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Abstract

�ukasz Zaniewicz, Support Vector Machines for Uplift Modeling Doctoral dissertation supervised

by dr hab. in». Szymon Jaroszewicz, Institute of Computer Science, Polish Academy of Sciences,

Warsaw 2018.

Uplift modeling is a branch of Machine Learning which aims to predict not the class itself, but

the di�erence between the class variable behavior in two groups: treatment and control. Objects

in the treatment group have been subjected to some action, while objects in the control group

have not. By including the control group it is possible to build a model which predicts the causal

e�ect of the action for a given individual. As a consequence, uplift modeling is directly applicable

in �elds where presence of the control group is common in market practice. This is always the

case for randomized controlled clinical trials and is becoming a standard in marketing campaigns

where it has been realized that, at least in some situations, the true e�ect of an examined action

can only be measured against a background of a control group.

This dissertation presents application of the Support Vector Machines designed speci�cally

for uplift modeling. The SVM optimization task has been reformulated to explicitly model the

di�erence in class behavior between two datasets. The model predicts whether a given object will

have a positive, neutral or negative response to a given action, and by tuning a parameter of the

model the analyst is able to in�uence the relative proportion of neutral predictions and thus the

conservativeness of the model. Moreover, this work extends also the Lp-SVMs to the case of uplift

modeling and demonstrates that this allows for a more stable selection of the size of negative,

neutral and positive groups. Furthermore, e�cient quadratic and convex optimization methods

are presented for e�ciently solving the two related optimization tasks. Experiments demonstrate

that the proposed methods compare favorably with other uplift modeling approaches.

This dissertation discusses also the issue of nonrandom assignment to treatment and control

groups. In general, uplift modeling is best applied to training sets obtained from randomized

controlled experiments, but such experiments are not always possible, in which case treatment
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assignment is biased. To handle such situations we proposed a modi�cation of the Uplift Support

Vector Machines which are less sensitive to such a bias. This is achieved by including in the model

formulation an additional term which penalizes models which score treatment and control groups

di�erently. We call the technique Székely regularization since it is based on the energy distance

proposed by Székely and Rizzo. Optimization algorithm based on stochastic gradient descent

techniques has been developed for this problem. Further, this work demonstrates experimentally

that the proposed regularization term does indeed produce uplift models which are less sensitive

to biased treatment assignment.
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Streszczenie

�ukasz Zaniewicz, Maszyny wektorów wspieraj¡cych w modelowaniu ró»nicowym. Rozprawa dok-

torska przygotowana pod kierunkiem dr. hab. in». Szymona Jaroszewicza, Instytut Podstaw In-

formatyki Polskiej Akademii Nauk, Warszawa 2018.

Modelowanie ró»nicowe jest dziedzin¡ uczenia maszynowego, której celem nie jest przewidy-

wanie zmiennej celu, lecz ró»nic w zachowaniu zmiennej celu mi¦dzy dwoma grupami: ekspery-

mentaln¡ i kontroln¡. Obiekty w grupie eksperymentalnej zostaªy poddane pewnemu dziaªa-

niu, podczas gdy obiekty w grupie kontrolnej nie. Wª¡czaj¡c grup¦ kontroln¡, mo»liwe staje

si¦ zbudowanie modelu przewiduj¡cego przyczynowy efekt danego dziaªania na poziomie konkret-

nego obiektu. W konsekwencji modelowanie ró»nicowe znajduje bezpo±rednie zastosowanie w

dziedzinach, w których stosowanie grup kontrolnych jest powszechne. Jest tak w przypadku

randomizowanych prób klinicznych, staje si¦ te» standardem w marketingu bezpo±rednim, gdzie

zauwa»ono, »e, przynajmniej w niektórych sytuacjach, prawdziw¡ korzy±¢ z badanego dziaªania

mo»na zmierzy¢ tylko bior¡c pod uwag¦ grup¦ kontroln¡.

Niniejsza praca przedstawia maszyny wektorów wspieraj¡cych zaadaptowane do problemu

modelowania ró»nicowego. Zadanie optymalizacyjne maszyn klasy�kacyjnych zostaªo przefor-

muªowane, tak aby mo»liwe byªo modelowanie ró»nic w zachowaniu zmiennej celu mi¦dzy dwoma

zbiorami danych. Model przewiduje, czy wpªyw badanego dziaªania na dany obiekt b¦dzie pozy-

tywny, neutralny czy negatywny. Poprzez odpowiedni dobór parametrów modelu, analityk ma

bezpo±redni wpªyw na wzgl¦dny udziaª prognoz neutralnych. Dalej, w pracy dostosowano do prob-

lemu modelowania ró»nicowego tak»e model Lp-SVMs, wykorzystuj¡cy zmody�kowan¡ funkcj¦

straty. Pokazano, »e to pozwala na bardziej stabilny wybór proporcji przewidywa« negatywnego,

neutralnego i pozytywnego wpªywu dziaªania. Przedstawiono równie» wydajne metody optymal-

izacji kwadratowej i wypukªej sªu»¡ce do rozwi¡zania problemów optymalizacyjnych zwi¡zanych z

proponowanymi modelami. Eksperymentalnie wykazano, »e proponowane algorytmy s¡ konkuren-

cyjne wobec innych metod modelowania ró»nicowego.
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W rozprawie omówiony zostaª równie» problem nielosowego przypisania obiektów do grupy

eksperymentalnej i kontrolnej. Zasadniczo, modelowanie ró»nicowe najlepiej jest stosowa¢ w

przypadku przypisania caªkowicie losowego, ale takie eksperymenty nie zawsze s¡ mo»liwe. W

praktyce, przydziaª do grupy kontrolnej cz¦sto nast¦puje na podstawie decyzji dokonywanych

przez czªowieka, jest zatem obci¡»ony. Aby mo»liwe byªo zastosowanie modelowania ró»nicowego

w takim scenariuszu, w pracy przedstawiono mody�kacj¦ proponowanego modelu, która jest mniej

wra»liwa na obci¡»ony podziaª na grupy. Mody�kacja polega na dodaniu do sformuªowaniu mod-

elu dodatkowego wyrazu, który karze modele, których predykcje w grupie kontrolnej i ekspery-

mentalnej ró»ni¡ si¦. Technik¦ t¦ nazywano regularyzacj¡ Székely'ego, poniewa» opiera si¦ ona

na odlegªo±ci energetycznej zaproponowanej przez Székely'ego i Rizzo. Przestawiono równie» al-

gorytm optymalizacji dla tego typu modeli oparty o techniki stochastycznego spadku gradientu.

Ponadto, w pracy wykazano eksperymentalnie, »e proponowany dodatkowy wyraz regularyzacyjny

istotnie tworzy modele ró»nicowe, które s¡ mniej wra»liwe na nielosowe przypisanie obiektów do

grup eksperymentalnej i kontrolnej.
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Chapter 1

Introduction

1.1 Motivation and purpose of the dissertation

The aim of traditional classi�cation methods is to predict the class membership probabilities of

new objects based on a given training dataset. In practice, however, a more important question

often is how those probabilities change as a result of some action. As an example consider a

company which is sending promotional e-mails to customers. Sending an e-mail is bene�cial only

for customers who buy the product after receiving the o�er but would not have bought otherwise;

otherwise the campaign at best introduces unnecessary costs. However �nding such customers

requires the knowledge of how receiving the e-mail changes their behavior.

Modeling this particular change (or di�erence) is the scope of uplift modeling. It is a sub�eld

of Machine Learning which aims to predict not the outcome of an action itself, but the di�erence

between the outcomes in two groups: treatment and control. Objects in the treatment group

have been subjected to some action, while objects in the control group have not. By including

the control group it becomes possible to build a model which predicts the causal e�ect of the

action for a given individual and to decide whether it is bene�cial, neutral or detrimental. Uplift

modeling is directly applicable in case of medical treatments where randomized controlled trails,

and the presence of control groups is common. However the technique originated from the �eld

of marketing where it has been realized that the true e�ect of a direct campaign can only be

measured against a background of a control group. Randomized controlled experiments are now

frequently used in marketing.

The main di�culty of uplift modeling is that, for a given unit, we only observe one of the

outcomes, either after the action has been performed or when the action has not been performed,

never both. In statistical literature this problem has been known as the Fundamental Problem of
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Causal Inference. As a result we never know whether the action was bene�cial for a given individ-

ual which makes uplift modeling less intuitive and more di�cult than traditional classi�cation.

The goal of this dissertation is to establish whether the popular Support Vector Machine

framework can be adapted to work in the uplift modeling context. The reason why we have

choosen SVMs is that they are very popular and successful models used frequently in machine

learning. They are well understood and known to have good predictive accuracy.

To address this goal, in this dissertation we present a few variants of Uplift Support Vector

Machines (USVMs) which are an application of the Support Vector Machine methodology to the

problem of uplift modeling. The �rst variant is the most direct adaptation, which allows for

predicting whether the action will be detrimental, neutral or bene�cial for a given object. Several

properties of this model have been rigorously proven, including the upper bounding of an uplift

analogue of zero-one loss. A modi�cation has also been introduced which responds more smoothly

to changes in model parameters. Finally a variant involving an additional regularization term has

been proposed to be applied in situations where treatment assignment is not fully randomized.

1.2 The problem of Uplift Modeling

Uplift modeling is a predictive modeling technique which directly models the change in behaviour

resulting from a speci�ed action. Examples of such actions are a controlled medical trial or a

direct marketing campaign. The main feature of uplift modeling is the need to have two training

datasets. The �rst one called the treatment group, contains data on objects on which the action

has been taken. The second one, the control group, contains data on objects on which the action

has not been taken. The main motivation behind uplift modeling is to estimate the e�ect of such

an action, that is to assess whether it will be bene�cial or detrimental. The estimate is made

against the background of refraining from taking the action.

First, let us brie�y discuss the de�ciencies of traditional (non uplift) approach, i.e. response

modeling. Traditional classi�cation methods predict the conditional class probability distribution

based on a model built on a training dataset. In practical applications this dataset often describes

individuals on whom some action, such as a marketing campaign or a medical treatment, has been

performed. The model is then used to select cases from the general population to which the action

should be applied. This approach is, however, usually incorrect. Standard classi�cation methods

are only able to model what happens after the action has been taken, not what happens because

of the action. The reason is that such models do not take into account what would have happened

had the action not been taken.
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Potential outcomes Observed outcomes
Customer treatment control uplift Was targeted? treatment control uplift
Adam 1 0 +1 Yes 1 � {+1, 0}
Betty 1 1 0 No � 1 {0,−1}
Cyril 0 0 0 No � 0 {+1, 0}
Deborah 0 1 −1 Yes 0 � {0,−1}

Table 1.2.1: Potential (left) and observed (right) outcomes of a direct marketing campaign

This is easiest to see in the context of direct marketing campaigns. Some of the customers who

bought after receiving a campaign would have bought anyway, the action incurred unnecessary

cost. Worse, some customers who were going to buy got annoyed by the action, refrained from

purchase and may even churn. The existence of such `negative' groups is a well-known phenomenon

in the marketing literature [13] and detecting them is often crucial for the success of a campaign.

Uplift modeling, in contrast, allows for the use of an additional control dataset and aims at

explicitly modeling the di�erence in outcome probabilities between the two groups, thus being

able to identify cases for which the outcome of the action will be truly positive, neutral or nega-

tive. In Section 6.4 we will experimentally compare uplift modeling with traditional classi�cation

con�rming its superior performance. Moreover, when the assignment to treatment and control

groups is random, the model assumes a probabilistic causal interpretation [15], that is, it allows

for predicting how class probabilities will change if the action is applied to a given individual. The

reason is that, due to randomization, characteristics of both groups are expected to be identical

in terms of both observed and latent features, see [15] for a detailed discussion.

The main problem of uplift modeling is that for each data point we know only one of the

outcomes, either after the action has been performed or when the action has not been performed,

never both. The problem has been known in statistical literature (see e.g. [15]) as the Fundamental

Problem of Causal Inference. This makes the task less intuitive than standard classi�cation, and

formulating optimization tasks becomes signi�cantly more di�cult.

To further clarify the di�erences between classical and uplift modeling, we will consider a

simple example stated in terms of the so called potential outcomes framework [15]. The framework

assumes that for each possible target (customer) there are two potential outcomes: one for the

case when the customer is targeted (treatment) and the other for the case when the customer

is not targeted (control). The outcomes are called potential because, due to the Fundamental

Problem of Causal Inference they may not be directly observable. The left part of Table 1.2.1

shows potential outcomes for an example marketing campaign (the outcome 1 is considered a
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success, 0 a failure). For example Adam, would not have bought the product had he not been

targeted, but he would buy the product if he had been a target of the campaign. The fourth

column (`uplift') in the left part of the table is the di�erence between the potential treatment

and control outcomes and shows the true gain from performing the action on a given individual.

Targeting Adam is truly bene�cial, so the value is +1.

The second customer in Table 1.2.1, Betty, would have bought the product after the campaign,

but was going to buy the product anyway, so the campaign would have had no e�ect and only

incurred unnecessary cost. The third customer, Cyril, would not have bought the product regard-

less of being targeted or not. From the point of view of a marketer both cases are analogous since

there is zero gain from targeting such individuals, as indicated in the fourth column. The fourth

customer, Deborah, is quite interesting. She was going to buy the product but the campaign put

her o� (this is indicated by a −1 in the `uplift' column). The existence of such cases is well known

to marketers [13, 31]. Note that classical modeling, which does not use the control group, cannot

tell the di�erence between Adam and Betty or between Cyril and Deborah.

If both potential outcomes were known to us, we could build a three-valued classi�er with

the uplift column used as the target variable. Unfortunately, due to the Fundamental Problem of

Causal Inference, for each customer only the treatment or the control outcome is known, never

both: once a customer has been targeted she cannot be made to forget about the o�er received.

The situation we encounter in practice is shown in the right part of Table 1.2.1 which shows the

data based on which we are supposed to build an uplift model. Notice that for each customer

one of the outcomes is unknown; therefore, unlike in case of traditional classi�cation, we do not

know the true outcome (i.e. whether the campaign was bene�cial, neutral or harmful) for any of

the training cases. We are only able to give a set of two class values to which a case may belong

(depending on the missing outcome) as indicated in the last column of Table 1.2.1. This fact

poses challenges for learning and evaluating uplift models.

1.3 Literature overview

Surprisingly, uplift modeling has received relatively little attention in the literature. In this section

we give a brief overview of current developments. A more detailed, but somewhat dated overview

can be found in [31, 38]. A newer reference is [17].

The most obvious approach to uplift modeling uses two separate probabilistic models, one

built on the treatment and the other on the control dataset, and subtracts their predicted proba-

bilities. The advantage of the two-model approach is that it can be applied with any classi�cation
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model. Moreover, if uplift is strongly correlated with the class attribute itself, or if the amount

of training data is su�cient for the models to predict the class probabilities accurately, the two-

model approach will perform very well. The disadvantage is, that when uplift follows a di�erent

pattern than the class distributions, both models will focus on predicting the class, instead of

focusing on the weaker `uplift signal'. An illustrative example has been presented in [31]. In

the example, the class variable in both groups was strongly in�uenced by one variable, while the

e�ect of the action was weakly in�uenced by a second one. A double decision tree model failed

to take the second variable into account. Most research on uplift modeling has thus concentrated

on building dedicated models which predict uplift directly.

A few papers addressed decision tree construction for uplift modeling. See e.g. [6, 13, 30, 31,

38, 39]. Those approaches build a single uplift tree by simultaneously splitting the two train-

ing datasets based on modi�ed test selection criteria. The criteria typically aim at maximizing

di�erences between treatment and control probabilities after the split. For example, in [31] the

authors use a criterion based on a statistical test on the interaction term between the treatment

indicator and the split variable in a linear model predicting the response. In [38] uplift decision

trees have been presented which are more in line with modern machine learning algorithms. Split-

ting criteria are based on information theoretical measures such the Kullback-Leibler divergence.

A dedicated pruning strategy is also presented. The approach has been extended to the case of

multiple treatments in [39].

As is the case in classical machine learning, uplift decision trees can be combined into en-

sembles. Uplift random forests which use ensembles of trees from [38, 39] with splitting criteria

modi�ed to include extra randomization have been described in [12]. A thorough analysis of

various types of ensembles in the uplift setting can be found in [43]. The comparison includes

bagging and random forests. It is noted that bagging performs very well in the uplift setting,

often giving very signi�cant improvements in performance. Some theoretical justi�cation for good

performance of uplift ensembles is also provided.

Some regression techniques for uplift modeling have been proposed. Most researchers follow

the two model approach either explicitly or implicitly [25, 26] by including interactions between

the treatment indicator and the predictor variables. Some dedicated approaches are also available,

most notably g-estimation [33, 34, 48]. This approach is, however, not statistically e�cient. Its

e�ciency can be improved by, in fact, changing it into the double model approach.

In [20] a method has been presented which makes it possible to convert a classical logistic

regression model (or in fact any other probabilistic classi�er) into an uplift model. The approach

is based on a simple class variable transformation. The transformation reverts the class variable
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in the control group and reweighs data records such that the weight of records in treatment and

control groups becomes equal. The two groups are then concatenated and a single probabilistic

classi�er is built on the combined dataset. Any such classi�er can thus easily be converted into

an uplift model. Support Vector Machines used with this transformation are included in our

experiments.

Recently, [27] extended the approach to work in the context of online advertising, where it is

necessary to not only maximize uplift (the di�erence between success rate in the treatment and

control datasets) but also to increase advertiser's gains through maximizing response. This type

of problems are beyond the scope of this dissertation.

Uplift Support Vector Machines proposed in [49] were to the best of our knowledge the �rst

adaptation of the framework to uplift modeling. Later, another type of uplift Support Vector

Machines was proposed in [24]. The approach is based on direct maximization of the area under

the uplift curve. The authors proceed by noticing a direct relationship between area under the

ROC curve and the area under the cumulative gains curve. The connection is then used together

with the SVM struct algorithm [47] to obtain an algorithm which maximizes the desired quantity.

Experimental comparison with our approaches is given in Section 6.4.

