
Polynomial Association Rules with Applications to
Logistic Regression

Szymon Jaroszewicz
Szczecin University of Technology National Institute of Telecommunications

Zołnierska 49, 71-210 Szczecin, Poland Szachowa 1, 04-894, Warsaw, Poland

sjaroszewicz@wi.ps.pl

ABSTRACT
A new class of associations (polynomial itemsets and polyno-
mial association rules) is presented which allows for discover-
ing nonlinear relationships between numeric attributes with-
out discretization. For binary attributes, proposed associa-
tions reduce to classic itemsets and association rules. Many
standard association rule mining algorithms can be adapted
to finding polynomial itemsets and association rules. We
applied polynomial associations to add non-linear terms to
logistic regression models. Significant performance improve-
ment was achieved over stepwise methods, traditionally used
in statistics, with comparable accuracy.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Association rules, continuous attributes

1. INTRODUCTION AND RELATED WORK
Association rule mining is a well established data mining

approach [1, 8]. Almost all association rule mining algo-
rithms require binary or categorical attributes. The stan-
dard approach to continuous attributes is discretization [11].
This approach can lead to significant information loss and
incurs problems such as choosing correct interval widths.

We present polynomial itemsets and polynomial associ-
ation rules which allow for discovering complex nonlinear
relationships between attributes without the need for dis-
cretization. An itemset is defined simply as a polynomial
(more strictly a monomial) on a set of the attributes, and
its support, as a fraction of records in which all its attributes
(in their respective powers) are close to their maximum.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

An application to nonlinear logistic regression is presented.
Despite many new classification algorithms available, logis-
tic regression is still the major classification workhorse in
natural and social sciences. While nonlinear regression mod-
els are possible, methods for building them are very ineffi-
cient on large datasets. This part of the paper is based
on [10], where a similar approach has been presented in the
context of subgroup discovery. The method is motivated by
boosting [5, 7], where weights are chosen for examples in
such a way that the currently built classifier loses all its pre-
dictive power. New terms are then found in the reweighted
dataset, making it likely that they will explain part of class
variability not explained before.

As itemsets are simply monomials, they are identical to
nonlinear terms used in regression models [2], and are thus
naturally suited to finding terms for logistic regression. An
algorithm is presented for updating logistic regression mod-
els using polynomial associations, which achieves accuracy
comparable to standard stepwise methods, with dramati-
cally better performance on large data.

There has been little work on association rules for con-
tinuous attributes, not requiring discretization. A notable
exception is [12] where a general framework for defining sup-
port measures has been presented, and a measure of sup-
port for continuous attributes, not requiring discretization,
defined within this framework. Our approach differs by al-
lowing different powers of attributes significantly extending
the range of nonlinear relationships which can be discov-
ered. Also, the author believes that the measure of support
introduced in this paper has a more intuitive interpretation.

Nonlinear relationships have been used in the context of
equation discovery [15, 4], and classification (Support Vec-
tor Machines, spline regression). Those methods are not
directly applicable to association pattern mining.

A method for using association rules to guide adding terms
to logistic regression models has been presented in [6]. There
has been some amount of work on using association rules to
construct or update classification models, see e.g. [14]. All
those methods are presented for categorical attributes only.

2. DEFINITIONS AND NOTATION
Let D be a dataset. Let H = {x1, . . . , xn} be the header

of D. Let t[x] denote the value of x in a record t ∈ D. We
assume that all attributes x1, . . . , xn are continuous. Non-
continuous attributes, are converted as follows. Binary at-
tributes are replaced with continuous attributes taking val-
ues in {0, 1} in the obvious way. Categorical attributes are
replaced with binary attributes (one for each category).

2.1 Polynomial itemsets

Definition 2.1. A polynomial itemset is an expression
of the form

xα1
i1

xα2
i2

. . . xαr
ir

,

where xij are distinct attributes (elements of H), and αj ∈
{1, 2, . . . } for all j ∈ {1, . . . , r}.

The degree of an itemset I = xα1
i1

xα2
i2

. . . xαr
ir

is defined as
deg(I) =

Pr
j=1 αj .

We now define support of polynomial itemsets. Intuitively
we want to define the support as the proportion of records
in which all factors x

αj

ij
have simultaneously high (i.e. close

to their respective maximums) absolute values. The reason
is that when the itemset is used for example as a term in
polynomial regression it should significantly influence the
result in a large number of records. A formal definition is
given below.

