uncertainty in the evolving tempo-
ral relations, and thus on the TIRP’s evolution process. In this study, we
introduce a new structure to overcome this challenge and several contin-
uous prediction models (CPMs). In the segmented CPM (SCPM), the
completion probability depends only on the pattern’s STIs’ starting and
ending points, while a machine learning-based CPM (CPML) incorpo-
rates the duration between the pattern’s STIs’ beginning and end times.
Our experiment shows that overall, CPML based on an ANN performed
better than the other CPMs, but CPML based on NB or RF provided
the earliest predictions.
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1 Introduction

Frequent temporal patterns, whether given by a domain expert or discovered
by mining, were used already for temporal knowledge discovery, clustering, or
classification [BI7]. Being able to continuously estimate, in real-time, whether a
temporal pattern would fully occur, while its components are being revealed, is
desirable, and can be useful in various applications, such as event prediction.
Estimating the probability of the last pattern’s component (e.g., an event of
interest) occurrence, is of great interest. For example, predicting the death of a
patient in the intensive care unit (ICU), based on continuous data, consisting of
a temporal pattern that was observed in the data ending with death.



In many real-life data science problems, in which data are gathered from
various sources, the multivariate temporal data are heterogeneous. Some vari-
ables may be sampled regularly but at different frequencies (e.g. sensor mea-
surements) and some variables irregularly (e.g. variables measured manually or
event-driven). Other temporal variables may be represented by events that may
or may not have varying duration. In this study, we propose to employ the use
of temporal abstraction [610] to transform the entire heterogeneous multivariate
temporal data into meaningful symbolic time interval series. A symbolic time in-
terval (STI) is a triplet of a start time, end time, and a symbol from an ordered
alphabet.
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Fig. 1. Allen’s seven temporal relations between a pair of STIs.

From STI data, frequent time intervals-related patterns can be discovered
[10/4], which were shown in the past to be useful for knowledge discovery and as
features for classification and prediction [BIIII7]. A time intervals-related pattern
(TIRP) is comprised of a series of STIs and a set that defines all Allen’s tempo-
ral relations (Fig. |1)) between each of the pairs of STIs. For example, a pattern
from time intervals data may be that hospitalized patients with COVID-19 fre-
quently start with symptoms of ”fever” and ”cough,” and a week later also begin
experiencing shortness of breath, in which case the symptoms have not ended
at the ICU admission time. Note that a TIRP’s definition does not include the
STIs” durations and their durations can vary among different instances. Using
a frequent TIRP that ends with an event of interest, such as a patient’s death,
may allow for real-time continuous prediction of the completion of the TIRP’s
instance and of the occurrence of the event of interest. For example, the TIRP
illustrated in Fig. 2]is defined by three STIs and three temporal relations, where
the last STI, C, is considered as the event of interest.

Predicting a TIRP’s completion is challenging due to the TIRP’s instances
variability which is reflected by the varying duration of the STIs, as noted earlier,
and the varying duration of the gaps between the instances’ STIs (e.g., in Fig.
between STI B and C). We define for the first time, as far as we know, the
problem of predicting continuously the completion of a TIRP, and introduce
novel models for the TIRP’s continuous completion prediction.

The contributions of the paper are the following:

1. Defining the problem of continuous prediction of a TIRP’s completion.

2. Introducing two novel methods for continuous prediction of a TIRP’s com-
pletion.

3. A rigorous evaluation on real-life datasets, including new metrics to evaluate
the continuous prediction of a TIRP’s completion model.



2 Background

One of the forms of temporal abstraction is state abstraction, in which based
on given cutoffs the time point values are categorized into symbols, and when
adjacent time points have the same symbol, they are concatenated into a sym-
bolic time interval. Several methods were proposed in the literature to learn
the cutoffs from the data, such as equal width discretization (EWD), symbolic
aggregate approximation (SAX) [6], and more [I0].