Support Vector Machines with parallel hyperplanes, similar to our approach, have been ana-

lyzed in the context of ordinal classi�cation [40]. The situation analyzed in this dissertation is,

however, di�erent since two training datasets are involved.

We now list the publications in which Uplift Support Vector Machines described in this dis-

sertation have �rst appeared. Our �rst proposed variant of the USVMs has appeared in [49].

A following paper [50] signi�cantly extends that �rst version. The most important addition is

the practical and theoretical demonstration of discontinuity problems with USVMs and the in-

troduction of Lp Uplift Support Vector Machines which do not su�er from such problems. The

second novel contribution is the development of improved optimization algorithms based on convex

and quadratic programming techniques and e�cient solutions to structured Karush-Kuhn-Tucker

(KKT) systems. Finally it has been proven that USVMs minimize an upper bound of an uplift

analogue of zero-one loss.

In [19] the Uplift SVM approach has been extended to the case of nonrandom treatment-

control group assignment. An additional regularization term has been added which enforces

similar model behavior in both groups. The problem of nonrandom treatment assignment is

presented in Chapter 5.
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1.4 Contributions

We now brie�y summarize the contributions of this dissertation.

In this dissertation we present Uplift Support Vector Machines (USVMs) which are an ap-

plication of the SVM methodology to the problem of uplift modeling. The SVM optimization

problem has been reformulated such that the machine accepts two training datasets: treatment

and control, and models the di�erences in class behavior between those sets. While other uplift

modeling methods return the score of an instance; USVMs are the �rst such method we are aware

of, which aims to explicitly predict whether an outcome of an action for a given case will be pos-

itive, negative or neutral. What is especially important is that the model identi�es the negative

group allowing for minimizing the adverse impact of the action. Moreover, by proper choice of

parameters, the analyst is able to decide on the relative proportion of neutral predictions, ad-

justing model's con�dence in predicting positive and negative cases. Moreover, we have proved

that Uplift Support Vector Machines minimize an upper bound on an uplift analogue of the 0-1

loss and have shown and proven several other interesting Uplift SVM properties. We have also

developed optimization algorithms based on convex and quadratic programming techniques and

e�cient solutions to solve the related quadratic optimization problems.

Further, we demonstrate theoretically and experimentally, that USVMs may, in some cases,

su�er from a problem of very abrupt changes in predictions in response to tiny changes in pa-

rameter values. In the most extreme case, predictions for all data points may simultaneously

change from neutral to positive or negative. An adaptation of Lp-Support Vector Machines [1, 8]

to the uplift modeling problem is then described. Those models are not susceptible to such

discontinuities.

Finally, we propose a novel approach to remedy a situation when the assignment to treatment

and control groups is not random. This is achieved by adding an additional regularizer term based

on the so called energy distance between probability distributions.

1.5 Outline of the dissertation

The dissertation is organized as follows. In Chapter 1 we present the problem of Uplift Modeling

and include an overview of literature related to this topic. Next, in Chapter 2 we give a short de-

scription of classical Support Vector Machines. In Chapter 3 we introduce and formally de�ne the

L1 and Lp Uplift Support Vector Machines (USVMs), describe their respective optimization tasks

and analyze their properties. Later, in Chapter 4 we provide concrete optimization algorithms
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for the proposed models. Chapter 5 addresses the problem of biased treatment selection and in-

troduces a specially designed regularizer for this case. Chapter 6 contains results of experimental

evaluation of the proposed methods and Chapter 7 concludes the dissertation.
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Chapter 2

Support Vector Machines for

classi�cation

The origins of the famous Support Vector Machine algorithm date back to the late 50s [37] but

the current and nowadays widely used formulation was introduced by Vapnik and Cortes in the

90s [7]. It is one of the most popular supervised learning algorithms, with applications in multiple

areas. The main idea behind the SVMs has been extended to e.g. regression analysis (Support

Vector Regression) [42] and clustering (Support Vector Clustering) [4]. In this dissertation we do

not cover those topics and focus entirely on SVM used as a classi�er and in further chapters we

present the adaptation of the SVM methodology to the uplift modeling problem. A more detailed

exposition on Support Vector Machines can be found in [41].

In this chapter we consider only the binary (two-class) classi�cation problem. Let us consider

the training dataset of the form D = {(xi, yi) : i = 1, . . . , n}, where xi ∈ Rm are the values of

the predictor variables, and yi ∈ {−1, 1} is the class label of the i−th data record. By 〈x1,x2〉
we denote the scalar product of vectors x1 and x2.

Binary classi�cation methods are often presented in terms of a real-valued function f . The

classi�er takes an input vector x and assigns it to the positive class (+1) if f(x) ≥ 0 and otherwise

to the negative class (−1). In a linear model, f can be written in the form

f(x) =
m∑
i=1

wixi − b = 〈w,x〉 − b, (2.0.1)

where w ∈ Rm is the weight vector and b ∈ R the intercept. The decision is then made depending

on sgn(f(x)). We assume that sgn(0) = +1.
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The geometric intuition behind a linear classi�er is that the hyperplane given by the equation

〈w,x〉 − b = 0 splits the input space into two parts, each corresponding to one of the classes.

The weight vector w is perpendicular to the hyperplane and de�nes its direction. The intercept

b decides how far the hyperplane is from the origin.

2.1 The linearly separable case

Let now assume that our training dataset is linearly separable, that is, there exists a hyperplane

with all of the points from class +1 on one side of the hyperplane and all the class −1 points on

the other side. If no such hyperplane exists, we say that the dataset is linearly non-separable. We

begin by describing Support Vector Machines for the linearly separable case, the non-separable

case will be presented in the next section.

The Support Vector Machine framework is based on the concept of a margin:

De�nition 1. The functional margin of an observation (xi, yi) with respect to a hyperplane H :

〈w,x〉 − b = 0 is the quantity

γHi = yi (〈w,xi〉 − b) . (2.1.1)

Taking the minimum of γHi over all training examples we de�ne the (functional) margin of a

hyperplane H:

γH = min
i=1,...,n

{γHi }.

When the weight vector w is normalized, i.e. ‖w‖ = 1, γHi is the Euclidean distance of the

point xi from H. In this case we call it a geometric margin of an observation (xi, yi) with respect

to a hyperplane H and denote it γH,Gi . By taking the minimum over the whole training sample

D we get γH,G the geometric margin of the hyperplane H.

Finally, we call the maximum geometric margin over all hyperplanes, the geometric margin of

a dataset D and de�ne the maximum margin hyperplane as a hyperplane realising this maximum.

Learning a Support Vector Machine means �nding a maximum margin hyperplane which

separates the positive examples from the negative examples. We expect that such a model should

be more resistant to noise and reduce the risk of misclassi�cation compared to models with smaller

margins. We will now describe the corresponding optimization problem.

Note that the decision function f does not change if we multiply it by a constant λ > 0. Such

scaling will a�ect the functional margin, but the geometric margin remains unchanged. Hence,

while optimizing the geometric margin, we can �x the functional margin to be equal to 1 without

16



any loss of generality. The condition that there exists hyperplane H with a functional margin at

least 1 can be expressed using the following constraints〈w,xi〉 − b ≥ 1 if yi = +1, i = 1, . . . , n,

〈w,xi〉 − b ≤ −1 if yi = −1, i = 1, . . . , n,
(2.1.2)

which can be simpli�ed to

yi(〈w,xi〉 − b) ≥ 1, i = 1, . . . , n. (2.1.3)

The data points for which the condition becomes an equality are called the support vectors, their

margin is equal to that of the dataset D.

Dividing both sides of Equation 2.1.1 by ‖w‖ we get

γHi
‖w‖

= yi

(
〈 w

‖w‖
,xi〉 −

b

‖w‖

)
= γH,Gi

and using the fact γH = 1 the geometric margin of a hyperplane H is simply 1
‖w‖ .

Finding the maximum margin separating hyperplane is thus equivalent to solving the following

constrained optimization task (the factor 1
2 is used for convenience)

min
1

2
‖w‖2 (2.1.4)

subject to

yi(〈w,xi〉 − b) ≥ 1, i = 1, . . . , n. (2.1.5)

This is a quadratic optimization problem with linear constraints. We will not discuss this problem

in detail and will, instead, focus on the more practically important problem of classifying linearly

non-separable data.

2.2 The linearly non-separable case

Linear separability is a nice theoretical concept but, in practice, this assumption is usually not

satis�ed. In order to handle linearly non-separable datasets, a modi�cation of the SVM formula-

tion is needed. The inventors of Support Vector Machines modi�ed the linear constraints given in

Equation 2.1.5 by introducing slack variables ξi which allow for misclassi�cation of the training
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Figure 2.2.1: Illustration of SVM problem on an arti�cial linearly non-separable example. Points
belonging to the classes +1 and −1 are marked respectively by the �lled and empty circles. Red
arrows denote the penalties ξi for the missclassi�ed points.

examples [7]. The new constraints are

〈w,x〉 − b ≥ 1− ξi, when yi = +1,

〈w,x〉 − b ≤ −1 + ξi, when yi = −1,

where ξi ∈ R, ξi ≥ 0, i = 1, . . . , n. The modi�ed optimization problem is

min
1

2
‖w‖2 + C

n∑
i=1

ξi (2.2.1)

subject to

yi(〈w,xi〉 − b) ≥ 1− ξi, i = 1, . . . , n, (2.2.2)

ξi ≥ 0, i = 1, . . . , n. (2.2.3)

The constant C decides on the relative importance of margin width and correct classi�cation of

as many training points as possible.

Figure 2.2.1 illustrates the slack variables ξi, i = 1, . . . , n graphically. The solid line is the

hyperplane H and the dashed lines represent the functional margin of 1.

The values of the slack variables can be interpreted as the amount by which the constraints

need to be modi�ed in order not to be violated. Moreover, since in the formulation we use
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a separating hyperplane with a functional margin equal to 1, ξi − 1 can be interpreted as a

scaled distance of xi from the decision boundary, given that xi is misclassi�ed. More precisely,

a misclassi�cation occurs when ξi > 1. Therefore, the sum of the slack variables ξi is an upper

bound on the total number of misclassi�ed points (from the training dataset).

2.3 The SVM optimization problem

Before we discuss methods of solving the optimization problem given above in more detail, we

will introduce some basic notions of optimization theory, namely the so called KKT conditions.

2.3.1 Karush-Kuhn-Tucker conditions

We now present the Karush-Kuhn-Tucker (KKT) conditions for optimality of a solution to a

constrained optimization problem which will be used throughout the dissertation. We only focus

on aspects of the KKT theory which are relevant to the optimization problems encountered in

this work. A more general description can be found in [5].

Consider a minimization problem

min
x∈Rm

f(x) (2.3.1)

subject to

hi(x) ≤ 0, i = 1, . . . , k, (2.3.2)

where f is a convex objective or goal function and hi are linear inequality constraint functions.

The following theorem states the necessary and su�cient conditions for a point x∗ to be a solution

of this optimization task.

Theorem 2.3.1. Suppose that the minimized function f : Rm → R is convex and continuously

di�erentiable at x∗, and the inequality constraint functions hi : Rm → R are linear. A point x∗ is

a solution to the optimization problem given in Equations 2.3.1 and 2.3.2 if and only if there exist

constants λi, i = 1, . . . , k called Lagrange (or KKT) multipliers satisfying the following conditions

• stationarity ∂f
∂x

∣∣∣
x=x∗

−
∑k

i=1 λi
∂hi
∂x

∣∣∣
x=x∗

= 0,

• primal feasibility hi(x∗) ≤ 0, for i = 1, . . . , k,

• dual feasibility λi ≥ 0, for i = 1, . . . , k,

• complementary slackness λihi(x∗) = 0, for i = 1, . . . , k.

The proof of the theorem can be found in [5].
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2.3.2 Support Vector Machines in the non-separable case: the optimization

problem

To solve the optimization problem given in Equations 2.2.1−2.2.3, one can apply the method of

Lagrange multipliers and the KKT conditions. The Lagrangian is

L(w, b,α) =
1

2
〈w,w〉+ C

n∑
i=1

ξi −
n∑
i=1

αi {yi (〈w,xi〉 − b)− 1 + ξi} −
n∑
i=1

riξi, (2.3.3)

where αi ≥ 0 and ri ≥ 0 are Lagrange multipliers and α = (α1, . . . , αn). We �rst apply the

Karush-Kuhn-Tucker stationarity condition to L and obtain

∂L

∂w
= w −

n∑
i=1

αiyixi = 0, (2.3.4)

∂L

∂b
=

n∑
i=1

αiyi = 0, (2.3.5)

∂L

∂ξi
= C − αi − ri = 0, i = 1, . . . , n. (2.3.6)

From the �rst equation above we get

w =
n∑
i=1

yiαixi. (2.3.7)

Using the above equations, the Lagrangian can be rewritten as

L(α) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi,xj〉. (2.3.8)

This is the dual form of the SVM optimization problem. To solve it, we need to maximize the

above quantity subject to the following constraints

n∑
i=1

yiαi = 0 and αi ≥ 0, i = 1, . . . , n. (2.3.9)

From the complementary slackness KKT condition of the original problem we get

αi {yi (〈w,xi〉 − b)− 1 + ξi} = 0 i = 1, . . . , n. (2.3.10)
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From this equation and the fact that ξi ≥ 0, we see that non-zero multipliers αi correspond to

support vectors, since they must satisfy yi (〈w,xi〉 − b) = 1 − ξi. Moreover, from the condition

C − αi − ri = 0 together with ri ≥ 0, we get αi ≤ C. Notice also that ξi > 0 only if ri = 0 in

which case αi = C.

The solution of the dual optimization problem is a vector

α∗ = (α∗1, . . . , α
∗
n), (2.3.11)

which gives us the desired optimal separating hyperplane

n∑
i=1

yiα
∗
i 〈xi,x〉 − b∗ = 0. (2.3.12)

The above sum in fact involves only indices of examples which are support vectors. The intercept

b∗ is, however, not obtained directly by maximization of L. We can calculate it, for example, by

solving Equation 2.3.10 for any of the support vectors.

2.4 Nonlinear SVM using the kernel trick

In the previous section we presented a short description of the linear Support Vector Machines.

However, one of the reasons the SVM method gained its popularity is the possibility to perform

nonlinear classi�cation via the use of the so-called kernel trick. Here we present only a short,

general overview of nonlinear SVMs, for details see [7, 41].

Notice that in the dual SVM formulation the separating hyperplane depends on training

data points xi,xj only via scalar products 〈xi,xj〉. One way of obtaining a nonlinear classi�er

is by mapping the input vectors xi, xj to a new, higher dimensional space using a nonlinear

transformation Φ. The scalar products are then computed in the new space. It turns out that the

function K(xi,xj) = 〈Φ(xi),Φ(xj)〉 can frequently be computed without performing the actual

mapping. As a result, the target space may even have an in�nite number of dimensions. This

concept is known as the kernel trick.

The Uplift Support Vector Machines described in this dissertation can also use the kernel

trick. However, the main focus of this work are linear models so we do not address this issue in

later chapters. Moreover, experiments we have performed did not show signi�cant improvements

from using nonlinear kernels on benchmark datasets available to us.
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Chapter 3

Uplift Support Vector Machines

In this chapter we will present Uplift Support Vector Machines (USVMs) which are the main

contribution of this dissertation.

3.1 Uplift Support Vector Machines

Let us �rst introduce the necessary notation and formally de�ne Uplift Support Vector Machines

(USVMs). The class +1 will be considered the positive, or desired outcome. The scalar product

of vectors x1, x2 will be denoted with 〈x1,x2〉. Here, and in the remaining part of the dissertation
we will continue to follow the convention that all quantities related to the treatment group will

be denoted with superscript T and those related to the control group with superscript C .

Unlike standard classi�cation, in uplift modeling we have two training samples: the treatment

group, DT = {(xi, yi) : i = 1, . . . , nT } and the control group DC = {(xi, yi) : i = 1, . . . , nC},
where xi ∈ Rm are the values of the predictor variables, and yi ∈ {−1, 1} is the class of the

i-th data record, m is the number of variables in the data, and nT and nC are the numbers of

records in the treatment and control groups respectively. Objects in the treatment group have

been subjected to some action or treatment, while objects in the control group have not.

SVMs are designed primarily for classi�cation, not probability modeling, so in order to adapt

SVMs to the analyzed setting we �rst recast the uplift modeling problem as a three-class classi�ca-

tion problem. This di�ers from the typical formulation which aims at predicting the di�erence in

class probabilities between treatment and control groups. An uplift model is de�ned as a function

M(x) : Rm → {−1, 0,+1}, (3.1.1)
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which assigns to each point in the input space one of the values +1, 0 and −1, interpreted,

respectively, as positive, neutral and negative impact of the action. In other words, the positive

prediction +1 means that we expect the object's class to be +1 if it is subjected to treatment and

−1 if it is not, the negative prediction means that we expect the class to be −1 after treatment

and +1 if it was not performed, and neutral if the object's class is identical (either +1 or −1)

regardless of whether the action was taken or not.

The proposed Uplift Support Vector Machine (USVM), which performs uplift prediction, uses

two parallel hyperplanes

H1 : 〈w,x〉 − b1 = 0, H2 : 〈w,x〉 − b2 = 0,

where w ∈ Rm is the weight vector and b1, b2 ∈ R are the intercepts. The model predictions are

speci�ed by the following equation

M(x) =


+1 if 〈w,x〉 > b1 and 〈w,x〉 > b2,

0 if 〈w,x〉 ≤ b1 and 〈w,x〉 > b2,

−1 if 〈w,x〉 ≤ b1 and 〈w,x〉 ≤ b2.

(3.1.2)

Intuitively, the point is classi�ed as positive if it lies on the positive side of both hyperplanes,

neutral if it lies on the positive side of hyperplane H2 only, and classi�ed as negative if it lies on

the negative side of both hyperplanes. In other words, H1 separates positive points from neutral

points, and H2 neutral points from negative points. Notice that the model is valid if and only if

b1 ≥ b2; in Lemmas 3.3.1 and 3.3.3 we will give su�cient conditions for this inequality to hold.