Definition 2.2. For each xi ∈ H, let ci ∈ R, ci > 0 be a
constant such that ci ·maxt∈D |t[xi]| = 1. The support of a
polynomial itemset xα1

i1
xα2

i2
. . . xαr

ir
in a dataset D is defined

as

suppD(xα1
i1

xα2
i2

. . . xαr
ir

) =

P
t∈D

Qr
j=1 |cij t[xij]|αj

|D| . (1)

The constants ci always exist provided that no attribute is
equal to 0 in all records.

The amount of support, a record t gives to an itemset is
a value in the range [0, 1]. When |t[xij]|αj is close to its
maximum, |cij t[xij]|αj will be close to 1. If this is true for
all attributes in the itemset the record will contribute highly
to the support. When some attributes are close to zero, t
will contribute only marginally.

Let us now look at the properties of polynomial itemsets.
An itemset I1 = xα1

i1
. . . xαr

ir
is a subset of an itemset I2 =

xβ1
j1

. . . xβs
js

, denoted I1 v I2, if for all k = 1, . . . , r, there is
an l ∈ {1, . . . , s} such that ik = jl and αk ≤ βl.

Theorem 2.3. For any two polynomial itemsets I1, I2;
I1 v I2 implies suppD(I2) ≤ suppD(I1).

Theorem 2.4. For binary attributes and an itemset I =
xα1

1 . . . xαr
r , Definition 2.2 of suppD(I) is equivalent to clas-

sical definition of support, regardless of the values of αi.

The first proof follows since the ci factors guarantee the
absolute values of attributes never exceed 1. The second is
obtained by replacing all binary attributes with continuous
attributes taking values in {0, 1}.

Support can be generalized to infinite populations as fol-
lows: supp(xα1

i1
. . . xαr

ir
) = E(

Qr
j=1 |cij t[xij]|αj), where E

is the expected value over all possible vectors t. Suppose
all attributes x1, . . . , xn are independent and uniformly dis-
tributed on [0, 1]. All ci’s in Definition 2.2 are 1 and thus
omitted. Let us now look at properties of support of poly-
nomial itemsets on this population. Notice first that

supp(xα
i) =

Z 1

0

|xi|αdxi =

Z 1

0

xα
i dxi =

1

α + 1
. (2)

This shows that the support of an attribute decreases in-
versely proportionally to its exponent. This is desirable
since it favors polynomials with low degrees.

Take now an itemset x1
i1 . . . x1

ir
. Since all variables are

independent and uniformly distributed on [0, 1], we have

supp(x1
i1 · · ·x

1
ir

) =

rY
j=1

Z 1

0

|xij |dxij =
1

2r
. (3)

It can be concluded that for independent, uniformly dis-
tributed attributes the support of polynomial itemsets with
all exponents 1 behaves exactly like the support of indepen-
dent binary attributes, each with support 1

2
. This provides

further justification for the presented support measure.
Let x1 and x2 be two attributes such that c1 = c2 = 1, it

can be shown that supp(x1
1x

1
2) ≥ |cov(x1, x2)+x1x2|, where

x denotes the sample mean of attribute x. The inequality
becomes most useful when x1 = x2 = 0, stating that a 2-
itemset with low support necessarily has low covariance.

Outliers. Requiring that every attribute be scaled so that
the maximum of its absolute value is 1 may seem very harsh;
even a single outlier with a very high absolute value may
cause the support of an itemset to be close to zero.

The positive side of this property is that itemsets con-
taining attributes with outliers are naturally eliminated. If
this is not desirable, outlier removal can be applied prior to
polynomial itemset mining.

2.2 Polynomial association rules
For two polynomial itemsets I = xα1

i1
. . . xαr

ir
and J =

xβ1
j1

. . . xβs
js

over disjoint sets of attributes, their union, IJ is

defined as a polynomial itemset IJ = xα1
i1

. . . xαr
ir

xβ1
j1

. . . xβs
js

.

Definition 2.5. A polynomial association rule is a pair
I → J , of polynomial itemsets I, J with disjoint sets of at-

tributes. Define its confidence as confD(I → J) = suppD(IJ)

suppD(I)
.