A symbolic time interval (STI) I = (s,e,sym), is a triplet of start time
s € Rxg, end time e € Rxp, ¢ > s and a symbol sym (sym € X) from an
ordered alphabet X. A time intervals-related pattern (TIRP) @ is defined as
a pair Q = (IS,R), where IS = {I',...,I*¥} is a series of k STIs and R =
{r(I',I7) : 1 <i < j < k} is a set that defines all Allen’s temporal relations
(Fig. [1)) between each of the (k% — k)/2 pairs of STIs in IS.

Given STI series data, TIRPs can be discovered for which several TIRP
mining methods were proposed in the past two decades [I0M4TT], most of which
use Allen’s temporal relations [I] that include seven temporal relations between
a pair of STIs, as shown in Fig. A TIRP is called frequent if its vertical
support exceeds a predefined minimum threshold. Given a database DB of |DB)|
unique entities (e.g., patients), the wertical support V.S(DB,Q) of a TIRP Q
is defined as the cardinality of the set DB? of distinct entities within which
@ holds at least once, divided by |DB| (the total number of entities in DB),
VS(DB,Q) = |DB®|/|DB|.

Frequent TIRPs are typically used as features for temporal data classifica-
tion or prediction [5], as proposed first in [II]. Liu et al. [7] suggested a TIRPs-
semantic-based probabilistic framework for STI data that can be used to answer
varied semantic-level queries in a unified way, such as predicting future activi-
ties given observed ones. To the best of our knowledge, no previous study has
investigated the task of continuous prediction of a TIRP’s completion.

3 Methods

A model M predicts a TIRP @’s completion, given a database DB, by estimating
the probability of observing the remaining part of @), given its observed part at
time t.. An estimation is provided at each current time point t., and changes
as a given @Q’s instance evolves over time. The database DB comprises |DB|
entities (e.g., patients), where each entity contains a series of STIs. We assume
that in a specific STT series, STIs with the same symbols can not overlap.

Let p;, denote a prefix representing the observed part of @ at t., and s;, de-
note a suffix representing the remaining part of @ at t. that is expected to occur.
Thus, to estimate the @’s completion probability, at time point t., Pr(Q | t.),
the following simple model can be used, which typically represents the confidence
of a rule in sequential patterns:

PrQ | t0) = Prls, | ) = Citiee)  JHO)

1)



The calculation in Formula [I] answers the question: “Out of all the times we
saw p_, how many times was it followed by s, (i.e., @ has unfolded to comple-
tion)?” Thus, the number of times each p;_ of @ occurs in the database and the
number of times p;,_ is followed by s;_ should be counted. Since the database DB
comprises multiple entities, and each entity contains a lexicographically ordered
STI series, instances of ) and p;, may be discovered more than once in a single
entity. Each such instance is counted separately in the computation.
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Fig. 2. TIRP Q’s completion probability is estimated at any time point (e.g., t2).

Applying Formula [1] to a relatively simple example sheds light on the chal-
lenges that arise while continuously predicting TIRP’s completion. In Fig. 2] a
TIRP Q@ ={A overlaps B, A before C, B before C'} is shown, together with four
time points t!, 2, t2, and t* chosen to illustrate partial instances of the pattern
to demonstrate various types of challenges. Calculating the numerator Pr(Q) is
quite straightforward and is done by counting the number of times that A over-
laps B is followed by A before C and B before C (i.e., Q). However, calculating
the denominator Pr(p:,) is more challenging in some cases.

At t, the denominator Pr(ptg) is equal to the probability of seeing A over-
laps B, which results in no uncertainty. Similar computations can be carried
out at time points . and ¢2, but the situation is more complex since the time
points are located after a starting point and before an ending point of an STI.
Thus since an STT that is not finished yet is involved, p;, and s;, cannot be
described with Allen’s temporal relations. Instead, we need to use a different
representation based on STIs’ tieps (Def. .

Definition 1. (tiep) A time interval endpoint is a triplet (t,type, sym) consist-
ing of a time stamp ¢ € R>(, an endpoint type, which can be either starting (+)
or ending (=), and a symbol (sym € X) from an ordered alphabet X.

Ezample 1. In Fig. |1} for an STT A= (A, A., “A”), the starting and ending tieps
are defined respectively as A+=(A;,+, “A”) and A-= (4., -, “A7).