Let us now formulate the optimization task which allows for �nding the model's parameters

w, b1, b2. We use DT
+ = {(xi, yi) ∈ DT : yi = +1} to denote treatment data points belonging

to the positive class and DT
− = {(xi, yi) ∈ DT : yi = −1} to denote treatment data points

belonging to the negative class. Analogous notation is used for points in the control group.

Denote n = |DT |+ |DC |.
The parameters of an USVM can be found by solving the following optimization problem,
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which we call the USVM optimization problem.

min
w,b1,b2∈Rm+2

1

2
〈w,w〉+ C1

∑
DT

+∪DC
−

ξi,1 + C2

∑
DT
−∪DC

+

ξi,1

+ C2

∑
DT

+∪DC
−

ξi,2 + C1

∑
DT
−∪DC

+

ξi,2 (3.1.3)

subject to the following constraints

〈w,xi〉 − b1 ≥ +1− ξi,1, forall (xi, yi) ∈ DT
+ ∪DC

−, (3.1.4)

〈w,xi〉 − b1 ≤ −1 + ξi,1, forall (xi, yi) ∈ DT
− ∪DC

+, (3.1.5)

〈w,xi〉 − b2 ≥ +1− ξi,2, forall (xi, yi) ∈ DT
+ ∪DC

−, (3.1.6)

〈w,xi〉 − b2 ≤ −1 + ξi,2, forall (xi, yi) ∈ DT
− ∪DC

+, (3.1.7)

ξi,j ≥ 0, forall i = 1, . . . , n, j ∈ {1, 2}, (3.1.8)

where C1, C2 are penalty parameters and ξi,j slack variables allowing for misclassi�ed training

cases. Note that ξi,1 and ξi,2 are slack variables related respectively to the hyperplane H1 and H2.

We will now give an intuitive justi�cation for this formulation of the optimization problem, later

we formally prove that the USVM minimizes an upper bound on an uplift speci�c loss function.

Below, when we talk about `distance of a point from a hyperplane' and `a point lying on a

positive or negative side of a hyperplane' we implicitly assume that the width of the margin is

also taken into account.

The situation is graphically depicted in Figure 3.1.1. Sample points belonging to DT
+ are

marked with T+, points belonging to DT
−, respectively with T−. Analogous notation is used

for example points in the control group which are marked with C+ and C−. The points and

hyperplane locations are hand picked to illustrate the USVM penalties.

In an ideal situation, points for which a positive (+1) prediction is made include only cases in

DT
+ and DC

−, that is points which do not contradict the positive e�ect of the action (see the �rst

row of Table 1.2.1). Note that for the remaining points, which are in DT
− or in DC

+, the e�ect of an

action can at best be neutral1. Therefore points in DT
+ and DC

− (marked T+ and C− respectively

in the �gure) are not penalized when on the positive side of hyperplane H1. Analogously points

in DT
− and DC

+ (marked T− and C+) which are on the negative side of H2 are not penalized.

Points in DT
+ and DC

− which lie on the negative side of H1 are penalized with penalty C1ξi,1,

1Recall from Section 1.2 that the true gain from performing an action on a speci�c case is unknown to us and
see the last column of Table 1.2.1.
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where ξi,1 is the distance of the point from the plane and C1 is a penalty coe�cient. Those

penalties prevent the model from being overly cautious and classifying all points as neutral (see

Lemmas 3.3.2 and 3.3.3 in the next section). An analogous penalty is introduced for points in

DT
− and DC

+ in the �fth term of (3.1.3). In Figure 3.1.1, those points are sandwiched between H1

and H2, and their penalties are marked with solid red arrows.

Consider now points in DT
+ and DC

− which lie on the negative side of both hyperplanes, i.e. in

the region where the model predicts a negative impact (−1). Clearly, model's predictions are

wrong in this case, since, if the outcome was positive in the treatment group, the impact of the

action can only be positive or neutral (see the last column of Table 1.2.1). Those data points are

thus additionally penalized for being on the wrong side of the hyperplane H2 with penalty C2ξi,2.

Analogous penalty is of course applied to points in DT
− and DC

+ which lie on the positive side of

both hyperplanes. Such additional penalties are marked with dashed blue arrows in the �gure.

To summarize, the penalty coe�cient C1 is used to punish points being on the wrong side of

a single hyperplane (solid red arrows in Figure 3.1.1) and the coe�cient C2 controls additional

penalty incurred by a point being on the wrong side of also the second hyperplane (dashed blue

arrows in Figure 3.1.1). In the next section we give a more detailed analysis of how the penalties

in�uence the model's behavior.

We now present a more formal analysis of the quantity optimized by an USVM. We begin

by de�ning an analogue of the 0-1 loss function for uplift modeling. Let yT and yC denote the

respective potential outcomes after a given individual received the treatment and was left as a

control; denote by u = yT−yC the true gain from performing the action on a given individual. Let

g ∈ {T,C} be the group to which the individual is assigned (respectively treatment or control).

Further, let a ∈ {−1, 0,+1} be the prediction of the model.

We de�ne the true uplift loss as

l(yT , yC , a) =



−u if a = +1,

u if a = −1,

0 if a = 0 and u = 0,

ρ otherwise,

(3.1.9)

where 0 ≤ ρ ≤ 1 is a constant. To make the loss easier to understand the following table

summarizes its values depending on the model prediction a and the true gain u for a given

individual.
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H1

H2
T−

ξi,2

C+

ξi,2

T+

ξi,1

C−

ξi,1

T+

ξi,1ξi,2

T−

ξi,2ξi,1T+

C−

C+

T−

Figure 3.1.1: The Uplift SVM optimization problem. Example points belonging to the positive
class in the treatment and control groups are marked respectively with T+ and C+. Analogous
notation is used for points in the negative class. The �gure shows penalties incurred by points
with respect to the two hyperplanes of the USVM. Positive sides of hyperplanes are indicated
in the image by small arrows at the right ends of lines. Red solid arrows denote the penalties
incurred by points which lie on the wrong side of a single hyperplane, blue dashed arrows denote
additional penalties for being misclassi�ed also by the second hyperplane.
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u = −1 u = 0 u = 1

a = +1 1 0 −1

a = 0 ρ 0 ρ

a = −1 −1 0 1

For example, when the model suggests treating an individual (a = +1) but the true gain is

negative, the loss is 1. If, on the other hand, the true gain is u = +1 the loss is −1 indicating that

we actually gained from performing the treatment. The constant ρ penalizes neutral predictions

when the true gain is not zero. Since wrongly classifying a case as neutral is potentially less

harmful than wrongly recommending treatment, ρ will typically be less than 1.

Notice that computing l(yT , yC , a) requires the knowledge of both potential outcomes, so due

to the Fundamental Problem of Causal Inference (see Section 1.2) it is not possible in practice.

We can, however, optimize an upper bound on it as shown in the following theorem.

Theorem 3.1.1. The quantity optimized in the USVM optimization task given in Equation 3.1.3

is an upper bound on the sum of the true uplift loss l over all training records in DC and DT .

Proof. Let y be the actual outcome observed, i.e. yT if the object was treated and yC otherwise.

De�ne an auxiliary loss function

l̃(y, g, a) =

maxyC l(y, y
C , a) if g = T,

maxyT l(y
T , y, a) if g = C.

It is clear that the unknown true uplift loss l(yT , yC , a) is upper-bounded by the auxilliary loss

l̃(y, g, a) so it is enough to show that USVMs optimize an upper bound on l̃.

Notice that minimizing the last four terms of Equation 3.1.3 (the �rst is responsible for regu-

larization and is not part of the penalty) is equivalent to minimizing

∑
DT

+∪DC
−

ξi,1 +
C2

C1

∑
DT
−∪DC

+

ξi,1 +
C2

C1

∑
DT

+∪DC
−

ξi,2 +
∑

DT
−∪DC

+

ξi,2, (3.1.10)

where C2
C1
≥ 0. Take a point xj ∈ DT

+ (the reasoning in the three remaining cases is analogous).

There are three possibilities

a) 〈w,xj〉 − b1 ≥ 0. We have ξj,1 ≥ 0 and ξj,2 ≥ 0 by (3.1.8). Here a = +1 and l̃(+1, g =

T, a = +1) = 0 ≤ ξj,1 + C2
C1
ξj,2,
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b) 〈w,xj〉 − b1 < 0 and 〈w,xj〉 − b2 ≥ 0, then ξj,1 > 1 by (3.1.4) and ξj,2 ≥ 0. Here a = 0 and

l̃(+1, g = T, a = 0) = ρ ≤ ξj,1 + C2
C1
ξj,2,

c) 〈w,xj〉 − b2 < 0, then ξj,1 > 1 and ξj,2 > 1 by (3.1.4) and (3.1.6). Here a = −1 and

l̃(+1, g = T, a = −1) = 1 ≤ ξj,1 + C2
C1
ξj,2.

Summing over all training records completes the proof.

3.2 The Uplift Support Vector Machine optimization task

Let us now present the dual formulation of the Uplift Support Vector Machine optimization task.

Methods for solving the optimization problem will be discussed in detail in the next chapter.

We �rst introduce a class variable transformation

zi =

yi, if (xi, yi) ∈ DT ,

−yi, if (xi, yi) ∈ DC .
(3.2.1)

In other words, zi is obtained by keeping the class variable in the treatment group and reversing

it in the control. Note that this is the same transformation which has been introduced in [20] in

the context of uplift modeling and logistic regression.

This variable transformation allows us to simplify the optimization problem given in Equa-

tions 3.1.3−3.1.8 by merging (3.1.4) with (3.1.5) and (3.1.6) with (3.1.7). The simpli�ed opti-

mization problem is

min
w,b1,b2∈Rm+2

1

2
〈w,w〉+ C1

∑
DT

+∪DC
−

ξi,1 + C2

∑
DT
−∪DC

+

ξi,1

+ C2

∑
DT

+∪DC
−

ξi,2 + C1

∑
DT
−∪DC

+

ξi,2

subject to constraints

zi(〈w,xi〉 − b1)− 1 + ξi,1 ≥ 0, forall i = 1, . . . , n,

zi(〈w,xi〉 − b2)− 1 + ξi,2 ≥ 0, forall i = 1, . . . , n,

ξi,j ≥ 0, forall i = 1, . . . , n, j ∈ {1, 2}.

We will now obtain the dual form of the optimization problem. We begin by writing the
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following Lagrange function

L(w, b1, b2, αi, βi, ξi,1, ξi,2, ri, pi)

=
1

2
〈w,w〉+ C1

∑
DT

+∪DC
−

ξi,1 + C2

∑
DT
−∪DC

+

ξi,1 + C2

∑
DT

+∪DC
−

ξi,2 + C1

∑
DT
−∪DC

+

ξi,2

−
n∑
i=1

αi
(
zi(〈w,xi〉 − b1)− 1 + ξi,1

)
−

n∑
i=1

βi
(
zi(〈w,xi〉 − b2)− 1 + ξi,2

)
−

n∑
i=1

riξi,1 −
n∑
i=1

piξi,2,

where αi, βi ∈ R are Lagrange multipliers and ri, pi ≥ 0.

Now we need to calculate partial derivatives and equate them to 0 in order to satisfy the

Karush-Kuhn-Tucker stationarity condition (see Section 2.3.1). We begin by deriving with respect

to w
∂L

∂w
= w −

n∑
i=1

αizixi −
n∑
i=1

βizixi = 0,

from which we obtain

w =

n∑
i=1

(αi + βi)zixi. (3.2.2)

We compute the remaining derivatives in a similar fashion

∂L

∂b1
=

n∑
i=1

αizi = 0,
∂L

∂b2
=

n∑
i=1

βizi = 0, (3.2.3)

∂L

∂ξi,1
= C11[zi=+1] + C21[zi=−1] − αi − ri = 0, (3.2.4)

∂L

∂ξi,2
= C11[zi=−1] + C21[zi=+1] − βi − pi = 0. (3.2.5)

Plugging Equations 3.2.4, 3.2.5 back into the Lagrange function we obtain, after simpli�cations,

L =
1

2
〈w,w〉 −

n∑
i=1

αi
(
zi(〈w,xi〉 − b1)− 1

)
−

n∑
i=1

βi
(
zi(〈w,xi〉 − b2)− 1

)
.
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Substituting w from Equation 3.2.2 and using Equation 3.2.3 we get

L =
1

2

n∑
i,j=1

(αi + βi)(αj + βj)zizj〈xi,xj〉

−
n∑

i,j=1

(αi + βi)(αj + βj)zizj〈xj ,xi〉

+ b1

n∑
i=1

αizi +

n∑
i=1

αi + b2

n∑
i=1

βizi +

n∑
i=1

βi

=

n∑
i=1

(αi + βi)−
1

2

n∑
i,j=1

(αi + βi)(αj + βj)zizj〈xi,xj〉, (3.2.6)

which we maximize over αi, βi.

Finally, from the assumption that ri, pi ≥ 0 (KKT dual feasibility condition) and (3.2.4),

(3.2.5) combined with the KKT condition on nonnegativity of αi, βi (dual feasibility) and from

(3.2.3) we obtain the following constraints for the dual optimization problem

0 ≤ αi ≤ C11[zi=+1] + C21[zi=−1], (3.2.7)

0 ≤ βi ≤ C11[zi=−1] + C21[zi=+1], (3.2.8)
n∑
i=1

αizi =

n∑
i=1

βizi = 0. (3.2.9)

3.3 Properties of the Uplift Support Vector Machines (USVMs)

In this section we analyze some of the mathematical properties of Uplift Support Vector Machines

(USVMs), especially those related to the in�uence of the parameters C1 and C2 on model's

behavior. One of the more important results is showing that the ratio C2
C1

of the penalty parameters

directly in�uences the number of records which are classi�ed as neutral, or, in other words, that

it determines the distance between the two separating hyperplanes.

Lemma 3.3.1. Let w∗, b∗1, b
∗
2 be a solution to the Uplift SVM optimization problem given by

Equations 3.1.3−3.1.8. If C2 > C1 then b∗1 ≥ b∗2.

Proof. Let us begin with an observation which will be used in this and the following proofs.

Consider the Uplift SVM optimization problem given by Equations 3.1.3−3.1.8. Notice that

whenw, b1, b2 are �xed, the optimal values of slack variables ξi,j are uniquely determined. Optimal

values for slack variables present in Equation 3.1.4 are ξ∗i,1 = max{0,−〈w,xi〉+ b1 + 1}, and for
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those present in Equation 3.1.5, ξ∗i,1 = max{0, 〈w,xi〉 − b1 + 1}. Analogous formulas can be given

for ξ∗i,2 and Equations 3.1.6−3.1.7. Now we come back to the proof.

Let S∗ = 〈w∗, b∗1, b∗2〉 be an optimal solution with b∗1 < b∗2. Consider also a set of parameters

S′ = 〈w∗, b∗2, b∗1〉 with the values of b∗1, b
∗
2 interchanged and look at the target function (3.1.3) for

both sets of parameters.

Take a point (xi, yi) ∈ DT
+∪DC

− for which, under the set of parameters S′, ξ′i,1 > 0 and ξ′i,2 = 0,

that is the point is penalized only for crossing the hyperplane H1. Under the parameters S∗ the

point will be penalized not with C1ξ
′
i,1 for crossing H1 but, instead, with C2ξ

∗
i,2 for crossing H2.

Since, by switching from S∗ to S′ the hyperplanes simply exchange intercepts, we have ξ∗i,1 = ξ′i,2

and, from the assumption, C2ξ
∗
i,1 > C1ξ

′
i,2. Thus the amount every point (xi, yi) ∈ DT

+ ∪ DC
−

contributes to the target function (3.1.3) is lower in S′ than in S∗.

We now consider points penalized for crossing both hyperplanes. The idea of the proof is

analogous to the �rst case. Take a point (xi, yi) ∈ DT
+ ∪ DC

− with ξ∗i,1, ξ
∗
i,2 > 0. Denote by

P ∗i = C1ξ
∗
i,1 + C2ξ

∗
i,2 the penalty incurred by the point under S∗ and by P ′i = C1ξ

′
i,1 + C2ξ

′
i,2 the

penalty of the same point under S′. Notice that ξ′i,1 = ξ∗i,2 and ξ
′
i,2 = ξ∗i,1. Hence

P ∗i − P ′i = C1ξ
∗
i,1 + C2ξ

∗
i,2 − C1ξ

′
i,1 − C2ξ

′
i,2 = C1ξ

∗
i,1 + C2ξ

∗
i,2 − C1ξ

∗
i,2 − C2ξ

∗
i,1

= ξ∗i,1(C1 − C2) + ξ∗i,2(C2 − C1) = (C1 − C2)︸ ︷︷ ︸
<0

(ξ∗i,1 − ξ∗i,2)︸ ︷︷ ︸
<0

> 0

giving P ′i < P ∗i . Analogous argument holds for points in DT
− ∪DC

+. Therefore penalties incurred

by all penalized points are lower in S′ than in S∗ contradicting the optimality of S∗.

The lemma guarantees that the problem possesses a well de�ned solution in the sense of

Equation 3.1.2. Moreover, it naturally constrains (together with Lemma 3.3.3 below) the penalty

C2 to be greater than or equal to C1. From now on, instead of working with the coe�cient C2, it

will be more convenient to talk about the penalty coe�cient C1 and the quotient C2
C1
≥ 1.

Lemma 3.3.2. For su�ciently large value of C2
C1

none of the observations is penalized with a term

involving the C2 factor in the solution to the USVM optimization problem.

Proof. Let us �rst consider the hyperplane H1 (argument for H2 is analogous). Assume that there

exists at least one point in DT
− ∪DC

+ (analogous argument holds for DT
+ ∪DC

−) which is punished

with a term involving the C2 penalty coe�cient, and therefore lies on the wrong side of H1. Out

of all such points choose the one (x̃i, ỹi) which is furthest from H1 and denote by ξ̃i,1, ξ̃i,2 its slack
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variables w.r.t. H1 and H2 respectively. The penalty incurred by (x̃i, ỹi) equals

C2ξ̃i,1 + C1ξ̃i,2.

Let us now shift the hyperplane H1 by exactly ξ̃i,1; as a result, the point is only penalized by

C1ξ̃i,2. The same is true for all other points from DT
− ∪DC

+. On the other hand, after shifting

H1, penalties w.r.t. H1 of points in DT
+ ∪DC

− could have increased, but the increase is bounded

by C1ξ̃i,1 per point.

