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Abstract. The paper presents minimum variance patterns: a new class
of itemsets and rules for numerical data, which capture arbitrary con-
tinuous relationships between numerical attributes without the need for
discretization. The approach is based on finding polynomials over sets
of attributes whose variance, in a given dataset, is close to zero. Sets of
attributes for which such functions exist are considered interesting. Fur-
ther, two types of rules are introduced, which help extract understand-
able relationships from such itemsets. Efficient algorithms for mining
minimum variance patterns are presented and verified experimentally.

1 Introduction and Related Research

Mining association patterns has a long tradition in data-mining. Most methods,
however, are designed for binary or categorical attributes. The usual approach to
numerical data is discretization [22]. Discretization however leads to information
loss and problems such as rules being split over several intervals. Approaches
allowing numerical attributes in rule consequent have been proposed, such as [3,
25], but they do not allow undiscretized numerical attributes in rule antecedent.

Recently, progress has been reported in this area, with a number of papers
presenting extensions of the definition of support not requiring discretization [23,
14, 7]. Other papers provide alternative approaches which also do not require
discretization [20, 12, 19, 1, 5].

This work extends those methods further, allowing for the discovery of com-
plex nonlinear relationships between sets of numerical attributes without the
need for discretization. The work is set in the spirit of association rule mining.
First, a concept of minimum variance itemsets is introduced. Those itemsets
describe functions which are always close to zero on a given dataset, and thus
represent equations describing relationships in data. Based on those itemsets,
rules can be derived showing relationships between disjoint sets of attributes.
An Apriori style mining algorithm is also presented.

Let us now review the related work. The approach presented in [16] allows
for combining attributes using arithmetic operations, but after combining them
discretization is applied. Also, since only addition and subtraction are allowed,
nonlinear relationships cannot be represented.



In [20, 12, 19] a method for finding rules of the form “if a linear combination of
some attributes is above a given threshold, then a linear combination of another
set of attributes is above some other threshold” is described. Rules of this type
are mined using standard optimization algorithms. While the approach could
be extended to nonlinear case, the method presented here is more efficient since
it requires solving eigenvalue problems of limited size instead of using general
optimization methods on the full dataset. Furthermore, since binary thresholds
are used, the method from [20] cannot represent continuous relationships between
groups of attributes. Our work is more in the standard association rule spirit
providing both itemsets and rules, as well as an Apriori style mining algorithm.

In [1], an interesting method is presented for deriving equations describing
clusters of numerical data. The authors first use a clustering algorithm to find
correlation clusters in data, and then derive equations describing the linear space
approximating each cluster’s data points based on the cluster’s principal com-
ponents computed using eigenvectors of the correlation matrix of data in the
cluster. While the use of eigenvectors to discover equations may suggest sim-
ilarities, the approach presented here is quite different. We are not trying to
describe previously discovered clusters, but give method of pattern discovery
(defining itemsets and rules) in the spirit of association rule mining. Further we
allow for arbitrarily complex nonlinear relationships to be discovered, while [1]
essentially describes a cluster as a linear subspace. Third, by adding an extra
constraint to the optimization, we guarantee that patterns discovered will not
involve statistically independent attributes.

There is some similarity between our approach and equation discovery [9, 18].
Equation discovery algorithms are in principle capable of discovering minimum
variance patterns we propose. However the discovery methodology, is quite dif-
ferent in both cases. In fact our approach was more than an order of magnitude
more efficient than Lagrange [9], an equation discovery system. Combining the
two approaches, such as using equation discovery to give explicit formulas for
minimum variance patterns is an interesting topic for future research.

2 Minimum Variance Itemsets

Let us begin by introducing the notation and some preliminary concepts.
We assume that we are dealing with a dataset D whose attributes are all

numeric. Non-numerical attributes can be trivially converted to {0, 1} attributes.
To avoid overflow problems while computing powers, we also assume that the
attributes are scaled to the range [−1, 1].

Attributes of D will be denoted with letters X with appropriate subscripts,
and sets of attributes with letters I, J,K. If t ∈ D is a record of D, let t.X
denote the value of attribute X in t, and t[I] the projection of t on a set of
attributes I. Following [15, 8] we now define support of arbitrary functions. Let
f be a function of an attribute set I. Support of f in D is defined as

suppD(f) =
∑
t∈D

f(t[I]).