Intuitively we want the absolute value of J to be high in
those records where the absolute value of I high. The above
definition loosely corresponds to the proportion of records
with high value of I where the value of J is also high. For
binary attributes the definition becomes classical confidence.

3. IMPLEMENTATION
Due to Theorem 2.3 many Apriori style frequent item-

set mining algorithms can be applied to mining polynomial
itemsets after only minimal changes.

Figure 1 shows the adaptation of the Apriori algorithm [1].
Itemsets are generated in the order of increasing degree, sup-
port counting in step 2 is done by a simple database scan.

Candidate generation is done in steps 5 to 8. Note step 6,
which increases the exponent of the last attribute in the
itemset. This corresponds to adding to the itemset an at-
tribute which is already present in it, which is the main dif-
ference from standard Apriori candidate generation. Steps 7
and 8 generate more candidates than Apriori for the sake of
simplification, extra candidates are removed in step 11.

3.1 Performance analysis
Unfortunately support does not decrease fast enough with

the increase of degrees of attributes in the itemset (compare
Equations 3 and 2). Maximum degree of itemsets was thus
limited to 5. In practice this limit is not a problem since
polynomials of very high degree are rarely useful.

Input: dataset D with header H, min. support minsupp

Output: all polynomial itemsets with support ≥ minsupp

1: k ← 1; C1 ← {x1
i : xi ∈ H}

2: compute support of all itemsets in Ck

3: Fk ← {I ∈ Ck : suppD(I) ≥ minsupp}
4: Ck+1 ← ∅
5: for all I = xα1

i1
. . . xαr

ir
∈ Fk do

6: add xα1
i1

. . . xαr+1
ir

to Ck+1

7: for all j > ir do
8: add xα1

i1
. . . xαr

ir
x1

j to Ck+1

9: end for
10: end for
11: remove from Ck+1 all itemsets with a subset (v) of de-

gree k not in Fk

12: k ← k + 1; goto 2

Figure 1: The PolyApriori algorithm

Figure 2: Performance of PolyApriori on benchmark
datasets for different values of minsupp

We implemented a depth first version of the algorithm in
Python on a 1.7GHz Pentium4 machine. Figure 2 shows
the performance of the mining algorithm for a number of
datasets. A mixture of small and large datasets was used
(see Table 1). The class attribute was treated like any other
categorical attribute. Times for the spambase and iris

datasets were dominated by startup time and are omitted
for clarity. It can be seen that the algorithm performs well,
even for large datasets, until the minimum support becomes
too low. This is consistent with frequent set mining algo-
rithms for binary data.

Short running time for spambase dataset is explained by
small number of frequent itemsets it generates. This is a
result of very skewed distributions of the items, when effects
of outliers come into play.

4. ILLUSTRATIVE EXAMPLES
We now give some examples of polynomial association

rules found in an artificial dataset and the sonar data from
the UCI repository. The artificial dataset sin consists of
10000 points drawn uniformly at random from the interval
[−1, 1] × [−1, 1]. To each point (x1, x2) we assign a class y
as follows:

y(x1, x2) =


1 if |x2| > |sin(πx1)|,
0 otherwise.

Figure 3a depicts the situation. It can be seen that the re-
lationship between x1, x2 and y is highly nonlinear. Table 2

dataset records classes attributes

sin 10000 2 2
sonar 208 2 61

spambase 4601 2 58
iris 150 3 4

segment 2310 7 10
glass 214 7 10

ionosphere 351 2 35
waveform-5000 5000 3 41

forest-cover 100000* 7 58
*) random sample from the full dataset

Table 1: Parameters of datasets used

rule support confidence
x3

2 → y 0.1556 0.6253
x2

2 → y 0.1906 0.5744
x1

2 → y 0.2478 0.4974
x1

1x
1
2 → y 0.1234 0.4962
∅ → y 0.3595 0.3595

Table 2: Association rules with highest confidence
for the artificial sin dataset.

shows four association rules with the highest confidence for
consequent y, as well as the rule ∅ → y for comparison.
Rules have been mined with minsupp of 10% and maximum
itemset degree of 4 allowed.

