Minimum Variance Associations — Discovering Relationships in Numerical Data

Szymon Jaroszewicz

National Institute of Telecommunications Warsaw, Poland

PAKDD 2008

(E)

Frequent itemset mining

Given a binary table find all sets of attributes such that

$$\operatorname{supp}(I) = \frac{|\{t \in \mathcal{D} : t[I] = (1, 1, \dots, 1)\}|}{|\mathcal{D}|} \ge \operatorname{min}_{\operatorname{supp}}$$

回 と く ヨ と く ヨ と

Frequent itemset mining

Given a binary table find all sets of attributes such that

$$\operatorname{supp}(I) = \frac{|\{t \in \mathcal{D} : t[I] = (1, 1, \dots, 1)\}|}{|\mathcal{D}|} \ge \mathsf{min}_{\operatorname{supp}}$$

- Defined for binary datasets
- Easy extension to categorical attributes
- Applicable to: trees, graphs, etc.
- but... how to do it for numerical attributes?

How to do it for numerical attributes?

Discretization

- information loss
- rules split among many intervals

向下 イヨト イヨト

How to do it for numerical attributes?

Discretization

- information loss
- rules split among many intervals
- Recently a few other approaches:
 - definitions of support for numeric data [Steinbach]
 - using ranks [Calders, Goethals, Jaroszewicz]
 - using polynomials [Jaroszewicz, Korzeń]
 - equations discovery [Langley, Dzeroski, Todorovski]

A framework for pattern mining analogous to association rules

- Handles numeric data directly
- Able to discover arbitrary nonlinear relationships

コマン くほう くほう

Trivial examples:

3 × 4 3 ×

э

Trivial examples:

$$x = y$$

Pattern:

F(x,y) = x - y

= 0 for all transactions

< ∃ >

Trivial examples: $x^2 + y^2 = 1$ x = yPattern: F(x,y) = x - y0 for all transactions

3

伺 ト イヨト イヨト

Trivial examples: $x^2 + y^2 = 1$ x = yPattern: Pattern: $F(x, y) = x^2 + y^2 - 1$ F(x, y) = x - y= 0 for all transactions = 0 for all transactions

イロン イ部ン イヨン イヨン 三日

Minimum Variance Itemsets

Attributes $x_1x_2...x_n$ are related if there exists a function $F(x_1...x_n)$ which has low variance

$$\sum_{t\in\mathcal{D}}F^2(t[x_1\ldots x_n])\approx 0$$

These are our itemsets

白 と く ヨ と く ヨ と …

Minimum Variance Itemsets

Attributes $x_1x_2...x_n$ are related if there exists a function $F(x_1...x_n)$ which has low variance

$$\sum_{t\in\mathcal{D}}F^2(t[x_1\ldots x_n])\approx 0$$

Problem

 $F \equiv 0$ trivially satisfies all cases.

白 ト く ヨ ト く ヨ ト

Minimum Variance Itemsets

Attributes $x_1x_2...x_n$ are related if there exists a function $F(x_1...x_n)$ which has low variance

$$\sum_{t\in\mathcal{D}}F^2(t[x_1\ldots x_n])\approx 0$$

subject to additional constraint:

If x_1, x_2, \ldots, x_n were statistically independent then

$$\sum_{t\in\mathcal{D}}F^2(t[x_1\ldots x_n])=1$$

白マ イヨマ イヨマ

How to find F with minimum variance?

• Assume F is a polynomial: $F(x, y) = c_0 + c_1 x + c_2 y + c_3 x y + c_4 x^2 + c_5 y^2$

・回 ・ ・ ヨ ・ ・ ヨ ・

How to find *F* with minimum variance?

• Assume F is a polynomial: $F(x, y) = c_0 + c_1 x + c_2 y + c_3 x y + c_4 x^2 + c_5 y^2$

Ompute two matrices S_{Data} and S_{Indep}:

$$S_{Data}[1,3] = \sum_{\mathcal{D}} x \cdot xy$$
$$S_{Indep}[1,3] = \sum_{\mathcal{D}} x \cdot \sum_{\mathcal{D}} xy$$

御 と く き と く き と

How to find F with minimum variance?

• Assume F is a polynomial: $F(x, y) = c_0 + c_1 x + c_2 y + c_3 x y + c_4 x^2 + c_5 y^2$

Ompute two matrices S_{Data} and S_{Indep}:

$$S_{Data}[1,3] = \sum_{\mathcal{D}} x \cdot xy$$
$$S_{Indep}[1,3] = \sum_{\mathcal{D}} x \cdot \sum_{\mathcal{D}} xy$$

The coefficient vector c = [c₀,..., c_n] is a solution of the Generalized Eigenvalue Problem

$$\mathbf{S}_{\textit{Data}} \cdot \mathbf{c} = \lambda \mathbf{S}_{\textit{Indep}} \cdot \mathbf{c}$$

伺 とう ほう く きょう

Monotonicity property

Adding attributes decreases the minimum variance

If an itemset is good, all its supersets are also good.

向下 イヨト イヨト

Monotonicity property

Adding attributes decreases the minimum variance

If an itemset is good, all its supersets are also good.

Solution

Find smallest itemsets with given minimum variance.

Simple modification of standard itemset mining algorithms.

向下 イヨト イヨト

Two types of rules:

Regression rules:y = F(X)Equality rules:F(X) = G(Y)

・ 回 と ・ ヨ と ・ ヨ と

Two types of rules:

Regression rules:y = F(X)Equality rules:F(X) = G(Y)

Variance of rule F(X) = G(Y) is higher than of itemset $X \cup Y$

・ 同 ト ・ ヨ ト ・ ヨ ト

Two types of rules:

Regression rules:y = F(X)Equality rules:F(X) = G(Y)

Variance of rule F(X) = G(Y) is higher than of itemset $X \cup Y$

Like standard association rules:

- First mine itemsets
- Pind rules for each itemset

・ 同 ト ・ ヨ ト ・ ヨ ト

itemset: $-1.99 + 1.99x^2 + 1.99y^2$ equality rule: $1.99y^2 = 1.99 - 1.99x^2$ regression rule: none

Itemsets and rules corresponding to:

- Trigonometric identity between distance and angular distance
- Kepler's law

向下 イヨト イヨト

- Correlation coefficient = -0.114
- No good regression rule
- No good equality rule

- Correlation coefficient = -0.114
- No good regression rule
- No good equality rule
- A minimum variance itemset with variance 0.0001

sonar dataset, attributes 15 and 44 A minimum variance itemset with variance 0.0001

<- ↓ ↓ < ≥ >

< ∃⇒

æ

Performance: comparison with Lagrange equation discoverer

Conclusions:

- Association rule-like framework for numerical data
- Arbitrary non-linear relationships can be discovered efficiently

Future research:

- Background knowledge
- Combine with equation discovery