Denote n1 = |DT
− ∪DC

+|, n2 = |DT
+ ∪DC

−|. The change in penalties caused by shifting H1 is

bounded from above by

C1ξ̃i,2 − (C2ξ̃i,1 + C1ξ̃i,2) + n2C1ξ̃i,1 = ξ̃i,1(n2C1 − C2),

which is negative for su�ciently large value of C2, such that the shift of H1 is guaranteed to

decrease the target function.

Equivalently the lemma states that for a large enough value of C2
C1
, none of the points will be

on the wrong side of both hyperplanes. This is possible only when the hyperplanes are maximally

separated, resulting in most (often all) points classi�ed as neutral.

Lemma 3.3.3. If C1 = C2 = C and the solution is unique then both hyperplanes coincide:

b1 = b2.

Proof of Lemma 3.3.3. Let us �x anyw and optimize with respect to b1, b2. Under the assumption

of the lemma, the target function (3.1.3) can be rewritten as

1

2
〈w,w〉+ C

∑
DT∪DC

ξi,1 + C
∑

DT∪DC

ξi,2.

Note, that the �rst term is constant, the second is a function of b1 and the third of b2. Moreover

the second and third term are fully symmetric so the target function can be rewritten as const.+

f(b1) + f(b2), where f is some function of b1 or b2. Notice that optimization over b1 is done

independently of optimization over b2 and since the optimized functions f are identical, the

resulting optima for b1 and b2 must be identical if the solution is unique. The result follows since

the argument is valid for any w.

We are now ready to give an interpretation of the C1 and
C2
C1

parameters of the Uplift SVM. The

parameter C1 plays the role analogous to the penalty coe�cient C in classical SVMs controlling
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Figure 3.3.1: The e�ect of the C2/C1 ratio on the separating hyperplanes for an arti�cial example.

the relative cost of misclassi�ed points with respect to the margin maximization term 1
2〈w,w〉.

The quotient C2
C1

allows the analyst to decide what proportion of points should be classi�ed as

positive or negative. In other words, it allows for controlling the size of the neutral prediction.

Note that this is not equivalent to selecting thresholds in data scored using a single model. For

each value of C2
C1

a di�erent model is built which is optimized for a speci�c proportion of neutral

predictions. We believe that this property of USVMs is very useful for practical applications, as

it allows for tuning the model speci�cally to the desired size of the campaign.

Figure 3.3.1 shows, on an arti�cial example, how the weight vector w adapts to a speci�c size

of the neutral set. The treatment and control datasets consist of three randomly generated point

clouds (treatment and control points are both marked with black dots to avoid clutter), each with

a di�erent value of the net gain from performing the action, denoted U in the pictures. The two

crescents have gains −1 and +1 respectively, and in the middle rectangle the e�ect of the action
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is neutral. The value of the parameter C1 was set to 1. It can be seen that when C1 = C2 the

separating hyperplanes coincide and are aligned with the crescents where the impact is positive

or negative. The neutral part of data is ignored. As the ratio C2/C1 grows, the hyperplanes

become more and more separated and begin changing direction, taking into account not only the

crescents but also the neutral group. In the last chart, the neutral rectangle falls between both

hyperplanes and the three groups are well separated.

3.4 Lp Uplift Support Vector Machines

Unfortunately, USVMs su�er from a problem which, in certain cases, makes Lemmas 3.3.2

and 3.3.3 lose their practical signi�cance. We begin by analyzing the problem theoretically.

Later, in order to alleviate it, we adapt Lp-SVMs [1] to the uplift case. Lp-SVMs are a variant of

classical SVMs where, in the optimization problem, the slack variables have been raised to power

p resulting in a smoother loss function. Details will be given later in the section. Uplift Support

Vector Machines de�ned in the previous section will be referred to as L1-USVMs.

3.4.1 A problem with L1-USVMs. Theoretical analysis

We begin with a lemma on the nonuniqueness of the intercepts b1 and b2 in the USVM optimization

problem. The lemma is stated for b1, the result for b2 is analogous.

Lemma 3.4.1. Assume that w and b2 are �xed and

2

‖w‖
≥ max

i
{〈w,xi〉} −min

i
{〈w,xi〉}, (3.4.1)

i.e. the margin is wide enough to encompass all data points. Assume further, that C2
C1

=
|DT

+∪DC
−|

|DT
−∪DC

+|
.

Then the optimal value of b1 is not unique and can be chosen anywhere in the interval[
max
i
{〈w,xi〉 − 1}, min

i
{〈w,xi〉+ 1}

]
.

Proof. Pick any b1 in the range [maxi{〈w,xi〉 − 1}, mini{〈w,xi〉+ 1}] . From (3.4.1) it follows

that for all i, |〈w,xi〉 − b1| ≤ 1, and therefore (3.1.8) follows from (3.1.4)−(3.1.7), implying

ξi,1 =

1− (〈w,xi〉 − b1) for xi ∈ DT
+ ∪DC

−,

1 + (〈w,xi〉 − b1) for xi ∈ DT
− ∪DC

+,
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for all i in an optimal solution. Let us denote by L the goal function given in Equation 3.1.3.

Since w and b2 are �xed, the �rst, fourth, and �fth terms in (3.1.3) do not depend on b1, and L

becomes

L(b1) = const. + C1

∑
DT

+∪DC
−

ξi,1 + C2

∑
DT
−∪DC

+

ξi,1

= const. + C1

∑
DT

+∪DC
−

(1− (〈w,xi〉 − b1)) + C2

∑
DT
−∪DC

+

(1 + (〈w,xi〉 − b1))

= const. + C1|DT
+ ∪DC

−| − C1

∑
DT

+∪DC
−

〈w,xi〉

︸ ︷︷ ︸
const. indep. of b1

+ C1b1|DT
+ ∪DC

−|

+ C2|DT
− ∪DC

+|+ C2

∑
DT
−∪DC

+

〈w,xi〉

︸ ︷︷ ︸
const. indep. of b1

− C2b1|DT
− ∪DC

+|

= const.− b1(C2|DT
− ∪DC

+| − C1|DT
+ ∪DC

−|).

Clearly, if C2
C1

=
|DT

+∪DC
−|

|DT
−∪DC

+|
the value of the goal function does not depend on b1.

Note that when b1 = mini{−1 − 〈w,xi〉} all points are classi�ed as positive, at the other

extreme all points are classi�ed as neutral. As a result, for some values of the parameter C2

all points are classi�ed as neutral, then, when the parameter crosses the threshold given in the

statement of the above lemma, all data points are classi�ed as positive with no intermediate steps.

It may seem that the condition that the margin be wide enough to encompass all data points

is unlikely to occur in practice. The following lemma shows that this is not the case, and the

margin can in fact be in�nite. Real examples are given in Section 6.3.

Lemma 3.4.2. Without loss of generality assume |DT
+ ∪DC

−| ≥ |DT
− ∪DC

+|. Suppose there exist
multipliers ωi such that

0 ≤ ωi ≤ 1,
∑

DT
−∪DC

+

xi =
∑

DT
+∪DC

−

ωixi,
∑

DT
+∪DC

−

ωi = |DT
− ∪DC

+|,

then the optimal weight vector w is 0.

Proof. The proof is similar to that for classical SVMs provided in [32]. Given any ωi satisfying
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the assumptions one can easily check (taking into account that C2 ≥ C1) that setting

αi =

C1 for i : zi = −1,

ωiC1 for i : zi = +1,
βi =

C1 for i : zi = −1,

ωiC1 for i : zi = +1.

satis�es the KKT conditions (3.2.3)−(3.2.5) and, therefore, due to Equation 3.2.2, induces a

optimal solution with w = 0.

The lemma implies, for example, that if the averages of predictor variables in DT
− ∪DC

+ and

DT
+ ∪DC

− are identical, the margin is in�nitely wide and encompasses all data points. Note that

an analogous condition is true also for classical SVMs [32]. In uplift modeling, the prediction task

is often di�cult, resulting in large overlap between convex hulls of DT
+ ∪DC

− and DT
− ∪DC

+. As

a result, the conditions of the lemma are relatively easy to satisfy.

To solve those problems we now introduce Lp-USVMs, which are an adaptation of Lp-SVMs [1,

8] to uplift modeling, and which, since they depend on the parameter C2 in a continuous fashion,

do not su�er from the aforementioned problem.

3.4.2 Lp Uplift Support Vector Machines. De�nition

Let p > 1 be a constant. The idea behind Lp-SVMs is to raise the slack variables used in the

SVM optimization problem to the power p [1, 8]. In the uplift case, the quantity being optimized

(analogue of Equation 3.1.3) now becomes

min
w,b1,b2∈Rm+2

1

2
〈w,w〉+ C1

∑
DT

+∪DC
−

|ξi,1|p + C2

∑
DT
−∪DC

+

|ξi,1|p

+ C2

∑
DT

+∪DC
−

|ξi,2|p + C1

∑
DT
−∪DC

+

|ξi,2|p, (3.4.2)

and the optimization is performed subject to

〈w,xi〉 − b1 ≥ +1− ξi,1, forall (xi, yi) ∈ DT
+ ∪DC

−, (3.4.3)

〈w,xi〉 − b1 ≤ −1 + ξi,1, forall (xi, yi) ∈ DT
− ∪DC

+, (3.4.4)

〈w,xi〉 − b2 ≥ +1− ξi,2, forall (xi, yi) ∈ DT
+ ∪DC

−, (3.4.5)

〈w,xi〉 − b2 ≤ −1 + ξi,2, forall (xi, yi) ∈ DT
− ∪DC

+. (3.4.6)
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Note that these are the �rst four constraints (3.1.4)-(3.1.7) used also in the L1-USVM case. It is

easy to see that the �fth constraint is no longer needed. Indeed, a solution with any ξi,j < 0 cannot

be optimal because the corresponding constraints 〈w,xi〉+b1 ≥ 1−ξi,j and 〈w,xi〉−b1 ≤ −1+ξi,j

would be also satis�ed for ξi,j = 0 which gives a lower value of objective function. The absolute

values are used to ensure that the ξi,j 's can be raised to noninteger powers.

It is easy to see that Theorem 3.1.1 and Lemmas 3.3.1−3.3.3 remain true also in the Lp

formulation, so the Lp-USVM minimizes an upper bound on the true uplift loss and the properties

regarding the values of parameters C1 and C2 directly carry over to this case.

3.4.3 Dual optimization task for Lp-USVMs

We use an approach similar to that in Section 3.2 to obtain the dual for the Lp-USVM optimization

problem. See [1] for an analogous derivation for Lp-SVMs in the classi�cation problem.

After applying the variable transformation (3.2.1) the Lagrangian becomes

L(w, b1, b2, αi, βi, ξi,1, ξi,2) =
1

2
〈w,w〉

+ C1

∑
DT

+∪DC
−

|ξi,1|p + C2

∑
DT
−∪DC

+

|ξi,1|p + C2

∑
DT

+∪DC
−

|ξi,2|p + C1

∑
DT
−∪DC

+

|ξi,2|p

−
n∑
i=1

αi
(
zi(〈w,xi〉 − b1)− 1 + ξi,1

)
−

n∑
i=1

βi
(
zi(〈w,xi〉 − b2)− 1 + ξi,2

)
.

From the KKT stationarity condition we get

∂L

∂w
= w −

n∑
i=1

αizixi −
n∑
i=1

βizixi = 0

and consequently

w =

n∑
i=1

αizixi +

n∑
i=1

βizixi. (3.4.7)

Similarly

∂L

∂b1
=

n∑
i=1

αizi = 0,
∂L

∂b2
=

n∑
i=1

βizi = 0, (3.4.8)

∂L

∂ξi,1
= pC1|ξi,1|p−1 sgn (ξi,1)1[zi=+1] + pC2|ξi,1|p−1 sgn (ξi,1)1[zi=−1] − αi = 0, (3.4.9)

∂L

∂ξi,2
= pC1|ξi,2|p−1 sgn (ξi,2)1[zi=−1] + pC2|ξi,2|p−1 sgn (ξi,2)1[zi=+1] − βi = 0. (3.4.10)
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Notice that we can omit the factors sgn (ξi,j) in last two equations since, as noted above, optimal

values of ξi,j have to be nonnegative and when ξi,j = 0 the factor disappears since it's multiplied

by zero. After dropping the signum functions we obtain

|ξi,1| =
(

αi
pC11[zi=+1] + pC21[zi=−1]

)1/(p−1)
, (3.4.11)

|ξi,2| =
(

βi
pC11[zi=−1] + pC21[zi=+1]

)1/(p−1)
. (3.4.12)

After reformulating the Lagrangian (using nonnegativity of ξi,j to replace it with |ξi,j |) we
obtain

L =
1

2
〈w,w〉 −

n∑
i=1

αi
(
zi(〈w,xi〉 − b1)− 1

)
−

n∑
i=1

βi
(
zi(〈w,xi〉 − b2)− 1

)
+

1

p

n∑
i=1

|ξi,1|
(
pC1|ξi,1|p−11[zi=+1] + pC2|ξi,1|p−11[zi=−1] − αi − (p− 1)αi

)
+

1

p

n∑
i=1

|ξi,2|
(
pC1|ξi,2|p−11[zi=−1] + pC2|ξi,2|p−11[zi=+1] − βi − (p− 1)βi

)
,

which, using (3.4.9) and (3.4.10), can be further simpli�ed to

1

2
〈w,w〉 −

n∑
i=1

αi
(
zi(〈w,xi〉 − b1)− 1

)
−

n∑
i=1

βi
(
zi(〈w,xi〉 − b2)− 1

)
− p− 1

p

n∑
i=1

|ξi,1|αi −
p− 1

p

n∑
i=1

|ξi,2|βi.

Using Equations 3.4.7, 3.4.8, 3.4.11, 3.4.12 the �nal form of the Lagrangian is obtained:

−1

2

n∑
i,j=1

αiαjzizj〈xi,xj〉 −
n∑

i,j=1

αiβjzizj〈xi,xj〉

− 1

2

n∑
i,j=1

βiβjzizj〈xi,xj〉+

n∑
i=1

(αi + βi)

− p− 1

p

n∑
i=1

α
p/(p−1)
i(

pC11[zi=+1] + pC21[zi=−1]
)1/(p−1)

− p− 1

p

n∑
i=1

β
p/(p−1)
i(

pC11[zi=−1] + pC21[zi=+1]

)1/(p−1) , (3.4.13)
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which needs to be maximized subject to αi, βi ≥ 0 and Equation 3.4.8.

Unfortunately most optimization algorithms require the goal function to be twice di�erentiable

in the optimization domain, which limits the choice of p to values for which p
p−1 is an integer,

e.g. p = 2, 32 ,
4
3 ,

5
4 ,

6
5 , . . .. Note, however, that those values are actually the most interesting from

our perspective since they include the smooth p = 2 case and allow for arbitrarily close smooth

approximations of the L1-USVM.
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Chapter 4

Optimiztion Algorithms

The two optimization problems presented above can be solved using o� the shelf constrained

optimization software or using methods designed speci�cally for Support Vector Machines. We

have primarily followed the �rst approach and applied quadratic and convex solvers from the

CVXOPT library [2] to the dual formulations of Uplift SVMs. In order to make the solutions

e�cient, we developed dedicated solvers for the Karush-Kuhn-Tucker (KKT) systems of equations

used by CVXOPT. The solvers exploit the structure of Uplift SVMs to o�er high computational

e�ciency and numerical stability. Details are given in Sections 4.2.1 and 4.3.

Additionally we have adapted to our problem the dual coordinate descent method used in

the LIBLINEAR package [16] which is currently the most popular method for solving classical

SVM-type optimization problems. The method is described in Section 4.2.2. Unfortunately the

method had poor convergence properties in the case of USVMs so all our experiments use the

method based on quadratic and convex programming using CVXOPT.

4.1 Selected linear algebra concepts

Before we present the optimization algorithms used to �nd optimal solutions to the problems

from the previous chapter, we �rst give a brief description of a few linear algebra concepts: the

Schur complement, the Woodbury matrix identity and the solution of the weighted regularized

least squares problem, which will be used later in this section. Further details on those topics can

be found in [5] and [11].
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4.1.1 The Schur complement

Let M be an n× n matrix which is expressed in block-matrix form as

M =

[
A B

C D

]
,

where A,B,C,D are respectively p× p, p× q, q× p and q× q matrices, with n = p+ q. Suppose

that we have a system of linear equations involving the matrix M. Using the block matrix form

the system can be rewritten as a system of two matrix equations

Ax + By = a,

Cx + Dy = b,

where x, a and y, b are, respectively, p and q dimensional real vectors. Suppose we want to solve

the system in a `blockwise' fashion, by �rst �nding x and then y.

Assuming the matrix D is invertible, we start (similar to Gaussian elimination), by solving

the second matrix equation for y:

y = D−1(b−Cx).

Then we substitute this result into the �rst equation obtaining

Ax + B(D−1(b−Cx)) = a,

which is equivalent to

(A−BD−1C)x = a−BD−1b.

If the matrix A − BD−1C, which is called the Schur complement of D in M, is invertible, we

can solve the equation for x, and then, by using the second matrix equation Cx+Dy = b, solve

for y.

Hence, assuming that D and its Schur complement are invertible, the problem of inverting a

(p+ q)× (p+ q) matrix reduces to the problem of inverting two p× p and q × q matrices, which
is especially useful in case of solving systems of linear equations where one of the matrices has a

special form and can be easily inverted. In a similar fashion we can de�ne the Schur complement

D−CA−1B of the matrix A in M, given that A is invertible.
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4.1.2 Woodbury matrix identity

As shown above, the concept of Schur complement allows us to decompose larger systems of

equations such that special structure of their subsystems can be exploited. One such special case

is when the system has the form

(A + BC)x = b, (4.1.1)

where A,B,C are respectively n×n, n× p and p×n matrices, A is nonsingular and x and b are

n-dimensional real vectors. This special form can be exploited when the inverse of the matrix A

can easily be computed and p < n. The derivation below follows the one presented in [5, Section

C.4.3].