It can be seen in Figure 3a that the class y is equal to
1 mostly for values of x2 close to −1 or 1. Similarly, the
polynomial itemset x3

2 has high absolute value for x2 close
to −1 or 1 and value close to 0 otherwise. This explains high
confidence of the rule x3

2 → y. Similar argument holds for
x2

2 → y and x2 → y but since absolute values of x2
2 and x2

are high over a larger area their confidences are lower. The
itemset x1

1x
1
2 has high absolute value close to the ‘corners’ of

the domain. This is also where the class is 1, thus the high
confidence of x1

1x
1
2 → y, see the contour plot in Figure 3b.

The confidence of ∅ → y is much lower than that of the
most confident rules, which shows that they correctly iden-
tify areas where y = 1. The example also shows some limita-
tions of expressiveness of polynomial association rules. No
single rule is able to separate the area of y = 1 near the
x1 = 0 axis from the areas of y = 0 to the left and to the
right. However linear combinations of polynomial associa-
tion rules can be much more expressive; a classifier based
on polynomial itemsets achieves very high accuracy on the
dataset, see Section 6.

Table 3 shows the most confident rules found in the sonar
data to predict class=‘rock’. Several non-linear rules with
high confidence have been discovered. The confidence of
the top rules is significantly higher than that of the rule
∅ →class=‘rock’.

rule support confidence
x2

44 → class=‘rock’ 0.0972 0.7788
x2

27x
1
44 → class=‘rock’ 0.1145 0.7341

x2
27x

1
48 → class=‘rock’ 0.1024 0.7302

x1
26x

1
27x

1
44 → class=‘rock’ 0.1101 0.7281
∅ → class=‘rock’ 0.5337 0.5337

Table 3: Association rules with highest confidence
for the sonar dataset.

a) b) c)

Figure 3: The artificial sin dataset (a), contour plot of a polynomial itemset x1
1x

1
2 (b), and the decision

boundary of the classifier given in Equation 4 (c).

5. APPLICATIONS TO BUILDING
LOGISTIC REGRESSION MODELS

Let us extend the header of D with a binary attribute y
which will be our target attribute. Logistic regression models
the probability of y = 1 in terms of x1, . . . , xn using the
following equation

logit(Pr{y = 1}) = β0 + β1x1 + . . . + βnxn,

where logit(p) = log
“

p
1−p

”
is the logit link function which

maps the predicted probability onto (−∞,∞), such that
it can be predicted by a linear model, see [2, 9] for details.
Coefficients β0, β1, . . . , βn are estimated using the maximum
likelihood method. The model can be used to predict the
value of Pr{y = 1} (by inverting the logit function).

The method is not limited to linear models and continuous
data. Categorical variables can be incorporated by replac-
ing each of them with a number of real zero-one variables.
Nonlinearity is usually handled by including monomials in
x1, . . . , xn as terms in the model. Those monomials are in
fact identical to our polynomial itemsets. See [2] for details.

Most statistical packages include procedures for automatic
selection of such non-linear terms. Most procedures work
in a stepwise fashion [2, 9]. In forward steps the improve-
ment (measured e.g. using AIC score) made to the model by
adding each selected new term is computed. The best term
is selected and added to the model. The backward step
deletes the term whose removal gives the maximum model
improvement. In the forward step not all possible terms are
checked. Usually, new terms are obtained by adding every
possible new variable to terms already in the model.

Since the coefficients of the model need to be recalculated
for each possible term, the procedure can be very inefficient.
Also, only a small fraction of the search space can effectively
be checked, despite very long computation times. Another
problem is that, most implementations do not take into ac-
count for the fact that statistical tests are repeated many
times during the procedure, which may result in overfitting.

Despite those shortcomings, logistic regression is still the
major classification workhorse in natural and social sciences.
This is due to well established statistical procedures for
model verification, availability in major statistical packages,
as well as a long tradition.

5.1 Using Polynomial Itemsets to Build
Logistic Regression Models

We use polynomial association rules to improve logistic
regression models, making it possible to obtain small, simple
models which can be constructed efficiently and nevertheless

Input: minsupp – minimum support, maxdeg – maximum
itemset degree, dataset D with header H = {x1, . . . , xn, y}
Output: Tbest, βi – terms and coefficients of the best model

1: Split D into training set Dt and validation set Dv

2: T ← ∅ . set of terms of the logistic regression model
3: Tbest ← T ; accbest ← −∞
4: Fit the model logit(Pr{y = 1}) = β0 +

P
I∈T βII on the

(unweighted) training set Dt

5: accv ← accuracy of fitted model on (unweighted) Dv

6: if accv > accbest then
7: Tbest ← T ; accbest ← accv

8: end if
9: acct ← accuracy of fitted model on (unweighted) Dt

10: for all t ∈ Dt do

t[w]←


1 if t[y] is correctly predicted,
acct

1−acct
otherwise;

11: end for
12: re-scale the weights of records in Dt to add up to 1
13: F ← frequent polynomial itemsets in Dt (weighted).