We are now ready to describe minimum variance itemsets, the key concept of
this work. Our goal is to discover arbitrary relationships between the attributes
of D. The patterns we are looking for have the general form

f(I) = f(X1, X2, . . . , Xr),

where we expect the function f to somehow capture the relationship among the
variables of I = {X1, X2, . . . , Xr}.

Let us look at two examples. Suppose we have two attributes x and y, such
that x = y. The equality between them can be represented by an equation

f(x, y) = x− y = 0,

so one possible function f for this case is x− y. Suppose now that x, y represent
random points on a circle of radius 1. The function f could now be f(x, y) = x2+
y2−1 since the relationship can be described by an equation x2 +y2−1 = 0. Of
course if noise was present the equalities would be satisfied only approximately.

The common pattern of the two above cases is, that the function f was
identically equal to zero for all points (records) in the data. It is thus natural,
for a given itemset I, to look for a function f(I) which minimizes∑

t∈D
[f(t[I])]2 = suppD(f2).

We will call this quantity the variance of f around zero, or briefly variance,
and a function minimizing it, a minimum variance itemset. This concept should
not be confused with statistical notion of variance, which would be around the
function’s mean (we consciously abuse the terminology).

This formulation has a problem. The function f(I) ≡ 0 minimizes variance
but does not carry any information. Also 1

2f necessarily has lower variance than
f , although it does not carry any more information. To avoid such situations, we
add a normalizing condition guaranteeing that the function f is of appropriate
magnitude. Several such normalizations will be presented below.

2.1 Formal problem statement

The above discussion was in terms of arbitrary functions. In practice we have
to restrict the family of functions considered. Here we choose to approximate
the functions using polynomials, such that the degree of every variable does not
exceed a predefined value d. Let I = {X1, . . . , Xr} be a set of attributes. Then
any function f of interest to us can be represented by

fc(I) = f(X1, . . . , Xr) =
d∑

α1=0

· · ·
d∑

αr=0

c(α1,...,αr)X
α1
1 · · ·Xαr

r ,

where c(α1,...,αr) are the coefficients of the polynomial. We will organize all coef-
ficients and monomials involved in two column vectors (using the lexicographic



ordering of exponents):

c = [c(0,...,0), c(0,...,1), . . . , c(d,...,d)]T ,

x = [X0
1 · · ·X0

r , X
0
1 · · ·X1

r , . . . , X
d
1 · · ·Xd

r ]T .

We now have fc = cTx = xT c, and fc
2 = cT (xxT )c. Notice that xxT is a

(d+1)r× (d+1)r matrix, whose entries are monomials with each variable raised
to power at most 2d. So the entry in row corresponding to (α1, . . . , αr) and
column corresponding to (β1, . . . , βr) is Xα1+β1

1 · · ·Xαr+βr
r .

We now use the trick from [15] in order to compute support of fc2 for various
values of c without accessing the data. Let t[x] denote the x vector for a given
record t, i.e. t[x] = [t.X0

1 · · · t.X0
r , t.X

0
1 · · · t.X1

r , . . . , t.X
d
1 · · · t.Xd

r ]T . Now

suppD(fc2) =
∑
t∈D

cT (t.x · t.xT )c = cT
(∑
t∈D

t.x · t.xT
)

c = cTSD c, (1)

where SD is a (d + 1)r × (d + 1)r matrix, whose entry in row corresponding
to (α1, . . . , αr) and column corresponding to (β1, . . . , βr) contains the value of
suppD(Xα1+β1

1 · · ·Xαr+βr
r ). It thus suffices to compute supports of all neces-

sary monomials, after which support of fc2 for any coefficient vector c can be
computed without accessing the data, using the quadratic form (1).

We now go back to the problem of normalizing fc such that the trivial solution
fc ≡ 0 is avoided. We tried various normalizations:

(a) require that the vector c be of unit length, ||c|| = 1,
(b) require that weighted length of c be 1,

∑
α wαcα

2 = 1, this allows for penal-
izing high degree coefficients.

(c) require that support of fc2(I) be equal to one, under the assumption that
all variables in I are distributed uniformly.