A total order on tieps (Def. [1]) is defined based on their time stamps, which
are real numbers. Thus, the tieps can be used in inequalities defining temporal
relations, while their structure will be exploited in the following sections.

At tl, the Py is “A that has started but not ended yet,” and thus, Pr(A+)
denotes the probability of seeing STI A that has started in DB. In the learning
stage, in the database DB, each STT has its starting and ending tieps, and thus,
the probability Pr(A+) equals the probability of seeing STI A in DB. Similarly,
at t3, the pez can be represented by the following inequality between the STIs’
tieps: A+ < B+ < A-.



However, in the learning stage, since STI B has started but not ended yet, its
ending tiep B- has to satisfy 2 < B- in database DB. Thus, the prefix’s tiep
ordering should be extended to p;s = A+ < B+ < A- < B- to represent that STI B
ended after B ended. The extended pys is equivalent to Allen’s temporal relation
A overlaps B (see Fig. . Uncertainty occurs at time point t2, since pez includes
STIs A and B that have already started but not yet ended (i.e., t2 < A- and
t2 < B-), it results in uncertainty about which temporal relation between A and
B will finally unfold. Three different temporal relations are possible: overlaps,
contains, or finished-by, which should be considered and used in Formula [f}

3.1 The Unfinished Coinciding STIs Challenge

Definition 2. (Unfinished STI) An unfinished STII* at time t. is an STT whose
starting tiep I*+ satisfies 0 < "+ < t. and whose ending tiep [*- satisfies
te < I*-.

Throughout the text, the asterisk (*) will indicate that an STT is unfinished.
The start time of an unfinished STI is known at time t., but its end time is not.
In fact, it is censored: we only know that it is later than ..
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Fig. 3. The evolving temporary temporal relations.

A pair of unfinished coinciding STIs A* and B* may evolve into three possible
temporal relations. The logic follows from the tieps representation of Allen’s
temporal relations that is presented in Fig.[I} Fig.[3}i shows that in the case of the
temporary equals (=) temporal relation, their temporal relation may eventually
evolve into A starts B, or B starts A, or stay at A equals B. The reason that A
starts B and B starts A cannot be distinguished at t. is that the exact temporal
relation is determined by their end times, which are not yet known. Similarly, the
temporary finished-by (ﬁ) temporal relation shown in Fig. ii, may eventually
evolve into three possible Allen’s temporal relations: A overlaps B, A contains B,
or stay at A finished-by B.

3.2 TIRP-Prefixes

A TIRP can be represented by a series of starting and ending tieps instead of a
series of STIs.



To maintain the conjunction of pairwise temporal relations among the STTs, the
set of tieps has to be transformed into a sorted tieps’ series, based on Allen’s
tieps representation (Fig. [1} right column).

A TIRP is divided into TIRP-prefixes (Def. [3) that are part of the TIRP’s
evolution process, which are created based on sub-sequences of the TIRP’s tieps.
In each TIRP-prefix, since the temporal relation between two unfinished STIs
is uncertain, the temporary temporal relation 7 is used to express the disjunc-
tion of possible final temporal relations based on the unfinished coinciding ST1Is
challenge logic explained in Fig.

Definition 3. (TIRP-prefix) Let Q be a TIRP of length k. A TIRP-prefiz Q of
Q is defined as a pair Q = (IS, R), where IS is a lexicographical ordered STI
series of k < k finished (I'S;) and unfinished (I'S,) STIs: I'S = IS; U IS, and
R is the set of all the temporal relations between each of the pairs of STIs in I'S:
R=R;UR,, where Ry = {r(I', /) : 1 <i<j<kAN-(I' €IS, NI €IS,)}
and R, = {F(I*", ") :1<i<j<k AT cIS, A I* €IS,}.

Ezample 2. In Fig. [2] at ¢2

co

it is known that p;z = A*+ < B*+, thus the TIRP-

prefix is {A* fi B*} and the three following TIRPs may potentially evolve into:
{A overlaps B} or {A finished-by B} or {A contains B}.