Introduce a new variable y = Cx and rewrite Equation 4.1.1 as

Ax + By = b

y = Cx,

which can be expressed in matrix form as[
A B

C −I

][
x

y

]
=

[
b

0

]
. (4.1.2)

Interestingly, the Schur complement of −I in the above matrix is exactly A + BC. Now, in the

system 4.1.2 we eliminate the original variable x. We get x = A−1(b−By) and by substituting

this into the second equation y = Cx we get

(I + CA−1B)y = CA−1b,

which can be transformed into

y = (I + CA−1B)−1CA−1b.

Now, by using x = A−1(b−By), we obtain

x = (A−1 −A−1B(I + CA−1B)−1CA−1)b.
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Note that b can be arbitrary, so we �nally get

(A + BC)−1 = (A−1 −A−1B(I + CA−1B)−1CA−1). (4.1.3)

The above formula is known as the Woodbury matrix identity or the matrix inversion lemma.

Notice that it is assumed thatA is easily invertible so one only needs to explicitly invert I+CA−1B

which is of size p× p, typically much smaller than the original n× n.

4.1.3 Weighted regularized least squares

The last topic that we present in this section is the matrix formula for the solution of the weighted

regularized least squares problem. We will start with simple linear least squares and modify it by

adding weights and a regularization term. Consider a system of linear equations

y = Xβ, (4.1.4)

where X is a n × m real matrix, y an n-dimensional real vector and β an m-dimensional real

vector of regression coe�cients. Since the system is typically overdetermined, no solution β exists.

The least squares problem is to �nd the `best' possible β̂ in the sense of the following quadratic

minimization problem

β̂ = arg min
β

n∑
i=1

yi − m∑
j=1

Xijβj

2

= arg min
β
‖y −Xβ‖2. (4.1.5)

When X is of full column rank, this problem has a unique solution given by [5, Chapter 6]

β̂ = (X′X)−1X′y.

The weighted version di�ers slightly, as we simply introduce weights into the objective func-

tion 4.1.5

β̂ = arg min
β

n∑
i=1

wi

yi − m∑
j=1

Xijβj

2

= arg min
β
‖W1/2(y −Xβ)‖2, (4.1.6)

where wi > 0 is the weight of the i-th case, and W = diag(w1, . . . , wn) is and n × n diagonal

weight matrix. Then the solution is given by [5, Chapter 6]

β̂ = (X′WX)−1X′Wy.
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We now further modify (4.1.6) by adding an L2 regularization term

β̂ = arg min
β

n∑
i=1

wi

yi − m∑
j=1

Xijβj

2

+ λ‖β‖2 = arg min
β
‖W1/2(y −Xβ)‖2 + λ‖β‖2.

The solution to this system has the form

β̂ = (X′WX + λI)−1X′Wy. (4.1.7)

The solutions given above do not have good numerical properties, so the regularized weighted

least squares problem is typically solved using the Singular Value Decomposition due to its high

numerical stability [11].

4.2 Optimization for L1 Uplift Support Vector Machines

In this section we describe optimization algorithms for L1 Uplift Support Vector Machines. The

�rst approach uses the CVXOPT library [2] and the second is an adaptation of the stochastic

dual coordinate descent method.

4.2.1 Quadratic programming solution to Uplift Support Vector Machine op-

timization problem

We now present a solution to the L1 USVM optimization problem using quadratic programming

routines from the CVXOPT library [2]. The library works by solving, during each iteration, a

system of equations called the KKT system; it is possible to provide a custom solver for the

system for improved computation speed and numerical accuracy. We now derive solutions for the

KKT equations which exploit special structure of the L1 USVM optimization problem. The KKT

system described below follows the conventions used by the CVXOPT library [2].

It is easy to see that the task of maximizing the Lagrangian (3.2.6) subject to constraints

(3.2.7)−(3.2.9) can be rewritten in matrix form as minimizing

1

2
u′Pu + q′u subject to Gu ≤ h, Au = b,
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where ≤ means elementwise inequality of vectors, ′ denotes matrix transpose and

u =

[
α

β

]
, P =

[
DD′ DD′

DD′ DD′

]
, A =

[
z′ 0

0 z′

]
, G =

[
−I
I

]
,

where I is the 2n × 2n identity matrix, q = (1, 1, . . . , 1)′, the vector h is obtained from Equa-

tions 3.2.7 and 3.2.8, α = (α1, . . . , αn)′ and β = (β1, . . . , βn)′ are column vectors of the optimized

dual coe�cients, z = (z1, . . . , zn)′ is the vector of transformed class variables in treatment and

control groups (Equation 3.2.1), and

D = diag(z)

[
DT

DC

]
,

i.e. it is the concatenation of the treatment and control datasets with each row multiplied by the

transformed class value zi.

Each CVXOPT iteration requires solving the following KKT system of equations [2]
P A′ G′W−1

A 0 0

G 0 −W′




ux

uy

uz

 =


bx

by

bz

 , (4.2.1)

where the diagonal weight matrixW and vectors bx,by,bz are supplied by the solver. All diagonal

elements of W are guaranteed to be positive, so the matrix is invertible. Note that the dimension

of W is 4n× 4n. The structure of this system needs to be exploited if an e�cient solution is to

be obtained. Applying the Schur complement for W′ in the leftmost matrix in (4.2.1) reduces

the system to a smaller one[
P + G′W−2G A′

A 0

]
·

[
ux

uy

]
=

[
cx

by

]
, where cx = bx + G′W−2bz.

uz can then be recovered as uz = W−1(Gux − bz). Using now the Schur complement1 of

P + G′W−2G we reduce the system further to

−A(P + G′W−2G)−1A′uy = by −A(P + G′W−2G)−1cx (4.2.2)

1From (4.2.4) it follows that P+G′W−2G is a sum of a nonnegative de�nite and two positive de�nite matrices
and is thus positive de�nite and invertible.
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and solve

(P + G′W−2G)ux = cx −A′uy (4.2.3)

to recover ux. The above system of equations requires solving three linear systems of the form

(P + G′W−2G)v = b for various b. The �rst two solutions are needed to compute (P +

G′W−2G)−1A′ and (P + G′W−2G)−1cx in (4.2.2) with b equal respectively to A′ and cx. The

third occurs directly in (4.2.3).

In order to solve the system e�ciently we need to exploit the structure of the matrix P +

G′W−2G. Note that it can be expressed as[
D

D

]
[D′|D′] + W−2

1 + W−2
2 , (4.2.4)

where W−2
i are the diagonal blocks of W−2 (recall that W is diagonal). This matrix has a

`diagonal plus low rank' structure which frequently occurs in optimization problems (see e.g. [5,

Appendix C.4]). Denote X = [D′|D′]′, Z = W−2
1 +W−2

2 . Solution to the system (XX′+Z)v = b

can be obtained using the Woodbury matrix identity given in Equation 4.1.3:

v = Z−1b− Z−1X(I + X′Z−1X)−1X′Z−1b. (4.2.5)

Applying this formula directly allows for solving the KKT system e�ciently, it is however known to

have poor numerical stability. In [10] the authors suggested the use of partial Cholesky decomposi-

tion for such systems, but this decomposition is not available in standard linear algebra packages.

Instead we noticed that computing the quantity (I + X′Z−1X)−1X′Z−1b in Equation 4.2.5 is

equivalent to solving a regularized weighted least squares problem (see Equation 4.1.7), which

can be achieved using the highly stable Singular Value Decomposition. This is the method we

used in our implementation.

4.2.2 Stochastic dual coordinate descent solver for the L1-USVM optimization

problem

We have also developed an optimization algorithm based on the stochastic dual coordinate de-

scent approach used for classical SVMs in the LIBLINEAR library [16]. However (contrary to

classi�cation SVMs) the algorithm worked worse than the quadratic programming algorithm and

the convergence was often slow. Its description is included below for completeness.

The method works by solving the dual optimization problem for each of the dual coe�cients αi,
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1. w←
∑n

i=1(αi + βi)zixi

2. γ ← (α1, . . . , αn, β1, . . . , βn)

3. Repeat until convergence:

4. For j ∈ {1, 2}:

5. For i ∈ {1, . . . , n}:

6. G← zi〈w,xi〉 − 1

7. Ui ← C11[zi=−1] + C21[zi=+1]

8. k ← n(j − 1) + i

9. PG =


min(G, 0) if γk = 0
max(G, 0) if γk = Ui

G otherwise

10. If PG 6= 0:

11. γ̄k ← γk

12. γk ← min(max(γk −G/〈xi,xi〉, 0), Ui)

13. w← w + (γk − γ̄k)zixi

Figure 4.2.1: The dual coordinate descent method for the Uplift SVM optimization problem

βi in turn in random order. The algorithm for our problem is similar to the original formulation

in [16]. Necessary adaptations included taking into account the presence of two sets of dual

coe�cients and using new constraints on those coe�cients given by (3.2.7) and (3.2.8). The

algorithm is presented in Figure 4.2.1. A detailed derivation for the classical case can be found

in [16]. For simplicity, dual coe�cients are updated sequentially in the �gure, in the actual

implementation loops in steps 4 and 5 are executed in random order. The notation di�ers slightly

from that used in the previous section to make it easier to compare with the description in [16].

Note that the method solves an unbiased version of the SVM optimization problem, namely one

which assumes the intercept to be zero. Nonzero intercepts are handled by adding an additional

constant column to the data, which is set to some large value in order to avoid regularizing the

corresponding coe�cient [16]. In our case, this resulted in dropping the constraints (3.2.9) and

adding two extra variables to the data to emulate the two intercepts b1 and b2. One of the new

variables is zero in DT and equal to c in DC , the other is zero in DC and equal to c in DT , where
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c is a constant, in our case equal to 10.

The following theorem establishes the convergence of the algorithm.

Theorem 4.2.1. The algorithm in Figure 4.2.1 globally converges to an optimal solution. The

convergence rate is at least linear.

Proof. Note that the Lagrangian (3.2.6) can be written as

−1

2
γTQγ + eTγ, (4.2.6)

where e = (1, 1, . . . , 1) is a vector of 2n ones, the vector γ is de�ned as γ = (α1, . . . , αn, β1, . . . , βn),

and the matrix Q as

Q =

[
R R

R R

]
,

where Rij = zizj〈xi,xj〉. The quantity in Equation 4.2.6 needs to be maximized subject to

constraints (3.2.7) and (3.2.8). After rewriting in this form, the argument given in the proof of

Theorem 1 in [16] can be directly applied.

4.3 Lp uplift SVM optimization

We now describe the convex programming solution to dual form of the Lp-USVM optimization

problem.

The Lp-USVM optimization problem is no longer (except for p = 2) quadratic so we used

CVXOPT's convex optimization routine to solve it [2]. Nevertheless, the solution is similar to

that presented in Section 4.2.1. The KKT system still has the form given in Equation 4.2.1 with

the matrix P replaced by the Hessian H of the goal function. Moreover the matrices P and H

have similar structures. We begin by deriving the gradient and the Hessian of the goal function.

To simplify notation de�ne:

ki,1 =
(
pC11[zi=+1] + pC21[zi=−1]

)1/(p−1)
,

ki,2 =
(
pC11[zi=−1] + pC21[zi=+1]

)1/(p−1)
.

Please note that, instead of maximizing the Lagrange function L given in Equation 3.4.13, we

minimize −L which, just for notational convenience, we will denote by L. We calculate the
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gradient

∂L
∂αk

=
n∑
i=1

αizkzi〈xk,xi〉+
n∑
i=1

βizkzi〈xk,xi〉 − 1 +
α
1/(p−1)
k

ki,1
,

∂L
∂βk

=
n∑
i=1

βizkzi〈xk,xi〉+
n∑
i=1

αizkzi〈xk,xi〉 − 1 +
β
1/(p−1)
k

ki,2

and the Hessian

∂2L
∂αk∂αk

= z2k〈xk,xk〉+
α
(2−p)/(p−1)
k

(p− 1)ki,1
,

∂2L
∂αk∂αl

= zkzl〈xk,xl〉 for k 6= l,

∂2L
∂αk∂βl

=
∂2L

∂βk∂αl
= zkzl〈xk,xl〉,

∂2L
∂βk∂βk

= z2k〈xk,xk〉+
β
(2−p)/(p−1)
k

(p− 1)ki,2
,

∂2L
∂βk∂βl

= zkzl〈xk,xl〉 for k 6= l.

Both the gradient and the Hessian can be expressed in concise matrix form respectively as

Pu + dg, P + diag(dh),

where the matrix P and the vector of dual coe�cients u are de�ned as in Section 4.2.1, and the

vectors dg, dh are de�ned as follows

dg =

(
α
1/(p−1)
1

k1,1
− 1, . . . ,

α
1/(p−1)
n

kn,1
− 1,

β
1/(p−1)
1

k1,2
− 1, . . . ,

β
1/(p−1)
n

kn,2
− 1

)
,

dh =

(
α
(2−p)/(p−1)
1

(p− 1)k1,1
, . . . ,

α
(2−p)/(p−1)
n

(p− 1)kn,1
,
β
(2−p)/(p−1)
1

(p− 1)k1,2
, . . . ,

β
(2−p)/(p−1)
n

(p− 1)kn,2

)
.

During each iteration we need to solve a KKT system very similar to (4.2.1) with the matrix

P replaced by the Hessian matrix given above. The system can be solved e�ciently using a

procedure almost identical to that presented in Section 4.2.1. Details have thus been omitted.
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Chapter 5

Székely regularized Support Vector

Machines

5.1 Biased treatment assignment problem

A very important aspect of uplift modeling is how the cases are assigned to treatment and con-

trol groups. The best scenario is a randomized controlled experiment, where the assignment is

random and, therefore, does not depend on neither observed nor unobserved features of the cases.

Unfortunately, such an experiment is not always possible (e.g. for ethical or �nancial reasons) or

only historical data may be available where, for example, the treatment was applied to patients

which the doctor considered most suitable.

If treatment assignment was not random and biased then the e�ect of the action cannot,

usually, be estimated directly. Consider, for example, a medical treatment with potentially severe

side e�ects. The doctor might then decide not to apply it to patients in serious condition who

will thus be placed in the control group. However, such cases are also less likely to recover from

the disease making the control group outcomes look worse and the treatment more e�ective than

it is in reality.

In this chapter we present Uplift Support Vector Machines originally proposed in Chapter 3

with an additional penalty term, which we call the Székely regularizer. As a result, we obtain

uplift models which are additionally forced to make similar predictions in the treatment and

control groups, thus helping to reduce the e�ect of treatment assignment bias.

The additional regularizer is based on so called energy distance between probability distribu-

tions which was proposed by Székely and Rizzo [22, 44, 45]. The distance has the property that
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it is zero (in the population setting) if and only if the distributions are identical, it can thus be

used to enforce similar distributions of model scores in the treatment and control groups.

5.2 Székely regularized Support Vector Machines

One way to view an uplift model is as a function which maps feature vectors into the set {−1, 0,+1}
as we did in Chapter 3. The value is interpreted as a decision on whether the action applied to a

given case will be bene�cial, neutral, or detrimental. Another approach is for the model to return

a score: a real number being an increasing function of the predicted probability that the action

will be bene�cial. In this chapter we are going to de�ne our regularized Uplift Support Vector

Machines using the discrete prediction model but for testing and regularization purposes we will

use the linear score 〈w,x〉.

5.2.1 Distributions of scores in controlled randomized experiments

Let us now state an important property of score based uplift models used in controlled randomized

experiments. Let Ms be an uplift model returning a score and Ms(x) the score returned by the

model for a speci�c instance x. When the feature vector x is picked at random from the population

distribution, thenMs(x) is a random variable. Suppose xT is picked at random from the treatment

population and xC from the control population. In a randomized controlled trial xT and xC follow

the same distribution and thereforeMs(x
T ) and Ms(x

C) are random variables following the same

distribution. If the treatment assignment is not random, the distributions of xT and xC di�er

and so may those of Ms(x
T ) and Ms(x

C).

In this chapter we will use this property to obtain models which are less sensitive to treatment

assignment bias. This will be achieved by adding a regularization term penalizing models which

yield di�erent score distributions in the treatment and control training sets.

5.2.2 The energy distance

In this chapter we make use the concept of energy distance (also called E-statistics) e(α) proposed

in 2005 by Székely and Rizzo [22, 44, 45, 46]. Initially this concept was introduced as a measure

of distance between clusters, but it is in fact a general statistical distance between two or more

probability distributions or samples. The name comes from the fact that it was �rst derived for

applications in physics; later Székely applied this concept to statistics.
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Let A = {a1,a2, . . .an1}, B = {b1,b2, . . .bn2} be two nonempty sets of points in Rd. For-

mally, e(α)(A,B) is de�ned as

e(α)(A,B) =
n1n2
n1 + n2

[
2

n1n2

n1∑
i=1

n2∑
j=1

‖ai − bj‖α

− 1

n21

n1∑
i=1

n1∑
j=1

‖ai − aj‖α −
1

n22

n2∑
i=1

n2∑
j=1

‖bi − bj‖α
]
, (5.2.1)

where ‖ · ‖ is the Euclidean norm and α is parameter that in�uences the behavior of the distance.

If α = 2 then the distance is equal to zero if and only if the means of A and B are equal. The

case α ∈ (0, 2) is more interesting, since the distance is then equal to zero if and only if the sets

A and B are equal. Moreover, if A and B are random samples and α ∈ (0, 2), then, as the size

of A and B grows to in�nity, the distance between them tends to zero if and only if A and B are

drawn from the same distribution (for α = 2 the distributions from which they are drawn only

need to have equal means). This property is important for the task the distance will be used for

in this dissertation. Notice also that for d = 1 the Euclidean norms reduce to absolute values.