(d) require that support of fc2(I) be equal to one, under the assumption that
all variables in I are distributed as in D, but are independent.

When no outliers were present, all of those approaches worked reasonably
well. However in the presence of outliers only approach (d) was useful. Other
methods picked fc such that it was close to zero everywhere except for the few
outlier points. Also, this approach guarantees that patterns involving statistically
independent attributes will have high minimum variance.

We thus limit further discussion to normalization based on the requirement
(d). Imagine a hypothetical database DI in which each attribute is distributed
as in D but all attributes are independent. The support of fc2 under such an
independence assumption can be computed analogously to (1) as suppI(fc

2) =
cTSI c, where an element of SI in row corresponding to (α1, . . . , αr) and column
corresponding to (β1, . . . , βr) is given by

suppDI
(Xα1+β1

1 · · ·Xαr+βr
r ) = suppD(Xα1+β1

1 ) · · · suppD(Xαr+βr
r ),

since variables X1, . . . , Xr are assumed to be independent.
We are now ready to formally define a minimum variance itemset for a given

set attributes I:



Definition 1. A real valued function f on a set of attributes I is called itemset
on I. The variance of f is defined as

var(f) = suppD(f2).

A minimum variance itemset on I is a function f∗(I) = fc∗(I) on a set of
attributes I which minimizes cTSD c subject to a constraint cTSI c = 1.

2.2 Finding the minimum variance itemset for a set of attributes.

To find a minimum variance itemset for a given I we use the method of Lagrange
multipliers [11]. The Lagrangian is L(c, λ) = cTSD c − λ

(
cTSI c− 1

)
. Using

elementary matrix differential calculus [24, 13] we get ∂L
∂c = 2SD c− 2λSI c, and

after equating to zero we get the necessary condition for the minimum:

SD c = λSI c. (2)

This is the generalized eigenvalue problem [10, 24, 13], well studied in computa-
tional linear algebra. Routines for solving this problem are available for example
in LAPACK [10]. If (c, λ) is a solution to (2), a candidate solution c′ to our opti-
mization problem is obtained by scaling c to satisfy the optimization constraint:
c′ = c√

cT SI c
. Variance of this solution (using substitution and Equation 2) is

var(fc′) = suppD(fc′2) = c′TSD c′ =
cT√

cTSI c
· SD c√

cTSI c
=
λcTSI c
cTSI c

= λ.

The variance of c′ is thus equal to the corresponding eigenvalue, so the final
solution c∗ is the (scaled) eigenvector corresponding to the smallest eigenvalue.

The above property can be used to speed up computations, since finding only
the smallest eigenvalue can be done faster than finding all eigenvalues (routines
for finding a subset of eigenvalues are also available in LAPACK).

Another important observation is that matrices SD and SI are symmetric
(follows directly from their definition) and positive semi-definite (support of a
square of a function cannot be negative). This again allows for more efficient
computations, see [10, 24] for details.

2.3 Example calculation

We will now show an example calculation on a toy example of a dataset D =
{(1,−2), (−2, 4), (−1, 2)} over attributes x, y, for d = 1. x = [1, x, y, xy]T , and
c = [c(0,0), c(1,0), c(0,1), c(1,1)]T . Now, suppD(1) = 3, suppD(x) = −2, suppD(y) =
4, suppD(xy) = −12, suppD(x2) = 6, suppD(y2) = 24, suppD(x2y) = 16,
suppD(xy2) = −32, suppD(x2y2) = 72. Supports under independence assump-
tion are suppI(y) = suppD(x0) · suppD(y) = 12, suppI(x2y) = suppD(x2) ·
suppD(y) = 24, etc. The SD and SI matrices are

SD =

 3 −2 4 −12
−2 6 −12 16
4 −12 24 −32
−12 16 −32 72

 , SI =

 9 −6 12 −8
−6 18 −8 24
12 −8 72 −48
−8 24 −48 144

 .



After solving the generalized eigenvalue problem and rescaling we get c∗ =
[0,−1,−0.5, 0]. The correct relationship −2x− y = 0 has been discovered.

Let us now discuss closure properties of minimum variance itemsets.

Theorem 1. Let I ⊆ J be two sets of attributes, and f∗(I) and g∗(J) be mini-
mum variance itemsets on I and J respectively. Then var(g∗) ≤ var(f∗).