Class attribute y is ignored.
14: Pick I∗ = xα1

i1
. . . xαr

ir
with highest weighted linear cor-

relation with y on Dt

15: T ← T ∪ {I∗}
16: goto 4 . see text for the stopping criterion
17: Re-fit the best model on full dataset D

Figure 4: The PolyForward algorithm for building lo-
gistic regression models based on polynomial item-
sets.

provide high classification accuracy. This is achieved with
a standard logistic regression model to which all standard
statistical tools can be applied, and which, as long as the
number of terms is not too large, is human understandable.

Figure 4 shows the PolyForward algorithm for updating
logistic regression models using polynomial itemsets. The
name comes from the fact that the algorithm implements
the forward stage of a stepwise algorithm. In the Figure,
t[w] denotes the weight of record t.

Overall, the algorithm works as follows: at each iteration
the training set is reweighted so that the current model loses
all predictive power [5, 7] on it. Frequent polynomial item-
sets are the mined from reweighted data. The frequent item-
set most correlated with the class y is picked and used as the
new model term. The rationale is that polynomial itemsets
provide a source of nonlinear terms of correlated variables,
each term explaining part of variability of y not explained
by previous terms due to the reweighting in step 12.

To avoid overfitting, the initial dataset D is split into
training (Dt) and validation (Dv) parts. Dt is used to fit lo-
gistic regression models, and Dv for selecting the best model.
We use two thirds for training and one third for validation.

In step 4 current models coefficients are found on un-
weighted training set. The model is tested on validation
set (step 5) and its accuracy compared with current win-
ner. In step 12 the training dataset is reweighted such that
the current model has no predictive power; under the new
weights, its accuracy is exactly 0.5. This is exactly the type
of reweighting which is done in AdaBoost and the reader is
referred to boosting literature for details [5, 7]. If we want
to predict probabilities, not just the class, re-weighting in
step 12 should be replaced with the method from [10].

Steps 13 and 14 are the core part of the algorithm. First
(weighted) frequent polynomial itemsets are found, then the
one with highest weighted sample correlation coefficient with
y is chosen as the next term in the model.

The use of linear correlation is not entirely legitimate as it
does not coincide with maximum likelihood in case of logistic
regression [2]. Ideally we should retrain the model for ev-
ery new candidate term using maximum likelihood and pick
the candidate which gave the biggest improvement. Such a
procedure is used by stepwise regression algorithms in most
statistical packages but is much to slow to apply to all fre-
quent itemsets, so we decided to use linear correlation any-
way and count on the maximum likelihood procedure to as-
sign totally non-predictive terms weights close to zero. The
biggest risk is the performance loss due to adding useless
terms. We hope that the inaccuracy during term selection
will be offset by much larger size of the searchspace.

Terms which did not cause an increase in accuracy are not
removed from the model in hope that combined with terms
added in the future they may become useful.

It has been shown in [7], that boosting algorithms are
in fact building logistic regression models. However after
adding each term, the coefficients remain constant. This
is the main difference from our approach (apart from using
polynomial terms), where all weights are recomputed after
adding each term. We use polynomial itemsets only to select
terms for the model, not to find the coefficients.

There are three stopping criteria (applied after step 7):
achieving perfect accuracy on the training set (non-random
search based on Dt is no longer possible), lack of frequent
itemsets after reweighting, and an arbitrary limit of 30 on
the number of iterations.

6. EXPERIMENTAL EVALUATION
Unless otherwise stated all experiments are performed with

5% minimum support and maximum itemset degree of 4.
Let us first show an illustrative example of a model found

for the artificial sin dataset. The model contains 5 terms
and is given by the equation:

y(x1, x2) =


1 if logit−1(η) > 0.5,
0 otherwise,

(4)

where η = −0.61+23.87x2
2+175.81x4

1−157.83x2
1+87.98x2

1x
2
2−

16.82x4
2. Figure 3c shows contours of the predicted class.