5.2.3 Model formulation

We modify the risk function of Uplift Support Vector Machines by adding an extra term respon-

sible for penalizing the di�erence in score distributions in the treatment and control groups. We

call this term the Székely regularization term. The version presented here has another, minor,

di�erence compared to that given in Section 3.1: the soft margin penalties are averaged separately

over the treatment and control groups. As a result both groups have the same impact on the

optimized risk. The optimization problem is to �nd weights w maximizing the function R(w)

de�ned as

R(w) =
1

2
〈w,w〉+

C1

nT

∑
DT

+

ξi,1 +
C2

nT

∑
DT
−

ξi,1 +
C2

nT

∑
DT

+

ξi,2 +
C1

nT

∑
DT
−

ξi,2

+
C1

nC

∑
DC
−

ξi,1 +
C2

nC

∑
DC

+

ξi,1 +
C2

nC

∑
DC
−

ξi,2 +
C1

nC

∑
DC

+

ξi,2

+ C3S(DT ,DC ,w). (5.2.2)
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The risk is optimized subject to the same constraints as in the USVM optimization problem,

which are given in Equations 3.1.4−3.1.7. Above, S(DT ,DC ,w) is the Székely regularizer given

by

S(DT ,DC ,w) =
2

nTnC

nT∑
i=1

nC∑
j=1

|〈w,xTi 〉 − 〈w,xCj 〉|α

− 1

(nT )2

nT∑
i=1

nT∑
j=1

|〈w,xTi 〉 − 〈w,xTj 〉|α

− 1

(nC)2

nC∑
i=1

nC∑
j=1

|〈w,xCi 〉 − 〈w,xCj 〉|α. (5.2.3)

Note that 〈w,xi〉 is the score assigned by the model to a data record xi, and (5.2.3) is thus

the energy distance (5.2.1) applied to the sets of scores assigned by the model to records in the

treatment and control groups. Due to the properties of the energy distance the term will penalize

models for which distributions of scores in both groups di�er. The factor C3 determines the

strength of the penalty. The fraction nTnC

nT+nC from (5.2.1) is absorbed into C3 for the ease of

exposition.

Let us now discuss the choice of the exponent α. Since we want to guarantee equal score

distributions we need α ∈ (0, 2) [45]. However for α < 1 the function S exhibits strong non-

convexity and is thus more di�cult to optimize. We should, therefore, choose α from the interval

[1, 2). We found values close to 1 to work better in practice but for α = 1 the function S is not

di�erentiable. We thus settled for α = 1.1 which gives good properties and a smoother function

to optimize. Note, however that S may not be convex even for α ∈ [1, 2).

5.2.4 Properties of Székely regularized Uplift Support Vector Machines

All three lemmas presented in Section 3.3 are still valid in case of Székely regularized USVMs,

only small modi�cations to the proofs were needed. The key observation is that intercepts b1, b2

are independent from the Székely regularizer term S(DT ,DC ,w).

Lemma 5.2.1. Let w∗, b∗1, b
∗
2 be a solution to the Uplift SVM optimization problem given by

Equations 5.2.2 and constraints 3.1.4−3.1.8. If C2 > C1 then b∗1 ≥ b∗2.

Proof. Let S∗ = 〈w∗, b∗1, b∗2〉 be an optimal solution with b∗1 < b∗2. Consider also a set of parameters

S′ = 〈w∗, b∗2, b∗1〉 with the values of b∗1, b
∗
2 interchanged and look at the target function (5.2.2) for

both sets of parameters.
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Take a point (xi, yi) ∈ DT
+ for which, under the set of parameters S′, ξ′i,1 > 0 and ξ′i,2 = 0, that

is the point is penalized only for crossing the hyperplane H1. Under the parameters S∗ the point

will be penalized not with C1

nT ξ
′
i,1 for crossing H1 but, instead, with

C2

nT ξ
∗
i,2 for crossing H2. Since,

by switching from S∗ to S′ the hyperplanes simply exchange intercepts, we have ξ∗i,1 = ξ′i,2 and,

from the assumption, C2

nT ξ
∗
i,1 >

C1

nT ξ
′
i,2. Thus the amount every point (xi, yi) ∈ DT

+ contributes to

the target function (5.2.2) is lower in S′ than in S∗.

By a similar argument (see proof of Lemma 3.3.1) one can see that for a point (xi, yi) ∈ DT
+

for which, under S′, ξ′i,1, ξ
′
i,2 > 0 (i.e. it is penalized for crossing both hyperplanes) a switch to

parameter set S∗ increases the target function by (ξ∗i,1 − ξ∗i,2)(
C1−C2

nT ) > 0.

Analogous arguments hold for points in DT
−, D

C
+, and DC

− contradicting the optimality of

S∗.

Lemma 5.2.2. For su�ciently large value of C2
C1

none of the observations is penalized with a term

involving the C2 factor in the solution to the Székely regularized USVM optimization problem.

Proof. Let us �rst consider only the hyperplane H1. Assume that there exists at least one point

in DT
− which is punished with a term involving the C2 penalty coe�cient, and therefore lies on

the wrong side of H1. Out of all such points choose the one (x̃i, ỹi) which is furthest from H1

and denote by ξ̃i,1, ξ̃i,2 its slack variables w.r.t. H1 and H2 respectively. The penalty incurred by

(x̃i, ỹi) equals
C2

nT
ξ̃i,1 +

C1

nT
ξ̃i,2.

Let us now shift the hyperplane H1 by exactly ξ̃i,1; as a result, the point is only penalized by
C1

nT ξ̃i,2. The same is true for all other points from DT
−. On the other hand, after shifting H1,

penalties w.r.t. H1 of points in DT
+ ∪DC

− could have increased, but the increase is bounded by
C1

min {nT ,nC} ξ̃i,1 per point.

Denote n1 = |DT
− ∪DC

+|, n2 = |DT
+ ∪DC

−|. The change in penalties caused by shifting H1 is

bounded from above by

C1

nT
ξ̃i,2 −

(
C2

nT
ξ̃i,1 +

C1

nT
ξ̃i,2

)
+

n2C1

min {nT , nC}
ξ̃i,1 = ξ̃i,1

(
n2C1

min {nT , nC}
− C2

nT

)
,

which is negative for su�ciently large value of C2, such that shifting H1 is guaranteed to decrease

the target function. Analogous results hold for points in DC
+, DC

−, and DT
+ completing the

proof.

54



Lemma 5.2.3. If C1 = C2 = C and the solution is unique then both hyperplanes coincide:

b1 = b2.

The proof is the same as that of Lemma 3.3.3 since the Székely regularizer does not depend

on b1 and b2.

5.3 Optimization

We now describe the method used to optimize (5.2.2) subject to the constraints given in Equa-

tions 3.1.4−3.1.7. As a �rst step we rewrite the problem as an unconstrained optimization problem

using the hinge loss:

R(w) =
1

2
〈w,w〉

+
C1

nT

∑
DT

+

h(yTi (〈w,xTi 〉 − b1)) +
C2

nT

∑
DT

+

h(yTi (〈w,xTi 〉 − b2))

+
C2

nT

∑
DT
−

h(yTi (〈w,xTi 〉 − b1)) +
C1

nT

∑
DT
−

h(yTi (〈w,xTi 〉 − b2))

+
C2

nC

∑
DC

+

h(−yCi (〈w,xCi 〉 − b1)) +
C1

nC

∑
DC

+

h(−yCi (〈w,xCi 〉 − b2))

+
C1

nC

∑
DC
−

h(−yCi (〈w,xCi 〉 − b1)) +
C2

nC

∑
DC
−

h(−yCi (〈w,xCi 〉 − b2))

+ C3S(DT ,DC ,w), (5.3.1)

where h is the hinge loss function given by

h(q) = max{0, 1− q}.

To see why such a rewrite is possible �x the vector w. The target function then depends only on

ξi,j and, due to constraints, attains a minimum value for ξi,j = h(yTi (〈w,xTi 〉 − bj)) for points in
DT and ξi,j = h(−yCi (〈w,xCi 〉− bj)) for points in DC . A similar argument for classical SVMs can

be found in [9].

We are going to use the Averaged Stochastic Gradient Descent algorithm [29] in order to

optimize (5.2.2). The reason is that the algorithm is fast, stable and works well with non-smooth

functions. Note that in our optimization problem the derivatives of the target function are not

guaranteed to exist so methods such as conjugate gradient descent are not applicable.
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In order to optimize the expression given in (5.3.1) we �rst need to compute its subgradient

(since R(w) is not everywhere di�erentiable there are values of w for which the gradient does not

exist). Note that the subgradient of the hinge loss h(q) is

∂h(q)

∂q
=


−1 if q < 1,

any value in [−1, 0] if q = 1,

0 if q > 1.

Since for q = 1 any value in [−1, 0] can be picked we will simply set

∂h(q)

∂q
= −1[1−q>0]. (5.3.2)

We can now give the expression for the subgradient of the minimized risk given in (5.3.1)

∂R(w)

∂w
= w − C1

nT

∑
DT

+

1[1−yTi (〈w,xT
i 〉−b1)>0]x

T
i y

T
i −

C2

nT

∑
DT

+

1[1−yTi (〈w,xT
i 〉−b2)>0]x

T
i y

T
i

− C2

nT

∑
DT
−

1[1−yTi (〈w,xT
i 〉−b1)>0]x

T
i y

T
i −

C1

nT

∑
DT
−

1[1−yTi (〈w,xT
i 〉−b2)>0]x

T
i y

T
i

+
C2

nC

∑
DC

+

1[1+yCi (〈w,xC
i 〉−b1)>0]x

C
i y

C
i +

C1

nC

∑
DC

+

1[1+yCi (〈w,xC
i 〉−b2)>0]x

C
i y

C
i

+
C1

nC

∑
DC
−

1[1+yCi (〈w,xC
i 〉−b1)>0]x

C
i y

C
i +

C2

nC

∑
DC
−

1[1+yCi (〈w,xC
i 〉−b2)>0]x

C
i y

C
i

+ C3
∂S(DT ,DC ,w)

∂w
. (5.3.3)
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Since for α > 1, |x|α is di�erentiable for all x including 0 we have

∂S(DT ,DC ,w)

∂w

=
2

nTnC

nT∑
i=1

nC∑
j=1

α|〈w,xTi − xCj 〉|α−1sgn(〈w,xTi − xCj 〉)(xTi − xCj )

− 1

(nT )2

nT∑
i=1

nT∑
j=1

α|〈w,xTi − xTj 〉|α−1sgn(〈w,xTi − xTj 〉)(xTi − xTj )

− 1

(nC)2

nC∑
i=1

nC∑
j=1

α|〈w,xCi − xCj 〉|α−1sgn(〈w,xCi − xCj 〉)(xCi − xCj ). (5.3.4)

5.3.1 Averaged Stochastic Gradient Descent algorithm for Székely regularized

USMVs

The Stochastic Gradient Descent algorithm typically works by picking random data points, com-

puting the contribution of those points to the gradient and updating current weights with a

decreasing update coe�cient.

Notice however, that each term in the Székely regularizer given in (5.2.3) operates on a pair of

treatment data points and a pair of control data points. In order to apply a stochastic optimization

algorithm to the problem we thus take, at each iteration, four randomly selected records, two from

the treatment training set and two from control. The weight update is then computed based on

four training points instead of one.

The algorithm is given in Figure 5.3.1. The expressions for ∂S(xTi ,x
T
j ,x

C
k , x

C
l , y

T
i , y

T
j , y

C
k ,

yCl ,w)/∂w and ∂l(w,xTi , y
T
i )/∂w used in the algorithm will be given below. Notice that in step 10

we take the average of the weight vectors wt obtained during all steps of the algorithm. This is

the so called Polyak-Ruppert averaging [3, 23, 29] which improves the convergence properties of

the algorithm.

In order to provide the expressions for ∂l/∂w and ∂S/∂w used in the algorithm, as well as to

prove its convergence, we �rst need to compute the contribution of each random sample to the

subgradient of the target risk function (5.3.4). Since we are dealing with pairs of treatment and

control points, each sample will involve four data records: xTi ,x
T
j ,x

C
k ,x

C
l and their corresponding

class values yTi , y
T
j , y

C
k , y

C
l . The subgradient of the risk for the given sample is given by the
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1. w0 = 0

2. For t← 1, 2, . . .

3. Draw two samples (xTi , y
T
i ), (xTj , y

T
j ) uniformly at random from DT

4. Draw two samples (xCk , y
C
k ), (xCl , y

C
l ) uniformly at random from DC

5. g← wt−1 + 1
2
∂l(wt−1,xT

i ,y
T
i )

∂wt−1
+ 1

2

∂l(wt−1,xT
j ,y

T
j )

∂wt−1

6. g← g + 1
2
∂l(wt−1,xC

k ,y
C
k )

∂wt−1
+ 1

2
∂l(wt−1,xC

l ,y
C
l )

∂wt−1

7. g← g + C3
∂S(xT

i ,x
T
j ,x

C
k ,x

C
l ,y

T
i ,y

T
j ,y

C
k ,y

C
l ,wt−1)

∂wt−1

8. γt ← 1√
t

9. wt ← wt−1 − γtg

10. wa ← 1
t

∑t
t′=1wt′

11. If converged:

12. Return wa

Figure 5.3.1: The Averaged Stochastic Gradient Descent algorithm for Székely regularized Uplift
Support Vector Machines.

following equation

∂R(xTi ,x
T
j ,x

C
k ,x

C
l , y

T
i , y

T
j , y

C
k , y

C
l ,w)

∂w
=

w +
1

2

∂l(w,xTi , y
T
i )

∂w
+

1

2

∂l(w,xTj , y
T
j )

∂w

+
1

2

∂l(w,xCk , y
C
k )

∂w
+

1

2

∂l(w,xCl , y
C
l )

∂w

+ C3

∂S(xTi ,x
T
j ,x

C
k ,x

C
l , y

T
i , y

T
j , y

C
k , y

C
l ,w)

∂w
,

(5.3.5)
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where the parts resulting from di�erentiating the hinge loss are

∂l(w,x, y)

∂w
= xy ·



−C11[1−y(〈w,x〉−b1)>0] − C21[1−y(〈w,x〉−b2)>0] if (x, y) ∈ DT
+

−C21[1−y(〈w,x〉−b1)>0] − C11[1−y(〈w,x〉−b2)>0] if (x, y) ∈ DT
−

C11[1+y(〈w,x〉−b1)>0] + C21[1+y(〈w,x〉−b2)>0] if (x, y) ∈ DC
−

C21[1+y(〈w,x〉−b1)>0] + C11[1+y(〈w,x〉−b2)>0] if (x, y) ∈ DC
+

(5.3.6)

and the part for the subgradient of the Székely regularizer is

∂S(xTi ,x
T
j ,x

C
k ,x

C
l , y

T
i , y

T
j , y

C
k , y

C
l ,w)

∂w

=
α

2

[
|〈w,xTi − xCk 〉|α−1sgn(〈w,xTi − xCk 〉)(xTi − xCk )

+ |〈w,xTi − xCl 〉|α−1sgn(〈w,xTi − xCl 〉)(xTi − xCl )

+ |〈w,xTj − xCk 〉|α−1sgn(〈w,xTj − xCk 〉)(xTj − xCk )

+ |〈w,xTj − xCl 〉|α−1sgn(〈w,xTj − xCl 〉)(xTj − xCl )
]

− α|〈w,xTi − xTj 〉|α−1sgn(〈w,xTi − xTj 〉)(xTi − xTj )

− α|〈w,xCk − xCl 〉|α−1sgn(〈w,xCk − xCl 〉)(xCk − xCl ).

A necessary condition for the Stochastic Gradient Descent algorithm to converge is that the

expectation (taken over the randomly sampled vectors) of the subgradient (5.3.5) be equal to

the subgradient computed on the full dataset given in (5.3.3). Since in the algorithm given in

Figure 5.3.1 we are using four randomly sampled data points we need to take the expectation

over all of them.

We will denote the expectation over (xTi , y
T
i ) by ETi [·], analogous notation will be used for

expectations over records in the control group. Notice that, since the records in the stochastic

optimization algorithm are chosen uniformly at random, we have

ETi [f(xTi , y
T
i )] =

1

nT

nT∑
i=1

f(xTi , y
T
i ), ECk [f(xCi , y

C
i )] =

1

nC

nC∑
i=1

f(xCi , y
C
i ). (5.3.7)

Further, denote by E[·] the expectation over all four randomly chosen samples (xTi , y
T
i ), (xTj , y

T
j ),

(xCk , y
C
k ), (xCl , y

C
l ), i.e.

E[·] = ETi E
T
j E

C
k E

C
l [·].

Let us now compute, term by term, the expectation of the subgradient given in (5.3.5). Clearly
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Ew = w. Also, using (5.3.6) and (5.3.7) we get

E
∂l(w,xTi , y

T
i )

∂w
= ETi

∂l(w,xTi , y
T
i )

∂w

=− 1

nT

nT∑
i=1

xTi y
T
i

C11[1−yTi (〈w,xT
i 〉−b1)>0] + C21[1−yTi (〈w,xT

i 〉−b2)>0] if (xTi , y
T
i ) ∈ DT

+

C21[1−yTi (〈w,xT
i 〉−b1)>0] + C11[1−yTi (〈w,xT

i 〉−b2)>0] if (xTi , y
T
i ) ∈ DT

−

=− C1

nT

∑
DT

+

1[1−yTi (〈w,xi〉−b1)>0]x
T
i y

T
i −

C2

nT

∑
DT

+

1[1−yTi (〈w,xi〉−b2)>0]x
T
i y

T
i

− C2

nT

∑
DT
−

1[1−yTi (〈w,xT
i 〉−b1)>0]x

T
i y

T
i −

C1

nT

∑
DT
−

1[1−yTi (〈w,xT
i 〉−b2)>0]x

T
i y

T
i .

We now move to computing the expectation of the subgradient of the Székely regularizer. Note

that

E|〈w,xTi − xCk 〉|α−1sgn(〈w,xTi − xCk 〉)(xTi − xCk )

= ETi E
C
k |〈w,xTi − xCk 〉|α−1sgn(〈w,xTi − xCk 〉)(xTi − xCk )

=
1

nTnC

nT∑
i=1

nC∑
k=1

|〈w,xTi − xCk 〉|α−1sgn(〈w,xTi − xCk 〉)(xTi − xCk ).