In other words variance is upward closed, adding attributes reduces the variance.
The proof is a trivial consequence of the fact that a function of I is also a function
of J (constant in variables in J \ I), so the lowest variance attainable for J is at
least as low as the variance attainable for I, and may be better.

The problem is that we are interested in itemsets with low variance, so if
one is found, all its supersets are potentially interesting too. The solution is to
set a minimum threshold for variance, and then find smallest (in the sense of
set inclusion) sets of attributes for which the variance (of the minimum variance
itemset or the itemset’s best equality or regression rule) is less than the specified
threshold. Similar approach has been used e.g. in [6]. The algorithm is a simple
adaptation of the Apriori algorithm [2], and is omitted due to lack of space.

3 From Itemsets to Rules

In order to facilitate the interpretation of minimum variance itemsets two types
of rules are introduced. The first kind are what we call equality rules.

Definition 2. An equality rule is an expression of the form g(I) = h(J), where
I ∩ J = ∅, and g and h are real valued functions on I and J respectively. The
variance of the rule is defined as var(g(I) = h(J)) = suppD

(
(g − h)2

)
.

Thus equality rules capture relationships between disjoint groups of attributes
which are usually easier to understand than the itemsets defined above.

A minimum variance equality rule g∗(I) = h∗(J) is defined, similarly to
the minimum variance itemset case above, as a pair of functions for which
var (g∗(I) = h∗(J)) is minimum subject to a constraint that the support of
(g − h)2 is equal to one, under the independence assumption. Finding mini-
mum variance equality rules for given I and J can be achieved using the same
approach as finding minimum variance itemsets. If we approximate both g and
h with polynomials, I = {X1, . . . , Xr} and J = {Xr+1, . . . , Xr+s}, and denote

cg = [c(0,...,0), c(0,...,1), . . . , c(d,...,d)]T ,

xg = [X0
1 · · ·X0

r , X
0
1 · · ·X1

r , . . . , X
d
1 · · ·Xd

r ]T ,
ch = [d(0,...,1), d(0,...,2), . . . , d(d,...,d)]T ,

xh = [X0
r+1 · · ·X1

r+s, X
0
r+1 · · ·X2

r+s, . . . , X
d
r+1 · · ·Xd

r+s]
T ,

we get g = cTg xg, h = cThxh, and g+h = [cg|ch]T ·[xg|xh]. Note that the constant
term is omitted from ch and xh, since it is included in cg and xg.



From that point on, the derivation proceeds exactly as in the case of min-
imum variance itemsets in order to find the vector [cg|ch]∗ which minimizes
suppD

(
(g + h)2

)
subject to suppI

(
(g + h)2

)
= 1. After finding the solution,

signs of coefficients in ch are reversed to get from a minimum variance for g+ h
to the desired minimum variance for g − h.

Finding a minimum variance equality rule on I and J is analogous to finding
a minimum variance itemset f on I ∪ J subject to an additional constraint that
f be a difference of functions on I and J . Thus, the minimum variance of an
itemset on I∪J is less than or equal to the minimum variance of an equality rule
on I and J . If an itemset has high minimum variance, we don’t need to check
rules which can be generated from it, since their variance is necessarily high too.

Another kind of rules are what we call regression rules.

Definition 3. A regression rule is an expression of the form X = g(I), where
X is an attribute, I a set of attributes, X 6∈ I, and g is a function of I.

It is easy to see that regression rules are equality rules with additional con-
straint that one side of the rule must contain a single attribute in the first power
only. It is thus clear that minimum variance of a regression rule cannot be lower
than minimum variance of a corresponding equality rule. Also, the definition of
variance of a regression rule as well as discovery of minimum variance regression
rules are analogous to the case of equality rules and are thus omitted.

Minimum variance regression rules correspond to standard least-squares poly-
nomial regression with X being the dependent variable. Therefore minimum vari-
ance equality rules can be seen as a generalization of standard polynomial regres-
sion to allow functions of dependent variables, and minimum variance itemset as
a further generalization allowing for discovering patterns not involving equality.

4 Illustrative examples

In this section we show some illustrative examples of patterns discovered, and
give some suggestions on how to elicit understandable knowledge from them.

