Minimum Variance Associations - Discovering Relationships in Numerical Data

Szymon Jaroszewicz
National Institute of Telecommunications
Warsaw, Poland
PAKDD 2008

Frequent pattern mining

Frequent itemset mining

Given a binary table find all sets of attributes such that

$$
\operatorname{supp}(I)=\frac{|\{t \in \mathcal{D}: t[I]=(1,1, \ldots, 1)\}|}{|\mathcal{D}|} \geq \min _{\text {supp }}
$$

Frequent pattern mining

Frequent itemset mining

Given a binary table find all sets of attributes such that

$$
\operatorname{supp}(I)=\frac{|\{t \in \mathcal{D}: t[I]=(1,1, \ldots, 1)\}|}{|\mathcal{D}|} \geq \min _{\text {supp }}
$$

- Defined for binary datasets
- Easy extension to categorical attributes
- Applicable to: trees, graphs, etc.
- but... how to do it for numerical attributes?

How to do it for numerical attributes?

- Discretization
- information loss
- rules split among many intervals

How to do it for numerical attributes?

- Discretization
- information loss
- rules split among many intervals
- Recently a few other approaches:
- definitions of support for numeric data [Steinbach]
- using ranks [Calders, Goethals, Jaroszewicz]
- using polynomials [Jaroszewicz, Korzeń]
- equations discovery [Langley, Dzeroski, Todorovski]

A framework for pattern mining analogous to association rules

- Handles numeric data directly
- Able to discover arbitrary nonlinear relationships

Minimum Variance Associations: main idea

Trivial examples:

$$
x=y
$$

Minimum Variance Associations: main idea

Trivial examples:

$$
x=y
$$

Pattern:
$F(x, y)=x-y$
$=0$ for all transactions

Minimum Variance Associations: main idea

Trivial examples:

$$
x=y
$$

Pattern:
$F(x, y)=x-y$
$=0$ for all transactions

Minimum Variance Associations: main idea

Trivial examples:

$$
x=y
$$

Pattern:
$F(x, y)=x-y$
$=0$ for all transactions

$$
x^{2}+y^{2}=1
$$

Pattern:

$$
\begin{aligned}
& F(x, y)=x^{2}+y^{2}-1 \\
& =0 \text { for all transactions }
\end{aligned}
$$

Minimum Variance Itemsets

Attributes $x_{1} x_{2} \ldots x_{n}$ are related if there exists a function $F\left(x_{1} \ldots x_{n}\right)$ which has low variance

$$
\sum_{t \in \mathcal{D}} F^{2}\left(t\left[x_{1} \ldots x_{n}\right]\right) \approx 0
$$

These are our itemsets

Minimum Variance Itemsets

Attributes $x_{1} x_{2} \ldots x_{n}$ are related if there exists a function $F\left(x_{1} \ldots x_{n}\right)$ which has low variance

$$
\sum_{t \in \mathcal{D}} F^{2}\left(t\left[x_{1} \ldots x_{n}\right]\right) \approx 0
$$

Problem

$F \equiv 0$ trivially satisfies all cases.

Minimum Variance Itemsets

Attributes $x_{1} x_{2} \ldots x_{n}$ are related if there exists a function $F\left(x_{1} \ldots x_{n}\right)$ which has low variance

$$
\sum_{t \in \mathcal{D}} F^{2}\left(t\left[x_{1} \ldots x_{n}\right]\right) \approx 0
$$

subject to additional constraint:
If $x_{1}, x_{2}, \ldots, x_{n}$ were statistically independent then

$$
\sum_{t \in \mathcal{D}} F^{2}\left(t\left[x_{1} \ldots x_{n}\right]\right)=1
$$

How to find F with minimum variance?

(1) Assume F is a polynomial:

$$
F(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y+c_{4} x^{2}+c_{5} y^{2}
$$

How to find F with minimum variance?

(1) Assume F is a polynomial:

$$
F(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y+c_{4} x^{2}+c_{5} y^{2}
$$

(2) Compute two matrices $\mathbf{S}_{\text {Data }}$ and $\mathbf{S}_{\text {Indep }}$:

$$
\begin{aligned}
\mathbf{S}_{\text {Data }}[1,3] & =\sum_{\mathcal{D}} x \cdot x y \\
\mathbf{S}_{\text {Indep }}[1,3] & =\sum_{\mathcal{D}} x \cdot \sum_{\mathcal{D}} x y
\end{aligned}
$$

How to find F with minimum variance?

(1) Assume F is a polynomial:

$$
F(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y+c_{4} x^{2}+c_{5} y^{2}
$$

(2) Compute two matrices $\mathbf{S}_{\text {Data }}$ and $\mathbf{S}_{\text {Indep }}$:

$$
\begin{aligned}
\mathbf{S}_{\text {Data }}[1,3] & =\sum_{\mathcal{D}} x \cdot x y \\
\mathbf{S}_{\text {Indep }}[1,3] & =\sum_{\mathcal{D}} x \cdot \sum_{\mathcal{D}} x y
\end{aligned}
$$

(3) The coefficient vector $\mathbf{c}=\left[c_{0}, \ldots, c_{n}\right]$ is a solution of the Generalized Eigenvalue Problem

$$
\mathbf{S}_{\text {Data }} \cdot \mathbf{c}=\lambda \mathbf{S}_{\text {Indep }} \cdot \mathbf{c}
$$

Mining algorithm

Monotonicity property
 Adding attributes decreases the minimum variance

If an itemset is good, all its supersets are also good.

Mining algorithm

Monotonicity property

Adding attributes decreases the minimum variance
If an itemset is good, all its supersets are also good.

Solution

Find smallest itemsets with given minimum variance.
Simple modification of standard itemset mining algorithms.

Rules

Two types of rules:
Regression rules: $\quad y=F(X)$
Equality rules: $\quad F(X)=G(Y)$

Rules

Two types of rules:
Regression rules: $\quad y=F(X)$
Equality rules: $\quad F(X)=G(Y)$

Variance of rule $F(X)=G(Y)$ is higher than of itemset $X \cup Y$

Rules

Two types of rules:
Regression rules: $\quad y=F(X)$
Equality rules: $\quad F(X)=G(Y)$

Variance of rule $F(X)=G(Y)$ is higher than of itemset $X \cup Y$
Like standard association rules:
(1) First mine itemsets
(2) Find rules for each itemset

Simple example

$$
x^{2}+y^{2}=1
$$

itemset: $\quad-1.99+1.99 x^{2}+1.99 y^{2}$
equality rule: $\quad 1.99 y^{2}=1.99-1.99 x^{2}$
regression rule: none

Examples: extrasolar planets

Itemsets and rules corresponding to:

- Trigonometric identity between distance and angular distance
- Kepler's law

Examples: more interesting relationships

sonar dataset, attributes 15 and 44

Examples: more interesting relationships

sonar dataset, attributes 15 and 44

- Correlation coefficient $=-0.114$
- No good regression rule
- No good equality rule

Examples: more interesting relationships

sonar dataset, attributes 15 and 44

- Correlation coefficient $=-0.114$
- No good regression rule
- No good equality rule
- A minimum variance itemset with variance 0.0001
sonar dataset, attributes 15 and 44
A minimum variance itemset with variance 0.0001

3 attribute patterns, degree $=3$

Performance: comparison with Lagrange equation discoverer

Conclusions:

- Association rule-like framework for numerical data
- Arbitrary non-linear relationships can be discovered efficiently

Future research:

- Background knowledge
- Combine with equation discovery