By symmetry, the three other pairs of treatment and control points lead to the same expected

value. Similarly

E|〈w,xTi − xTj 〉|α−1sgn(〈w,xTi − xTj 〉)(xTi − xTj )

=
1

(nT )2

nT∑
i=1

nT∑
j=1

|〈w,xTi − xTj 〉|α−1sgn(〈w,xTi − xTj 〉)(xTi − xTj ).
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The expression for the pair of control points is analogous. Finally we get

E
∂S(xTi ,x

T
j ,x

C
k ,x

C
l , y

T
i , y

T
j , y

C
k , y

C
l ,w)

∂w

=2α
1

nTnC

nT∑
i=1

nC∑
k=1

|〈w,xTi − xCk 〉|α−1sgn(〈w,xTi − xCk 〉)(xTi − xCk )

− α 1

(nT )2

nT∑
i=1

nT∑
j=1

|〈w,xTi − xTj 〉|α−1sgn(〈w,xTi − xTj 〉)(xTi − xTj )

− α 1

(nC)2

nC∑
i=1

nC∑
j=1

|〈w,xCi − xCj 〉|α−1sgn(〈w,xCi − xCj 〉)(xCi − xCj ).

Combining the above results we get exactly the subgradient of the risk which is minimized by

Székely regularized Uplift Support Vector Machines given in (5.3.3) and (5.3.4).

Therefore the necessary condition for convergence is satis�ed. For su�ciency, let us �rst

examine the properties of the optimization problem (5.3.1). Notice �rst, that although the term
1
2〈w,w〉 is strongly convex and the remaining terms are convex, the Székely penalty term is not.

Therefore the optimized function need not be convex and we cannot guarantee global convergence.

Suppose that there exists a bound D such that‖wt‖ ≤ D for all iteration steps t and ‖w∗‖ ≤ D,

where w∗ is a (possibly local) optimum to which the algorithm should converge. Note that the risk

function is Lipschitz continuous on any closed region of the parameter space. This is obviously true

for the closed ball of radius D centered at origin. By Weierstrass theorem this implies that a local

minimum does exist, possibly on the boundary of the ball. It also follows that the subgradient of

R is bounded throughout the algorithm and the convergence is guaranteed based on results given

in [23, Section 11.0] for γt = Ct−
1
2 . The constant C was chosen to be 1 in our implementation.

Let us now brie�y comment on the existence of the bound D. Without additional assump-

tions we cannot formally guarantee that at every iteration we have ‖wt‖ ≤ D. To obtain such

guarantees, an extra step can be added to Algorithm 5.3.1, which, after each iteration, projects

wt onto a ball of some radius D [23]. In practice we saw no convergence problems and the extra

step was not necessary.

If we make an additional assumption that the Székely penalty S is locally convex around the

minimum we can guarantee fast convergence rates. Since 1
2〈w,w〉 is strongly convex and a sum

a convex and strongly convex function is strongly convex, the risk R(w) given in (5.3.1) becomes

strongly convex. The convergence rate is then O(t−1) for γt = Ct−
1
2 following the results in [3,

Theorem 3]. The constant C was chosen to be 1 in our implementation.
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Note that the step size used guarantees convergence for non-strongly convex functions and

fast convergence for strongly convex ones.
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Chapter 6

Experimental evaluation

In this section we present an experimental evaluation of all the proposed variants of Uplift Support

Vector Machines. We begin by a short general discussion of evaluation of uplift models and the

description of benchmark datasets used in experiments. We follow with an illustrative example

showing the di�erence between L1 and Lp Uplift Support Vector Machines. Later, we present

an experimental comparison with other uplift modeling methods on several benchmark datasets.

Finally we discuss model evaluation for the biased treatment assignment problem and evaluate

Szekely regularized USVMs on such a dataset.

6.1 Evaluation of Uplift models

Evaluation of uplift models is more di�cult than in case of classi�cation. Due to the Fundamental

Problem of Causal Inference (see Section 1.2) the true gain is never known for speci�c data records.

Evaluating correctness of predictions is possible only on groups of records. Luckily some of the

curves used to assess classi�ers can be adapted also to uplift models.

Let us now discuss evaluation of uplift models using so called uplift curves. One of the tools

used for assessing the performance of standard classi�cation models are lift curves (also known as

cumulative gains curves or cumulative accuracy pro�les). For lift curves, the x axis corresponds

to the number of cases targeted and the y axis to the number of successes captured by the model.

In our case both numbers are expressed as percentages of the total population.

The uplift curve is computed by subtracting the lift curve obtained on the control test set from

the lift curve obtained on the treatment test set. Both curves are computed using the same uplift

model. Recall that the number of successes on the y axis is expressed as a percentage of the total

population which guarantees that the curves can be meaningfully subtracted. An uplift curve
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Figure 6.1.1: Uplift curves for the breast-cancer dataset for Uplift SVM, the double SVM
approach, and an SVM uplift model based on class variable transformation (Class-transf-SVM).
The x-axis represents the percentage of the population to which the action has been applied and
the y-axis the net gain from performing the action based on model selection. It can be seen that
targeting about 60% of the population according to models' predictions gives signi�cant gains
over targeting nobody or the whole population. The proposed Uplift SVM model achieves the
best performance over the whole range of the plot.

can be interpreted as follows: on the x axis we select the percentage of the population on which

an action is to be performed and on the y axis we read the di�erence between the success rates

in the treatment and control groups. A point at x = 100% gives the gain in success probability

we would obtain if the action was performed on the whole population. The diagonal corresponds

random selection. The Area Under the Uplift Curve (AUUC) can be used as a single number

summarizing model performance. We subtract the area under the diagonal line from this value in

order to obtain more meaningful numbers. More details on evaluating uplift models and on uplift

curves can be found in [31, 38].

Let us now present an example providing the intuition behind uplift curves. Figure 6.1.1 shows

uplift curves for the breast-cancer dataset (see below for a description of how it has been used

for uplift modeling) for three of the uplift models used in our experiments. The curves in the

�gure have been generated by averaging over 128 random train test splits; the same method has

been used for other experiments in this section and is described in detail below. It can be seen

that applying the action only to some proportion of the population leads to signi�cant gains in net
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success rate. For example, applying the action to the whole population results in four percentage

points gain in success rate. If however the action is applied to about 60% of the population based

on the USVM model, a total gain of 9 percentage points is possible. It can also be seen that,

on this dataset, Uplift Support Vector Machines outperformed all remaining models. An uplift

decision tree performed especially poorly compared to all SVM based uplift models.

6.2 Description of the datasets used in experiments

While testing uplift modeling algorithms one encounters the problem of the lack of publicly

available datasets. Even though control groups are ubiquitous in medicine and become common

in marketing, there are very few publicly available datasets which include a control group as

well as a reasonable number of predictive attributes. In this dissertation we will use the few

publicly available datasets we are aware of, as well as some arti�cially generated examples based

on datasets from the UCI repository. We describe the two approaches in turn.

The �rst publicly available dataset, provided on Kevin Hillstrom's MineThatData blog, con-

tains results of an e-mail campaign for an Internet based retailer [14]. The dataset contains

information about 64 000 customers with basic marketing information such as the amount of

money spent in the previous year or when the last purchase was made. The customers have

been randomly split into three groups: the �rst received an e-mail campaign advertising men's

merchandise, the second, a campaign advertising women's merchandise, and the third was kept

as control. Data is available on whether a person visited the website and/or made a purchase

(conversion). We only focus on visits since very few conversions actually occurred. In this chapter

we use the dataset in two ways: combining both e-mailed groups into a single treatment group

(Hillstrom-visit) and using only the group who received advertisement for women's merchan-

dise and the control group (Hillstrom-visit-w). Women's merchandise group was selected since

the campaign selling the men's merchandise was ine�ective, with very few visits.

Additionally, we found two suitable publicly available clinical trial datasets which accompany

a book on survival analysis [28]. The �rst dataset is the Bone Marrow Transplant (BMT) data which

covers patients who received two types of bone marrow transplant: taken from the pelvic bone

(which we used as the control group since this is the procedure commonly used at the time the

data was created) or from the peripheral blood (a novel approach, used as the treatment group

in our experiments). The peripheral blood transplant is generally the preferred treatment, so

minimizing its side e�ects is highly desirable. There are only three randomization time variables

available: the type and extent of the disease, as well as patients age. There are two target variables
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representing the occurrence of the chronic (cgvh) and acute (agvh) graft versus host disease.

Note that even though the BMT dataset does not, strictly speaking, include a control group,

uplift modeling can still be applied. The role of the control group is played by one of the treat-

ments, and the method allows for selection of patients to whom an alternative treatment should

be applied.

The second clinical trial dataset we analyze (tamoxifen) comes from the study of treatment

of breast cancer with a drug tamoxifen. The control group received tamoxifen alone and the

treatment group tamoxifen combined with radio therapy. We attempt to model the variable stat

describing whether the patient was alive at the time of the last follow-up. The dataset contains

six variables. Since the data contains information typical for survival analysis we used the method

from [18] to convert it to a standard uplift problem. The method simply ignores censoring and

treats all observed survival times greater than some threshold (median in our case) as successes.

In [18] it is shown that such a method preserves correctness of decisions made by the model.

We have also used clinical trial datasets available in the survival and kmsurv packages of

the R statistical system. Since all those datasets involve survival data, the method from [18]

was used in all cases with median observed survival time used as the threshold. The kmsurv

package includes two datasets: burn and hodg. Their description is available in the package

documentation and is omitted here. The survival package contains four suitable datasets: pbc,

bladder, colon and veteran. The datasets are described in the package documentation. The

colon dataset involves two possible treatments (levamisole and levamisole combined with 5FU:

Fluorouracil), and a control group, as well as two possible targets: patient death and tumor

recurrence. Since the analyzed setting assumes a single treatment and a single target variable

we formed six di�erent datasets, three for each target variable (indicated by the su�x `death'

and `recur'). The colon-death and colon-recur datasets combine the two treatments into

a single treatment group. The datasets colon-lev-death and colon-lev-recur use only the

group treated with levamisole alone and the control cases. Finally colon-lev5fu-death and

colon-lev5fu-recur compare the combined therapy (levamisole with 5FU) with control cases.

As can be seen, there are very few real uplift datasets available, moreover, they all have a

limited number of attributes (up to 10) and/or data. In [38] an approach has been proposed

to split standard UCI datasets into treatment and control groups suitable for uplift modeling.

The conversion is performed by �rst picking one of the data attributes which either has a causal

meaning or splits the data evenly into two groups. Table 6.2.1 shows the UCI datasets used as

well as the condition used to select the treatment group.

As a postprocessing step, attributes strongly correlated with the split are removed (ideally, the
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dataset treatment #removed/total
selection condition attributes

acute in�am. a3 = `YES' 2/6
australian a1 = `1' 2/14
breast-cancer menopause = `PREMENO' 2/9
credit-a a7 6= `V' 3/15
dermatology exocytosis ≤ 1 16/34
diabetes insu > 79.8 2/8
heart-c sex = `MALE' 2/13
hepatitis steroid = `YES' 1/19
hypothyroid on_thyroxine = `T' 2/29
labor education-allowance = `YES' 4/16
liver-disorders drinks < 2 2/6
nursery children ∈ {`3', `MORE'} 1/8
primary-tumor sex =`MALE' 2/17
splice attribute1 ∈ {`A', `G'} 2/61
winequal-red sulfur dioxide < 46.47 2/11
winequal-white sulfur dioxide < 138.36 3/11

Table 6.2.1: Arti�cial datasets used in the experiments. Source: [38]

division into treatment and control groups should be independent from all predictive attributes,

but this is possible only in a controlled experiment). The removal was based on a simple measure

of dependence:

1. Numerical attributes were removed if their means in treatment and control groups di�ered

by more than 25%.

2. A categorical attribute was removed if the probabilities of one of its possible values di�ered

between treatment and control groups by more than 0.25.

The number of removed attributes is also given in Table 6.2.1. Multiclass problems are converted

to binary problems with the majority class considered to be +1 and remaining classes −1.

6.3 An illustration of the di�erence between L1 and Lp Uplift Sup-

port Vector Machines

We now show the di�erence between L1-USVMs and Lp-USVMs on two example datasets from

the UCI repository: breast-cancer and australian. More speci�cally, we show how the choice
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of the parameter C2
C1

a�ects model behavior. Since this section has a mainly illustrative purpose,

all curves are drawn based on the full dataset; more rigorous experiments involving test sets are

given in Section 6.4.

Figures 6.3.1 and 6.3.2 show the number of cases classi�ed as positive, neutral and negative

depending on the quotient C2
C1

for the two datasets. The numbers shown were obtained on the

full dataset and are averages of respective numbers of cases in treatment and control groups. The

parameter C1 was set to 5, but for other values we obtained very similar results. Each �gure

comprises four charts, one for L1-USVMs and three for Lp-USVMs for three possible values of the

parameter p.

It can clearly be seen that for low values of the quotient, the neutral class is empty, but as

the quotient increases, more and more cases are classi�ed as neutral. Finally, almost no cases are

classi�ed as positive or negative. Notice that for p = 1 we have an abrupt jump between all cases

being classi�ed as neutral and all cases being classi�ed as negative. This is an example of the

undesirable behavior analyzed theoretically in Section 3.4.1. The model is practically useless for

prediction since it always predicts the same class for all points (note however that such a model

may still be useful for ranking as will be seen in the next section). As the values of p become

larger the transition becomes smoother. For p = 1.2 the behavior is close to that of L1-USVMs,

and for p = 2 the transition is very smooth and points are assigned to all three classes.

The �gures validate our interpretation presented earlier in Lemmas 3.3.2−3.3.3. The analyst
can use the parameter C2

C1
to control the proportion of neutral predictions, especially for Lp-

USVMs. Note that, overall, more points are classi�ed as positive than as negative. This is due

to the overall bene�cial in�uence of the action.

6.4 Comparison of model performance on benchmark datasets

In this section we compare the performance of the proposed uplift models with other uplift mod-

eling approaches. The performance will be measured in term of Areas Under the Uplift Curves

(AUUCs).

We begin by comparing the performance of L1 Uplift Support Vector Machines (Uplift-SVM)

and �ve other uplift modeling methods on several benchmark datasets. Four of the models are

also based on Support Vector Machine classi�ers. The �rst is the method based on building

two separate SVM models (Double-SVM) on treatment and control groups and subtracting their

predicted probabilities and the second, a single Support Vector Machine adapted to uplift modeling

using the class variable transformation proposed in [20] (Class-transf-SVM). Since both those
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Figure 6.3.1: Number of cases classi�ed as positive, neutral and negative as a function of the
quotient C2

C1
of Lp-USVM penalty coe�cients for the breast-cancer dataset for di�erent values

of p.
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Figure 6.3.2: Number of cases classi�ed as positive, neutral and negative as a function of the
quotient C2

C1
of Lp-USVM penalty coe�cients for the australian dataset for di�erent values of p.
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Uplift Double Class-transf Di�-pred Treatment Uplift
dataset SVM SVM SVM SVM SVM Tree

BMT-agvh −0.024 −0.019 −0.038 −0.019 0.001 −0.016

BMT-cgvh 0.040 0.046 0.021 0.049 0.017 0.023

Hillstrom-visit 0.004 0.005 0.003 0.004 0.003 0.004

Hillstrom-visit-w 0.008 0.008 0.008 0.006 0.004** 0.006

australian −0.002 0.023* −0.005 −0.008 0.013* 0.004

bladder −0.048 −0.030 −0.042 � 0.005 0.004*
breast cancer 0.043 0.035 0.041 0.038 0.002* 0.008*
burn 0.038 0.097* 0.042 0.034 0.007** 0.069

colon-death −0.014 −0.008 −0.017 −0.015 −0.009 0.003

colon-recur 0.003 0.015 0.001 0.008 −0.009 0.003

colon-lev5fu-death 0.008 0.008 0.010 0.005 0.006 0.012

colon-lev5fu-recur 0.006 0.001 −0.015 −0.015 −0.007 0.000

colon-lev-death 0.002 −0.012 −0.022* −0.024* −0.013 −0.001

colon-lev-recur −0.004 −0.009 −0.012 −0.015 −0.010 0.003

credit-a 0.062 0.011** 0.059 0.049 0.004** 0.022*
dermatology 0.080 0.056 0.079 0.076 −0.045** 0.068

diabetes −0.002 0.005 −0.003 −0.010 0.010 0.016

diagnosis 0.151 −0.003** 0.142 0.148 0.018** 0.139

heart-c 0.023 −0.001 0.028 0.016 0.016 0.017

hepatitis 0.015 0.009 0.003 0.025 −0.002 −0.001

hodg 0.050 0.043 0.053 0.074 0.056 0.019

labor −0.016 −0.005 −0.024 −0.013 −0.005 −0.019

liver-disorders 0.001 0.029 0.012 0.021 0.028 0.020

pbc 0.000 −0.006 −0.012 −0.009 −0.016 −0.010

primary-tumor 0.041 0.011 0.037 0.039 0.022 0.010*
veteran 0.057 0.034 0.060 0.061 −0.007* 0.038

winequality-red 0.019 0.014 0.020 0.021 0.013 0.034*
winequality-white 0.020 0.021 0.019 0.023 0.004** 0.040**

USVM Win/total 14/28 19/28 16/28 20/28 15/28

Table 6.4.1: Areas under the Uplift Curve for six uplift models on real and arti�cial datasets. `*'
indicates di�erence larger than one standard deviation; `**' larger than two standard deviations
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methods require probabilities to be predicted, the SVMs have been calibrated by training logistic

regression models on the scores (i.e. 〈w,x〉) they return. The di�erential prediction SVMs [24]

are included under the name (Diff-pred-SVM). The next method included in the comparison,

Treatment-SVM, is the standard classi�cation approach, i.e. a Support Vector Machine built only

on the treatment group, ignoring the control cases. Finally, to compare with a di�erent type of

model we include results for uplift decision trees described in [38, 39]. Splitting criterion based

on the Euclidean distance was used.

The parameters of all SVM based models have been chosen using 5-fold cross-validation by

maximizing the Area Under the Uplift Curve (AUUC). The parameter C for classical SVMs was

chosen from the set {10−2, 10−1, . . . , 105}. For L1 Uplift Support Vector Machines the parameter

C1 was selected from the set {10−2, 10−1, . . . , 103} and the parameter ratio C2
C1

from ten points

evenly spaced on the interval [1, 2.5]. For each grid point 5-fold cross-validation was used to

measure model performance and to pick the best parameter combination.