We first apply the method to a small artificial dataset. The dataset has three
attributes x, y, z, and is generated as follows: (x, y) are randomly chosen points
on a unit circle and z is set equal to x. The relationships among the attributes
are therefore z = x, x2 + y2 = 1, and z2 + y2 = 1.

We applied the algorithm with d = 2 without any minimum variance thresh-
old. Only pairs of attributes were considered. Generated patterns are given in
the table below (terms with negligibly small coefficients are omitted)

attrs. min. variance equation

{x, y} 6.62 · 10−15 −1.99 + 1.99x2 + 1.99y2

{y, z} 6.62 · 10−15 −1.99 + 1.99y2 + 1.99z2

{x, z} 1.24 · 10−17 −0.663x2 + 1.325xz − 0.663z2 = −0.663(x− z)2

The minimum variance itemsets for {x, y} and {y, z} do not require any
comment. They clearly capture the correct relationship x2 + y2 = 1.
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Fig. 1. Contour of the minimum vari-
ance itemset for random points satisfying
the condition x < 0 ∨ y < 0.
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Fig. 2. Extrasolar planet data: relation-
ship between logarithms of planet’s pe-
riod and semi-major axis, together with
contours of the minimum variance item-
set. Solid line is the zero contour.

The case for {x, z} is more interesting. Instead of the expected x − z = 0
we obtained an equivalent, but more complicated expression (x − z)2 = 0. The
reason is that the degree of the approximating polynomial exceeds that of the
true relationship. As a result, two of the eigenvalues are equal to zero, and
any linear combination of their corresponding eigenvectors is also a minimum
variance solution. To avoid such situations we recommend decreasing the value
of d until a minimum value is found at which the relationship still occurs. In the
currently analyzed case lowering d to 1 gives the expected −0.997x+0.997z = 0.
Another approach, to use regression rules, which also helps in this case.

It should be noted that the best regression rules for {x, y} and {y, z} have
variance of about 1, so the relationship would not have been discovered by stan-
dard regression analysis (indeed the correlation coefficient is about 8 · 10−3).

Let us look at another example which shows that minimum variance itemsets
are able to represent patterns much reacher than those usually described using
algebraic equations. Consider an artificial dataset which has two attributes x, y ∈
[−1, 1] and contains points randomly generated on the set where the condition
x < 0 ∨ y < 0 is true. Thus no points are present in the [0, 1] × [0, 1] square.
The correlation coefficient is −0.359, thus not very high. The minimum variance
itemset on xy however, has small values everywhere except for the [0, 1]× [0, 1]
square and the minimum variance of {x, y} is 0.024. The representation is of
course not perfect, but tends to approximate the data quite well (Figure 1). We
will see a similar pattern occurring in real life datasets (sonar) below.

Extrasolar planets data. This section shows more examples of minimum variance
patterns. The dataset used is about currently known extrasolar planets, and can
be downloaded from [21]. Six attributes were chosen and 197 planets selected
for which all those attributes were defined. The attributes are described in the
table below:



attribute description

pl. mass mass of the planet

period orbital period around star

semi-major axis distance of the planet from star

ang. distance angular distance of planet from star (as seen from Earth)

star distance distance of planet’s star from Earth

star mass mass of the star

Attributes were scaled to [0, 1] range, so units are omitted. Afterwards, logarith-
mic transform was applied. The advantage of the data is that there are some
well established relationships which should be discovered if the method works
correctly. This experiment is similar to that from [18], but uses more data and
involves additional relationships.

First, semi-major axis divided by the distance of the star from Earth is equal
to the tangent of the angular distance of the star from the planet. Second, by
Kepler’s law, the square of orbital period of a planet is proportional to the cube
of the semi-major axis of its orbit. If planet and star masses are known, the
proportionality constant can also be determined [17]. It is possible that further
relationships exist, but due to the author’s lack of astronomical knowledge they
will not be discussed. We begin by looking at pairs of attributes. The value d = 2
was used, with no minimum variance requirement.

