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ABSTRACT
We consider a model in which background knowledge on a
given domain of interest is available in terms of a Bayesian
network, in addition to a large database. The mining prob-
lem is to discover unexpected patterns: our goal is to find
the strongest discrepancies between network and database.
This problem is intrinsically difficult because it requires in-
ference in a Bayesian network and processing the entire, po-
tentially very large, database. A sampling-based method
that we introduce is efficient and yet provably finds the ap-
proximately most interesting unexpected patterns. We give
a rigorous proof of the method’s correctness. Experiments
shed light on its efficiency and practicality for large-scale
Bayesian networks and databases.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Bayesian Networks, Association Rules, Sampling

1. INTRODUCTION
The general task of knowledge discovery in databases

(KDD) is the “automatic extraction of novel, useful, and
valid knowledge from large sets of data” [5]. However, most
data mining methods – such as the Apriori algorithm [1]
– are bound to discover any knowledge that satisfies the
chosen usefulness criterion, including (typically very many)
rules that are already known to the user. Tuzhilin et al. [20,
15, 16] have studied the problem of finding unexpected rules
relative to a set of rules that encode background knowledge.
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Bayesian networks provide not only a graphical, easily in-
terpretable alternative language for expressing background
knowledge, but they also provide an inference mechanism;
that is, the probability of arbitrary events can be calcu-
lated from the model. Intuitively, given a Bayesian net-
work, the task of mining interesting unexpected patterns can
be rephrased as discovering itemsets in the data which are
much more – or much less – frequent than the background
knowledge suggests.

An algorithm which performs this discovery task exactly
has been discussed by Jaroszewicz and Simovici [10]. This
approach, however, incurs two intrinsic problems. The first
problem is the necessary exact inference in the Bayesian
network – which is known to be a very hard problem. The
second is the necessity to process the entire database in order
to assess all patterns and identify the most interesting ones.

Inference can be approximated by sampling from the joint
distribution of the network; evaluating the interestingness of
patterns can be approximated by evaluating patterns on a
random sample instead of the entire database. However,
a discovery algorithm which follows this approach cannot
come with the guarantee of finding the patterns which ac-
tually maximize the interestingness criterion. We devise an
efficient sequential sampling algorithm which approximates
the inference in the network and draws a sample from the
database in such a way that the resulting interesting at-
tribute sets are, with high probability 1− δ, the most inter-
esting ones up to some small difference in interestingness ε,
where ε and δ are user-adjustable parameters.

Bayesian networks are widely used in practice; for in-
stance, Volkswagen uses a Bayesian model in their produc-
tion planning and scheduling system [13]; it contains 250
nodes with between 2 and 50 possible values. Finding dis-
crepancies between a huge model and the (very large) trans-
action database is a difficult and relevant problem.

The rest of this paper is organized as follows. We discuss
related work in Section 2 and introduce our framework and
notation in Section 3. In Section 4, we present the sampling
algorithm for finding frequent itemsets that are most inter-
esting relative to background knowledge and our main result
on its correctness. We study the behavior of this algorithm
empirically in Section 5. Section 6 concludes.

2. RELATED WORK
The Apriori algorithm [1] finds frequent itemsets and, suc-

ceedingly, all sufficiently confident rules over these itemsets.
Many measures of interestingness of rules and itemsets have



been discussed (e.g., [12, 2, 9, 18]). A fundamental short-
coming of all of these interestingness measures is that neither
of them takes into account whether discovered knowledge is
entailed by previously available background knowledge.

Some algorithms take background knowledge expressed
as rules into account during the discovery process [20, 15,
16]. These methods assess the unexpectedness of a new pat-
tern given the background rules on a purely syntactic basis,
without inference. That is, they discover rules that are un-
expected given the background rules, rather than rules that
are unexpected given what can be inferred from the back-
ground rules. For instance, if “A⇒ B” and “B ⇒ C” were
known, then “A ⇒ C” would still be considered an unex-
pected pattern. A more detailed discussion of data mining
with background knowledge can be found in [10].

Bayesian networks are a powerful representational scheme
for background knowledge; they are graphical models, easy
to understand and modify. Bayesian networks encode the
joint distribution over all attributes. Inference mechanisms
are well understood; general inference in Bayesian networks
is a hard problem that can be approximated by sampling
(e.g., [11]). The inference problem given values of some
random variables is approximated by MCMC methods [6].
Jaroszewicz and Simovici [10] define interestingness of a pat-
tern as difference between observed frequency and inferred
probability. Their algorithm finds all itemsets whose in-
terestingness is above ε but, unfortunately, relies on exact
inference – which is tractable for small networks.