Despite the model’s simplicity, the nonlinear relationship
between x1, x2 and y is modelled very well. Prediction ac-
curacy (5-fold cross-validation) is above 96%, much higher
than for simple logistic regression and comparable to leading
classification algorithms such as boosted decision trees.

dataset PolyForw. logistic stepwise AdaBoost
96.00 64.05 95.96 98.14

sin 7.4/22.6 2.0/2.0 4.0/6.4 2392/1201
29.89 2.56 25.16 21.81
77.44 75.9 78.81† 81.66

sonar 5.4/18.4 60.0/60.0 20.4/24† 177/92
598.02 1.2 377.01† 2.604
91.17* 91.6 —† 94.58

spambase 26.0/28.2* 57.0/57.0 —† 1869/940
59.28* 5.2 > 6 hours† 90.48
96.10 95.0 97.10† 98

segment 77.4/245.4 399/399 63/79† 748/379
153.31 26.80 190.886† 11.372
64.51 61.7 67.74 74.74

glass 35.8/137.8 135/135 65.2/75.8 380/195
33.65 3.42 32.86 0.942
89.18 88.3 87.76 91.46

ionosph. 10.6/38.8 34.0/34.0 18.2/120.4 193/102
109.71 1.14 2100.4 2.56
85.20 86.5 85.78† 81.6

waveform 62/135 120/120 90/135† 3823/1916
291.22 32.78 1920.0† 87.56
80.01 — —† out

forest‡ 256/830 — —† of
8821 > 6 hours > 6 hours† mem.

each cell: accuracy [%]; model size; computation time [s]
*) minsupp lowered to 1% (no itemsets frequent at 5%)
†) max. degree 2 used (performance of stepwise regression)
‡) sample of 50000 used for memory consumption reasons

Table 4: Performance comparison of PolyForward

with other classification algorithms

6.1 Performance Evaluation
In this section we evaluate the performance and accuracy

of the PolyForward algorithm and compare it to boosted
decision trees, a leading classification algorithm. It seems
natural to also compare with Support Vector Machines, esp.
with polynomial kernels. Unfortunately we found SVMs to
require individual tuning of parameters for each dataset, and
using default parameters gave poor results. We thus com-
pared only with boosted decision trees. It should be noted
that both boosted decision trees and SVMs produce huge
models, involving large trees and large numbers of support
vectors (often over half of the training set), while our models
stay simple most of the time and can at least be inspected,
if not understood, by the user.

For boosted decision trees, the AdaBoostM1 algorithm im-
plemented in the Weka [13] package was used. The boosted
classifiers were Quinlan’s J4.8 decision trees. To compare
with standard statistical logistic regression procedures, we
used the stepwise regression implemented in the R pack-
age [9]. For stepwise regression we started from an empty
model, used only forward direction with at most 30 itera-
tions, just like in the case of PolyForward. For multiclass
problems we use all-pairs method [3].

To assess prediction accuracy, 5-fold cross-validation was
used. The same folds were used to test all algorithms. All
reported quantities have been averaged over the five folds.

Results of comparison are shown in Table 4. Characteris-
tics of datasets used were presented in Table 1. The columns
of the table describe the dataset used, and respective perfor-
mance of: the PolyForward algorithm, simple linear logistic
regression model on all variables, nonlinear stepwise model
built using R and boosted J4.8.

Every cell of the table shows the cross-validation accuracy,
model size and computation time. For logistic models, size is

the total number of terms / the sum of degrees of all terms.
For multiclass problems, both this values are summed over
all classifiers produced, so the size can be large, even though
individual classifiers are usually simple and understandable.
For boosted decision trees the total number of nodes and
leaf nodes (summed over all tress) is reported. Large sizes
are rounded to the nearest integer.

All parameters were tuned on sin, sonar and spambase

datasets, other datasets were tested with default parameters
in order to avoid overfitting due to parameter tuning.

Boosted decision trees almost always achieved higher ac-
curacy than logistic regression models, but the price for it is
paid in model size, much larger then for regression models,
comprising several trees, hundreds of nodes each. It is hard
to imagine that the user could use such a classifier to gain
understanding of the data. Note, that boosted decision trees
did not use the pairwise multiclass method, which gives size
disadvantage to logistic regression approach.