The strongest relationship was discovered between planet’s period and its
semi-major axis with minimum variance of 6.83 · 10−5. The relationship is
shown in Figure 2. The data points are marked with circles. Contour plot of the
minimum variance itemset is also shown. According to Kepler’s law there is a
linear relationship between logarithms of the two values. The minimum variance
itemset is not linear (due to overfitting and ignoring the star mass) but captures
the relationship well. Decreasing the degree or examining rules, reveals the linear
nature. The clarity of the relationship is surprising since, planet and star masses
also play a role. It turned out, that masses of most stars in the data are very
close to each other, and planets’ masses are too small to distort the relationship.

To explore the relationship further we examined patterns of size 3 and 4
containing attributes period and semi-major axis. As expected, the most in-
teresting pattern of length three added the star mass attribute (minimum vari-
ance 6.85 · 10−7), and by adding pl. mass, a four attribute set was obtained
with variance 8.33 · 10−10 — an almost perfect match.

The triple of attributes which had the lowest variance of 9.72 · 10−8 was
semi-major axis, ang. distance and star distance. This is expected due
to the deterministic relationship among them described above. All equality rules
involving those attributes had very low variance too. Variance of regression rules
was higher (in the range of 10−4).

An interesting subset of the above triple, is the pair semi-major axis and
ang. distance. Its minimum variance is 0.027, but the variance of all rules
between those attributes is much higher, about 0.15 in all cases. This is another
example of a low variance itemset which cannot be captured by equality rules.
The situation is depicted graphically in Figure 3, where data points and the
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contours of the itemset are shown. It can be seen that there is a clear relationship
between the attributes, high values of semi-major axis correspond to low values
of ang. distance and vice versa. But the relationship is not functional, and is
not well described by rules. Nevertheless, the minimum variance itemset has
values close to zero in the areas where there is a lot of data points. Minimum
variance patterns are thus capable of discovering, and describing groupings of
data points which are otherwise hard to define.

The sonar dataset. We now turn our attention to the well known sonar dataset.
Since our method is somewhat sensitive to outliers, we removed every record
which contained a value more than 3 standard deviations from the mean for
some attribute. An interesting pattern has been found between attributes 15
and 44, see Figure 4. We can see that high values of both attributes never
occur together. The actual relationship is reminiscent of the second artificial
dataset presented above. The correlation coefficient is only −0.114; based on it,
the pattern would have most probably been missed by traditional correlation
analysis. This situation is similar to ‘holes in data’ analyzed in [4] which are well
approximated in our framework.

5 Performance analysis

We now present performance evaluation of the minimum variance itemset mining
algorithm. The default parameters were d = 2 and maximum of r = 3 attributes
per itemset. We found this combination to be flexible enough to discover complex
patterns, which are still reasonably easy to interpret.

We used three datasets for testing: the extrasolar planet and sonar datasets
described above, and a large Physics dataset from the KDD Cup 2004 competi-
tion with 80 attributes and 50000 records.
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The algorithm has been implemented in C. Figure 5 (left) shows the influence
of the parameter d on computation time for various minimum variance thresh-
olds. The parameter r is kept equal to the default value of 3. Figure 5 (right)
shows the influence of the r parameter (d is kept equal to 2). Note that charts for
d = 2 (left) and for r = 3 (right) in Figure 5 are identical since they correspond
to the same parameter values. While performance of the algorithm is worse than
for association rules in case of binary attributes (this is to be expected due to a
much reacher structure of the data), the algorithm is practically applicable even
for large datasets. It is interesting to see that, below a certain threshold, the
minimum variance parameter has little influence on computation time.

We have also compared our approach with an equation discoverer Lagrange [9]
(horizontal lines in Figure 5 (right)). The parameters were set such that it would
discover polynomials of degree at most 2 involving at most 2 or 3 variables. Our
approach was more than an order of magnitude faster than Lagrange. This is not
surprising, as for every set of attributes Lagrange conducts an exhaustive search
compared to a single relatively efficient eigenvalue computation in our case.

6 Conclusions and future research

A method for discovering arbitrarily complex relationships among numerical at-
tributes has been presented. Its application yields itemsets and rules in the spirit
of associations discovery. It has been shown experimentally that the approach
does indeed produce interesting patterns, which capture various types of com-
plex relationships present among the attributes. It is capable of finding patterns
which would have been missed by standard polynomial regression analysis.

Future work is planned on increasing performance, e.g. by using bounds for
eigenvalues to prune itemsets early.
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