Table 6.4.1 compares Areas Under the Uplift Curve for Uplift SVMs against the �ve other

modeling approaches. The areas are given in terms of percentages of the total population (used

also on the y-axis). Testing was performed by repeating 128 times a random train/test split

with 80% of data used for training (and cross-validation based parameter tuning). The remaining

20% were used for testing. Large number of repetitions reduces the in�uence of randomness in

model learning and testing, making the experiments repeatable. The last row of the table lists

the number of times Uplift-SVM was better than each respective method. We were not able to

run the di�erential prediction SVM on the bladder dataset which is indicated with a dash in the

table.

We have used the 128 samples to estimate the standard deviation of the AUUCs and indicated

di�erences larger than one (respectively two) standard deviations by a `*' (respectively `**').

Let us �rst compare the performance of our method with traditional classi�cation which

ignores the control group. It can be seen that the method wins in 20 out of 28 cases, sometimes

by a wide margin (e.g. the diagnosis dataset). The results are often statistically signi�cant. One

can thus conclude that the use of a control group in the modeling process has the potential to

bring signi�cant gains when working with data from randomized experiments.

We now compare with other uplift modeling methods. Uplift SVM outperforms the method

based on class variable transformation proposed in [20] on 19 out of 28 datasets. It's performance

is on par with the method based on double SVMs, which it outperforms on half of the datasets.

Notice also, that the class variable transformation based method performs similarly (although

usually worse) to USVMs, but the double SVM method tends to perform poorly when USVMs
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give good results and vice-versa. The methods thus appear complementary to each other. The

di�erential prediction SVM [24] also performs comparably with USVMs.

Unlike in the case of comparison with traditional classi�cation the di�erences in AUUCs are

usually not statistically signi�cant. This is most probably due to natural di�culties in predicting

uplift where variances are typically much higher than in classi�cation [31].

We believe that the experimental results clearly demonstrate that USVMs are a useful addition

to the uplift modeling toolbox. Overall, our method performs comparably to or better than current

state-of-the-art uplift modeling methods. We also believe, that other advantages of the proposed

Uplift SVMs are equally important. For example, it allows for natural prediction of cases with

positive, negative and neutral outcomes (as shown in Section 6.3) which is very useful in practice.

The negative group is especially important from the point of view of practical applications. Being

able to detect this group and refraining from targeting it was crucial for many successful marketing

campaigns. Additionally, through the choice of the parameter C2
C1

the analyst is able to decide

how conservative should the model be when selecting those groups.

We now move to experimental analysis of Lp-USVMs. Table 6.4.2 shows AUUCs for Lp-

USVMs with p = 1.2, 1.5, 2.0. The experimental procedure has been identical to L1-USVMs,

except that the parameter ratio C2
C1

was selected from the range [1, 5]. For comparison, the uplift

models based on class variable transformations and Lp-SVM classi�ers [1] are also included.

It can be seen that Lp-USVMs generally perform comparably to the class variable trans-

formation based methods. Moreover, comparing with Table 6.4.1 we can see that Lp-USVMs

performance is generally similar to L1-USVMs, especially for values of p closer to 1. At the

same time, they guarantee that the analyst is able to reliably control the percentage of neutral

predictions (according to Lemmas 3.3.1−3.3.3).

6.5 Experimental evaluation of Székely regularized USMVs

In this section we present experimental evaluation of Székely regularized Uplift Support Vector

Machines. We begin by describing the dataset used for testing, then discuss the methodology we

used for testing uplift models in the presence of biased treatment assignment and �nally present

actual experimental results.

6.5.1 The Right Heart Catheterization dataset

The right heart catheterization dataset [21] contains data about 5735 patients admitted to hospi-

tals in serious condition. 2184 of them were subjected to the right heart catheterization procedure
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p = 2 p = 1.5 p = 1.2 p = 1.0
Uplift Class-tr. Uplift Class-tr. Uplift Class-tr. Uplift Class-tr.

dataset SVM SVM SVM SVM SVM SVM SVM SVM

BMT-agvh −0.026 −0.025 −0.026 −0.022 −0.027 −0.021 −0.024 −0.038
BMT-cgvh 0.037 0.040 0.036 0.042 0.037 0.040 0.040 0.021
Hillstrom-visit 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003
Hillstrom-visit-w 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008
australian −0.007 −0.007 −0.007 −0.008 −0.008 −0.008 −0.002 −0.005
bladder −0.047 −0.046 −0.048 −0.047 −0.047 −0.046 −0.048 −0.042
breast cancer 0.039 0.038 0.038 0.037 0.039 0.038 0.043 0.041
burn 0.028 0.026 0.030 0.022 0.028 0.025 0.038 0.042
colon-death −0.015 −0.015 −0.015 −0.016 −0.016 −0.017 −0.014 −0.017
colon-recur 0.007 0.007 0.007 0.007 0.007 0.006 0.003 0.001
colon-lev5fu-death 0.006 0.006 0.006 0.010 0.008 0.012 0.008 0.010
colon-lev5fu-recur −0.015 −0.015 −0.015 −0.013 −0.014 −0.012 0.006 −0.015
colon-lev-death −0.024* −0.023* −0.024* −0.021* −0.024* −0.017 0.002 −0.022*
colon-lev-recur −0.015 −0.015 −0.015 −0.015 −0.015 −0.012 −0.004 −0.012
credit-a 0.055 0.054 0.054 0.060 0.059 0.067 0.062 0.059
dermatology 0.079 0.078 0.078 0.078 0.079 0.079 0.080 0.079
diabetes −0.005 −0.005 −0.005 −0.005 −0.005 −0.005 −0.002 −0.003
diagnosis 0.146 0.146 0.146 0.145 0.146 0.146 0.151 0.142
heart-c 0.019 0.020 0.019 0.021 0.019 0.018 0.023 0.028
hepatitis 0.003 0.008 0.001 0.016 0.009 0.018 0.015 0.003
hodg 0.071 0.067 0.072 0.062 0.068 0.064 0.050 0.053
labor −0.006 −0.006 −0.005 −0.007 −0.006 −0.009 −0.016 −0.024
liver-disorders 0.015 0.014 0.015 0.012 0.015 0.009 0.001 0.012
pbc −0.009 −0.008 −0.009 −0.004 −0.007 −0.002 0.000 −0.012
primary-tumor 0.039 0.040 0.039 0.041 0.039 0.042 0.041 0.037
veteran 0.055 0.055 0.054 0.054 0.054 0.051 0.057 0.060
winequality-red 0.020 0.020 0.020 0.020 0.020 0.020 0.019 0.020
winequality-white 0.014 0.014 0.014 0.014 0.014 0.015 0.020 0.019

Table 6.4.2: Areas under the Uplift Curve for Lp Uplift Support Vector Machines
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(RHC) and constitute the treatment group; the remaining 3551 did not receive the procedure and

are the controls. The data does not come from a randomized study, the application of RHC

was decided based on patients' condition, so the group selection is biased, in fact, it was done

retrospectively based on historical data. Because of this characteristics, as well as its relatively

large size, the dataset is ideal to test our algorithm.

The class variable was the attribute Death denoting patient death during the �rst 180 days after

hospital admission. Patient survival was considered the positive outcome. To avoid information

leaks we removed other outcome related variables such as date of death or date of last contact.

The predictive attributes describe various characteristics of the patient such as age, sex, edu-

cation, income, medical insurance, the disease the patient su�ers from. Also present are results

of diagnostics performed at admission such as blood pressure, temperature, results of blood tests,

and various scores describing the severity of patient's condition. A full list of predictive variables

is given in Table 6.5.1.

Some of the variables contained missing values. All missing values have been replaced by the

mean of available values of the respective variable. Categorical variables have been converted to

0-1 real valued variables before imputation.

6.5.2 Testing methodology for biased group selection

Testing the performance of the models was, however, more challenging than in case of randomized

controlled trials. As discussed in Section 6.1 testing uplift models is based on an assumption that

groups of treatment and control records with similar scores are indeed similar. Unfortunately,

this is usually not the case for biased treatment selection.

In order to test the model's predictions we thus had to correct the bias in the test sets.

In practice, such corrections are typically achieved using so called propensity scores [36]. A

propensity score is the probability that a given patient, described by a feature vector x, will

be assigned to the treatment group. There are several ways propensity scores can be used to

correct for nonrandom group assignment. In this chapter we are going to use inverse probability

of treatment weighting (IPTW) [35].

The IPTW method assigns to each treatment group record a weight inversely proportional to

the probability that a record with those characteristics is selected for treatment. This way, cases to

which treatment is applied disproportionately often are given lower weights and underrepresented

cases higher weights. The control group records are, analogously, given weights proportional to

the inverse of the probability that a record with a given feature vector is not given the treatment.

Note that for a randomized controlled trial all records within a group receive equal weights.

75



Variable name Variable De�nition

Age Age
Sex Sex
Race Race
Edu Years of education
Income Income
Ninsclas Medical insurance
Cat1 Primary disease category
Cat2 Secondary disease category
Resp Respiratory Diagnosis
Card Cardiovascular Diagnosis
Neuro Neurological Diagnosis
Gastr Gastrointestinal Diagnosis
Renal Renal Diagnosis
Meta Metabolic Diagnosis
Hema Hematologic Diagnosis
Seps Sepsis Diagnosis
Trauma Trauma Diagnosis
Ortho Orthopedic Diagnosis
Adld3p ADL
Das2d3pc DASI ( Duke Activity Status Index)
Dnr1 DNR status on day1
Ca Cancer
Surv2md1 Support model estimate of the prob. of surviving 2 months
Aps1 APACHE score
Scoma1 Glasgow Coma Score
Wtkilo1 Weight
Temp1 Temperature
Meanbp1 Mean blood pressure
Resp1 Respiratory rate
Hrt1 Heart rate
Pafi1 PaO2/FIO2 ratio
Paco21 PaCo2
Ph1 PH
Wblc1 WBC
Hema1 Hematocrit
Sod1 Sodium
Pot1 Potassium
Crea1 Creatinine
Bili1 Bilirubin
Alb1 Albumin
Urin1 Urine output
Cardiohx Severe and Very Severe Cardiovascular Symptoms
Chfhx Congestive Heart Failure
Dementhx Dementia, Stroke or Cerebral Infarct, Parkinson's Disease
Psychhx Psychiatric History, Active Psychosis or Severe Depression
Chrpulhx Pulmonary Disease
Renalhx Chronic Renal Disease, Chronic Hemodialysis or Peritoneal Dialysis
Liverhx Cirrhosis, Hepatic Failure
Gibledhx Upper GI Bleeding
Malighx Cancer related condition
Immunhx Immunological health issues
Transhx Transfer (> 24 Hours) from Another Hospital
Amihx De�nite Myocardial Infarction
Death Death at any time up to 180 Days

Table 6.5.1: Variables in the Right Heart Catheterization dataset. Reproduced based on [21]
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Figure 6.5.1: ROC curve for the propensity score model.

To summarize, our testing procedure works as follows: we build a model with nonrandom

treatment assignment using the Székely penalty term to correct for the bias, then we test the

model on treatment and control test sets on which the bias has been corrected using the inverse

probability of treatment weighting. Since di�erent bias correction procedures are used for model

construction and testing, we believe that it is less likely that the estimated model performance is

a result of an uncorrected treatment assignment bias.

In order to use the IPTW procedure one needs to know the probability of treatment assignment

conditional on patients' characteristics. Unfortunately, this probability is usually unknown and

needs to be estimated. Here, we use a logistic regression model trained on full data before

crossvalidation splits. The ROC curve for the model is shown in Figure 6.5.1 (area under the

ROC curve is 0.686). It can be seen that the model is able to predict reasonably well whether

a given patient will receive the RHC procedure. One can conclude that treatment assignment is

indeed seriously biased.

6.5.3 Experimental results

We will now present the experimental results. Figure 6.5.2 shows uplift curves drawn for several

values of the Székely penalty coe�cient C3. All experiments were performed for C1 = C2 = 1,
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Figure 6.5.2: Uplift curves for Uplift SVM models with di�erent Székely penalty coe�cients.

Table 6.5.2: The in�uence of the Székely penalty coe�cient C3 on the area under the uplift curve
and the di�erences between scores in the treatment and control groups.

C3 penalty coe�cient 0 0.01 0.1 1 10 100
AUUC 0.1505 0.1511 0.1559 0.2030 0.4035 0.0727

di�erence between score means 0.1051 0.1050 0.1036 0.0839 0.0202 0.004
Kolmogorov-Smirnov statistic 0.3436 0.3433 0.3411 0.3026 0.1103 0.0320

only the value of C3 was changed. Ten times ten-fold crossvalidation was used to obtain the

curves. The curves are drawn based on data weighted using inverse probability of treatment

weighting (IPTW) to correct treatment assignment bias. More detailed data on areas under the

uplift curves are given in the second row of Table 6.5.2.

Overall the treatment is not e�ective and the application of the right heart catheterization

procedure seems to decrease patients chances of survival. This is in line with the �ndings presented

in [21].

It can be seen that without the Székely correction (C3 = 0) the curve follows the diagonal line

corresponding to a model assigning treatment at random, except for the 20% of highest scored

cases for which RHC does indeed bring improvement in survival rate over random selection.
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With increasing values of the Székely penalty coe�cient C3, the area under the uplift curve

is steadily increasing, up to C3 = 100 where the performance rapidly drops. This shows that

the application of the Székely penalty does indeed improve model performance under treatment

assignment bias.

The best performance is achieved for C3 = 10, and Figure 6.5.2 shows that this particular

model achieves good performance over a wide range of scores, bringing improvement over random

selection for about 75% of the population. The area under the uplift curve is more than two and

a half times better than for the unregularized model.

The drop in performance for very high value of the regularization parameter is typical for

regularized models in general: too high a penalty leads to the model ignoring the data and

focusing only on the regularization term.

To further examine the e�ect of the Székely penalty on model behavior we examine the distri-

butions of model scores in treatment and control groups. Figure 6.5.3 shows the empirical cumu-

lative distribution functions of model score distributions in the treatment and control groups for

various strength of the Székely regularization term. The charts were obtained on a single repetition

of the ten fold crossvalidation. Additionally, we computed two types of statistics summarizing the

discrepancies: the di�erence between score means in the two groups and the Kolmogorov-Smirnov

statistic, i.e. the maximum di�erence between the empirical cumulative distribution functions of

the two groups. The summary statistics are given in the third and fourth rows of Table 6.5.2 and

are shown graphically in Figure 6.5.4.

It can be seen that for the unregularized model, the distributions of scores in both groups

di�er signi�cantly. The score means di�er by about 0.1, which is a fairly large value since the

scores range roughly from −0.5 to 0.5. The value of the Kolmogorov-Smirnov statistic is almost

0.35.

When the Székely penalty increases, the distributions become closer to each other. For C3 =

0.01 and C3 = 0.1 the decrease is tiny but noticeable and is accompanied by a tiny but noticeable

improvement in the area under the uplift curve. When C3 = 1 the score distributions already

come much closer to each other with the di�erence between means decreasing to about 0.084; at

the same time AUUC increased by about 35% with respect to the unregularized model. A further

tenfold increase of the penalty coe�cient makes the distributions very similar; the di�erence in

means is just 0.02 and the Kolmogorov-Smirnov statistic just 0.11. The AUUC is 2.68 times

higher than for the unregularized model.

A further tenfold increase in the value of C3 makes the score distributions in the treatment

and control groups practically identical, however the regularization is too strong and the model
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Figure 6.5.3: Empirical cumulative distribution functions of scores in the treatment and control
groups for various Székely regularization coe�cient values.

no longer correctly predicts for whom the RHC procedure is bene�cial. In fact its predictions are

not better than random assignments.

Let us now summarize our experimental �ndings. First, it was shown that the unregular-

ized model behaves poorly after treatment assignment bias correction is applied. Moreover, it

produces signi�cantly di�erent scores in the treatment and control groups likely modeling not

the real causal impact of the action but the di�erences in group assignment. As the Székely

penalty term increased, the di�erences between scores the model assigns to treatment and control

records became much smaller, accompanied by large improvements in model performance. One

can thus conclude that using the Székely penalty term does indeed reduce model's susceptibility

to treatment assignment bias, proving the main claim of this chapter.
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Figure 6.5.4: Statistics summarizing the di�erences between score distributions in the treatment
and control groups for various Székely regularization coe�cient values.
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Chapter 7

Conclusions

The goal of this dissertation was to establish whether the popular Support Vector Machine frame-

work can be adapted to work in the uplift modeling context. The answer to this research question

turned out to be positive.

The main contribution of this dissertation is the adaptation of the Support Vector Machines

framework to the uplift modeling problem, including complete reformulation of the optimization

task. The proposed methods have been analyzed theoretically, and have been shown to possess

several interesting properties including the fact that by an appropriate choice of model parameters,

one is able to tune how conservative the model is in declaring a positive or negative impact of an

action.

Experimental veri�cation demonstrated that the proposed Uplift Support Vector Machines

o�er competitive performance to other uplift modeling methods, while possessing some interesting

advantages such as being able to classify points into three distinct classes. A theoretical analysis

has shown that the Uplift SVMs minimize an upper bound on an uplift analog of the zero-one

loss, thus showing that some of the theoretical properties of classical SVMs can be carried over

to the uplift case.

During experiments, it turned out that the original proposed uplift SVMs su�ered from a

problem of abrupt model changes in response to small modi�cations of model parameters. An

adaptation of Lp-SVMs to uplift modeling has thus been proposed which is more stable and

reacts smoothly to changes in penalty parameters. Experiments have demonstrated that ranking

performance of Lp-USVMs is comparable to other models, but they reliably split the data into

three classes.

Moreover, we have also presented a regularization method which corrects the behavior of

uplift models under non-randomized treatment assignment. The approach is based on an energy
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distance proposed by Székely and Rizzo which o�ers a practical way of ensuring the similarity of

model scores in the treatment and control datasets.

Finally, we have presented e�cient optimization algorithms for both L1 and Lp problem for-

mulations and for the version with Székely regularization.
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