Algorithm 1 The TIRP-Prefix’s Extender
Input: px - TIRP-prefix; Output: epx - extended TIRPs

1: unfPairs < pz.R.; eRels « (

2: for each pa in unfPairs do

3: eRels + eRels U tempLogic(pa)

4: cmb = comb(eRels); epx <

: for each ¢ in cmb do

cand ¢ cmb U pz.Ry

if validTransitionTable(cand) then
epx < epx U cand

return epx

In the TIRP-Prefix’s Extender algorithm (Alg. [1]), given a TIRP-prefix pzx,
generates a set epx of all possible TIRPs that can evolve from pz. The TIRP-
prefix’s temporary disjunctions of temporal relations (unfPairs, line [1)) are set
based on the rules presented in Fig. [3| by using the tempLogic function (lines
. Then, the comb function generates a set of all the possible temporal relations
that can be evolved given R,, which is stored in e¢mb. Then, each e¢mb is joined
with the TIRP-prefix non-temporary disjunctions of temporal relations R ¢ and
assigned to cand. Each cand represents a TIRP that can evolve from pzx.

However, cand can be a pattern with combinations of temporal relations that
contradict each other. For example, A* overlaps B* and B* owverlaps C*, the
temporal relation between A* and C* can not be the relations finished-by or
contains, but only overlaps. Thus, Allen’s transition table [I] is used to reduce
the number of generated candidates by avoiding impossible patterns (line .



Lastly, the potential evolved TIRPs epx’s instances have to be detected in the
STI database DB by using rather a STIs based [10] or sequence-based [4] rep-
resentation.

3.3 Continuous Prediction Models (CPMs)

In this section we will present the following two continuous TIRP completion
prediction models:

SCPM The predicted TIRP’s completion probability changes only at time
points where tieps appear. As discussed in detail when Formula[I] was explained,
the probability of TIRP @ completion is Pr(Q)/Pr(p;:,), where p;_ is a TIRP-
prefix of @ at time t..

CPML The durations between consecutive TIRP-prefixes’ tieps were used as
features. For that, naive Bayes (NB) [9], random forest (RF) [2], and artificial
neural network (ANN) [8] classifiers were used.
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Fig. 4. Time durations di, d2, and ds are based on tieps A+, B+, A-, and t., which
are used as features for the classifiers to perform the TIRP’s completion prediction.

Records for the classifier were created to represent the evolution of a TIRP
over time. Multiple records were used as input for the classifier to include all
the time stamps for each evolving TIRP-prefix instance. The TIRP’s duration
elements that were not observed until time point t. are set to zero. Each in-
stance’s record target was set to whether the instance was finally unfolded into
a TIRP’s completion or not. For example, in Fig. 4l the TIRP-prefix instance
{A overlaps B*} is represented by the time durations between the four consec-
utive tieps (f1 =[A+,B+|,fo =[B+,A-],f3=[A-,B-], and f4=[B-,C+]), which
are used as features ([f1, fo, f3, f4]) for the classifier. For the instance at t., the
record values are f; = dy, fo = do, f3 =d3, and f4 = 0.

The parameters for the models were selected after testing the performance
of each considered combination. The parameters that performed best are the
following: RF - maximum depth of 5, using bootstrap with 100 trees in the forest;
ANN - two 50-neurons hidden layers, a maximum of 20 epochs, a batch size of
16, learning rate of 0.001 with gradually decreasing with early stopping, and
with the ReLLU activation function. NB, RF, and ANN were implemented with
Python 3.6 and the Scikit-Learn package (scikit-learn.org) version 0.22.1.
For parameters we did not specify, we used the package defaults.