It can be seen that the standard stepwise procedure of-
ten gives better results for small datasets. We believe that
this is primarily due to the fact that splitting into training
and validation sets causes our method to lose a lot of pre-
dictive power. We were not able to complete the stepwise
procedure for all large datasets, but for sin, segment and
waveform-5000 the difference was not larger than 1%, sug-
gesting that for large datasets both methods achieve com-
parable accuracy.

For performance reasons the maximum term degree has
often been lowered to 2 for the stepwise method. Apparently
this did not adversely affect the accuracy (except for the sin
dataset) which remained high. Thus, even though it is not
entirely correct, we decided to compare stepwise regression’s
accuracy with accuracy of PolyForward with maximum term
degree 4 in order to better highlight performance differences.

The performance of the PolyForward algorithm was vastly
superior to traditional stepwise approach. This was true
even after lowering the maximum degree to 2 in the step-
wise approach. For spambase and forest-cover we aban-
doned the stepwise method after several hours. For the
forest-cover data, PolyForward was the only algorithm
which completed within a reasonable amount of time. Even
simple logistic regression failed in this case. Even though
PolyForward computes logistic regression models repeatedly,
the models involve few terms. With a large number of terms,
maximum likelihood computation becomes very slow, thus
poor performance of simple logistic regression.

To assess the effects of discretization, we discretized the
x1 and x2 attributes of the sin dataset into 3, 5 and 10
buckets and compared the accuracy of our approach and of
boosted decision trees:

no. of buckets PolyForward AdaBoostM1.J48
3 72.81% 72.81%
5 82.63% 82.63%
10 89.44% 89.79%

undiscretized 96.00% 98.14%

It can be seen that after discretization, accuracy achieved
by both methods decreases significantly in comparison to
the undiscretized case.

7. CONCLUSIONS AND FUTURE WORK
In the paper a new kind of associations: polynomial item-

sets and association rules have been introduced, which allow
for discovery of nonlinear relationships between numerical

attributes without discretization. Polynomial itemsets can
be efficiently discovered using modified association rule min-
ing algorithms. An application to adding nonlinear terms to
logistic regression models was presented, and shown experi-
mentally to offer accuracy comparable to standard methods
and a dramatic performance improvement for large datasets.

There are several alternatives and modifications to the
definition of support for polynomial itemsets which we are
planning to investigate in the future.

8. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In ACM SIGMOD, pages 207–216, 1993.

[2] A. Agresti. An Introduction to Categorical Data
Analysis. John Wiley & Sons, Inc., New York, 1996.

[3] K. Duan and S. Keerthi. Which is the best multiclass
SVM method? An empirical study. In Multiple
Classifier Systems, 6th International Workshop
(MCS’05), pages 278–285, Seaside, CA, 2005.

[4] S. Dzeroski and L. Todorovski. Discovering dynamics.
In ICML, pages 97–103, 1993.

[5] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. In European Conference on Computational
Learning Theory, pages 23–37, 1995.

[6] J. Freyberger, N.T. Heffernan, and C. Ruiz. Using
association rules to guide a search for best fitting
transfer models of student learning. In Workshop on
Analyzing Student-Tutor Interaction Logs to Improve
Educational Outcomes at the 7th Annual Intelligent
Tutoring Systems Conference, Maceio, Brazil, 2004.

[7] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting.
Technical report, Dept. of Statistics, Stanford
University, 1998.

[8] B. Goethals. Survey on frequent pattern mining.
Manuscript, 2003.

[9] R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2005.
http://www.R-project.org.

[10] M. Scholz. Sampling based sequential subgroup
mining. In Proc. of the 11th International Conference
on Knowledge Discovery and Data Mining (KDD’05),
pages 265–274, Chicago, IL, August 2005.

[11] R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. In ACM
SIGMOD, pages 1–12, Montreal, Canada, 1996.

[12] M. Steinbach, P.-N. Tan, H. Xiong, and V. Kumar.
Generalizing the notion of support. In KDD, pages
689–694, Seattle, WA, August 2004.

[13] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, 2005.

[14] X. Yin and J. Han. CPAR: Classification based on
predictive association rules. In SIAM International
Conference on Data Mining (SDM), 2003.

[15] R. Zembowicz and J. M. Zytkow. Discovery of
equations: Experimental evaluation of convergence. In
10th National Conference on Artificial Intelligence
(AAAI), pages 70–75, San Jose, CA, 1992.