3.4 Early Warning Strategies

Early warning strategies are used to decide that the TIRP will likely unfold once
there is a high likelihood of the completion of the TIRP, based on the CPMs’
estimated probabilities.


scikit-learn.org

A decision that the TIRP will be unfolded is made immediately after the proba-
bility exceeds the prediction decision threshold (e.g., the gray point in Fig. |5)) or
when the threshold was consistently exceeded for some pre-defined time 7 (e.g.,
the blue point in Fig. [p| which is defined with 7 of three time stamps).
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Fig. 5. The TIRP’s completion probability at any time point is based on the observed
STI series. The prediction decision is made when the completion probability is higher
than the threshold, which is the horizontal dashed line (0.5 in this case), and a time

delay 7 has been passed.

4 Evaluation

Our goal was to evaluate the effectiveness of using continuous prediction models
(CPMs) in predicting a TIRP’s completion. The main research questions for this

study were:

RQ1. Which CPM performs better, in terms of prediction performance and
earliness, in predicting the completion of a TIRP?

RQ2. Which value of 7 performs best, in terms of prediction performance and
earliness, in predicting the completion of a TIRP?

4.1 Datasets

We evaluated the proposed models using real-life medical and non-medical datasets:
cardiac surgical patients (CSP) [I2], acute hypertensive episodes (AHE) [5], di-
abetes (DBT) [10], and elderly first injury fall (EFIF) [3] datasets. The events
of interest were defined as the first occurrence of the following: CSP - cardiac
index lower than 2.5 L/min/m?, AHE - the target onset, DBT - HbA1C greater
than 9%, and EFIF - first fall in elderly with a severe or moderate injury. Ta-
ble [1| summarizes the main parameters of each dataset: entities (e.g., patients)
number (#Ent), variables number (#Var), entities’ maximum number of times-
tamps (#Timestamps), time granularity (Granularity), entities with the event
of interest (#EntEvent), where the values in parentheses represent the percent-
age of #EntEvent out of #Ent, and the averaged different number of discovered
TIRPs that ended with the events of interest (#TIRPs).



Table 1. The evaluation datasets’ parameters

Name #Ent #Var #Timestamps Granularity #EntEvent #TIRPs

CSP 329 13 720 minutes 115 (35%) 257
AHE 1,000 4 238 hours 500 (50%) 246
DBT 1,710 12 24 months 239 (14%) 256
EFIF 823 15 144 weeks 121 (15%) 529

4.2 Experimental Setup

The models were evaluated on the ability to predict the completion of a TIRP
that ended with an event of interest. Being able to predict continuously the
completion of a TIRP, means it is possible to predict an event of interest. The
entities’ demographic data were not used, and only the time-based data were
used for the continuous prediction. All the datasets were abstracted into STI
series using SAX [6] with three symbols per variable. Then, TIRPs were discov-
ered from the STI data using the Karmalego algorithm [10] using Allen’s seven
temporal relations [I]. The patterns were discovered using 15% minimal vertical
support from the entities that contained the event of interest.

Only the discovered patterns that ended with the event of interest were used.
Yet, all entities, with or without the event of interest, were used to learn the
model’s parameters. TIRP-prefixes can be detected more than once in an entity’s
records, in which case each detected instance of the TIRP or its TIRP-prefixes
were considered separately. The TIRP-prefixes instances from the training set
were used to learn the model. To evaluate the models, all instances that started
with the TIRP’s earliest tieps, were used in the experiments. The events’ STIs
were considered instantaneous events, and the beginning of the event of interest
was considered as the TIRP’s completion.

Since each TIRP’s completion was based on a different number of detected
TIRP-prefixes’ instances, the imbalance ratio differed between the patterns. We
ran the experiments with ten-fold cross-validation, using target stratification.
The instances of a TIRP and its TIRP-prefixes of the same entity appeared
exclusively in the same fold.

Evaluation Metrics To evaluate the models’ performance, a receiver operating
characteristics (ROC) curve was calculated, together with the corresponding
area under the curve (AUROC). The decisions were made based on a prediction
decision threshold, that was varied between 0 to 1, and the decision time delay
7 was varied using 0, 1, 2, and 3 time units. The ROC was created by varying
the prediction decision thresholds between 0 to 1 (Fig. [5)).

The revealed time portion (RTP) refers to the percentage of the instance that
is revealed, at the time of the decision, relative to the entire instance’s duration
(start till its end time — known retrospectively). The revealed time is in percent-
age, since each instance, even of the same TIRP, may have a different duration.
For example, in Fig. [5|the grey dot’s RTP is 70%, where D+ is considered as the
event of interest and thus the instance’s end.



4.3 Experiments and Results

Due to the limited space, each experiment is described first, followed by its
results. The results are based on a total of 1,288 different TIRPs (Table[I). Each
point on the charts represents the mean performance of the different TIRPs in
each dataset, including confidence intervals of 95%.

Preliminary Analysis In this experiment, we present the performance in ret-
rospect, analyzing the decision accuracy if the decision was made according to
any of the RTPs (rather than according to the model threshold decision). Addi-
tionally, we wanted to understand whether there is an ideal RTP for a decision,
or the more it reveals is better. The results were computed for all TIRP-prefixes
instances for each RTP, based on the completion probability at this point.

Fig. [6] presents the mean AUROC at various TIRP-prefixes instances’ RTP.
The charts show that the more the instance is revealed, the more accurate pre-
dictions are provided by the models. RF and ANN perform best on all the
datasets, except the EFIF dataset, in which the SCPM performs best above
40% revealed portion, while the CPMs perform worse. Thus, instance unfold-
ment can be predicted better when more information is revealed, but there is
no optimal stage. However, early predictions are also desirable, so there is a
trade-off, as we demonstrate in Fig.
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Fig. 6. The more the instance is revealed, the more accurate the predictions are. Over-
all, RF and ANN perform best on all the datasets, except the EFIF dataset.

Continuous TIRP’s Completion Prediction In this experiment, we eval-
uated the models’ ability to estimate the TIRPs’ instances’ completion, where
the results were computed for all TIRP-prefixes’ instances based on the decisions
made by using the early warning strategies.

To answer [RQ1I] Fig. [7] presents the mean results of the models in predicting
the TIRPs’ instances completion with different values of 7. The ANN performed
significantly best, except on the EFIF, in which SCPM performed best.

10



This implies that the duration distributions between TIRP-prefixes’ consecutive
tieps are similar between instances that ended with and without the event of
interest on the EFIF dataset, and this may explain why SCPM performed better.
The NB performed worst in all datasets.
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Fig. 7. ANN performed better than the other models with an average of 1.5% AUROC.

To answer and Fig. [§] presents the AUROC versus the mean in-
stances” RTP of the corresponding decisions, for cases when the TIRP’s com-
pletion was correctly predicted (true positive cases), for different models and
values of 7, which are represented by five different colors and four different sizes,
respectively. Overall, 7 = 2 performed best. While NB provided the earliest pre-
dictions for CSP, AHE, and EFIF, its prediction performances were poor. Also,
for CSP, and EFIF, the SCPM, and ANN provided the latest but most accurate
predictions. Except for the DBT dataset, there is a trade-off between prediction
performance and earliness, where more accurate models need more time to make
decisions. It strengthens the preliminary analysis, which showed the models were
more accurate as time passed for each instance (Fig. @
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Fig. 8. More accurate models need more time to make decisions. Overall, SCPM pro-
vided the latest predictions, and NB and RF provided the earliest predictions.
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5 Discussion

In this work, the continuous prediction of a TIRP’s completion was studied for
the first time. This approach can be useful with STT series databases, but what
makes it more important and impactful is its use for heterogeneous multivariate
longitudinal data, after employing temporal abstraction and transforming the
data into STI series. Thus, it can be applied to any type of temporal variable,
while incorporating any of them. The challenges, including the uncertainty of the
evolving temporal relations, were discussed, and the TIRP-prefix representation
and the extender algorithm (Alg. [1]) to overcome this challenge were described.
Based on that, the SCPM and CPML were proposed and a rigorous evaluation
was performed on four real-life datasets. Overall, the CPML based on an ANN
performed better than the other models with an average of 1.5% AUROC, but
CPML based on NB or RF provided the earliest predictions. For future work,
we intend to gear this methodology for event prediction, by applying it with
multiple instances of various types of TIRPs that end with the event of interest.
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