It is straightforward to replace the exact inference by
sampling-based approximate inference, but we would like to
do this in such a way that the algorithm’s output maintains
a well-defined optimality property. Sampling algorithms [21]
estimate the interestingness of patterns by drawing examples
from the database. The most elementary sampling schemes
[21] calculate worst-case sample bounds, often based on Ho-
effding’s inequality. The sample size necessary for a desired
ε/δ level of optimality can be reduced substantially by em-
ploying data-dependent, sequential sampling [3, 14]. Here,
the data are processed incrementally; the necessary sample
size is determined online, dependent on characteristics of the
data that have already been processed.

Practical sequential sampling algorithms have been stud-
ied for interestingness functions which are averages over the
data (such as accuracy) [7, 4, 8] as well as for more gen-
eral interestingness functions [19]. These algorithms mini-
mize the number of database accesses needed to find, with
high probability, all approximately sufficiently interesting,
or the n most interesting patterns. Unfortunately, all of
these methods assume that the bottleneck in the assessment
of candidate patterns lies only in the database access. By
contrast, in our problem setting we need to manage uncer-
tainty originating from limited database access as well as
uncertainty originating from approximate inference in the
Bayesian network.

3. PROBLEM SETTING
In this section, we introduce the necessary notation and

define the problem that we will solve in the following.
We are given a database D with attributes Z =
{A1, . . . , Am, }; attributes are categorical with finite do-
mains Dom(A). P D

I (i) denotes the probability that an at-
tribute set I ⊆ Z assumes a vector of values i in the database
D.

A Bayesian network BN is a set of random variables
(corresponding to our attributes) Z = {A1, . . . , Am} which
constitute the vertices of a directed, acyclic graph, a set
of edges E ⊆ Z × Z, and, for each vertex Ai with direct
ancestors par(Ai), a conditional distribution PAi|par(Ai).

A Bayesian network defines a joint distribution P BN
Z =Qm

i=1 PAi|par(Ai).

Given an attribute set I and values i, we write P BN
I (i)

to denote the probability of itemset I = i as determined
by a Bayesian network BN . According to [10], we define
the unexpectedness, or interestingness, of an event I = i
as I(I, i) = |P D

I (i) − P BN
I (i)| — the absolute difference

between an event’s probability inferred from the network,
and observed in the database. We will now leverage the
definition of unexpectedness of events to interestingness of
attribute sets: an attribute set I is interesting, if there is
an event I = i for which inferred and observed probability
diverge.

Definition 1. Given a Bayesian network BN and data
D, the interestingness of attribute set I is defined in Equa-
tion 1.

I(I) = max
i∈Dom(I)

I(I, i) (1)

= max
i∈Dom(I)

|P D
I (i)− P BN

I (i)| (2)

The definition of interestingness refers to P BN
I (i), the exact

probability of I = i inferred from the network, and P D
I (i),

the probability of I = i in the (potentially very large) data-
base. P BN

I (i) can be estimated by sampling from the net-
work; P D

I (i) by sampling from the database. Since the net-
work has no cycles we can always draw from the conditional
distributions P (Ai|par(Ai)) of each vertex Ai after the val-
ues of all parents have been drawn. Thus we obtain a sample
SBN of independent assignments of values to the attributes
according to P BN . After additionally drawing records SD

from D independently under uniform distribution, we obtain
an estimate Î(I, i) as in Equation 3, and of Î(I) in Equation

4. P̂ D
I (i) is the relative frequency of I = i in sample SD,

and P̂ BN
I (i) the relative frequency of I = i in SBN .

Î(I, i) =
˛̨̨
P̂ D

I (i)− P̂ BN
I (i)

˛̨̨
(3)

Î(I) = max
i∈Dom(I)

Î(I, i) (4)

A special case occurs when the Bayesian network is too large
for exact inference but the database is compact and P D

I can
be determined exactly. In this case, only P BN

I has to be
approximated by P̂ BN

I , but SD can be the entire database
D and therefore P̂ D

I = P D
I .

A possible problem setting would be to find all attribute
sets whose interestingness exceeds some ε. However, from
the user’s point of view it is often more natural to constrain
the number of returned patterns, rather than the somewhat
less intuitive interestingness value. We therefore define the
n most interesting attribute sets problem as follows.

Definition 2. Let D be a database over attributes Z and
BN a Bayesian network. The n most interesting attribute
sets problem is to find n attribute sets H = {I1, . . . , In};
Ij ⊆ Z, such that there is no other attribute set I ′ which is
more interesting than any of H (Equation 5).

there is no I ′ ⊆ Z : I ′ 6∈ H, I(I ′) > min
I∈H
I(I) (5)



Any solution to the n most interesting attribute sets problem
has to calculate the I(I) which requires exact inference in
the Bayesian network and at least one pass over the entire
database. We would like to find an alternative optimality
property that can be guaranteed by an efficient algorithm.
We therefore define the n approximately most interesting
attribute sets problem as follows.

Definition 3. Let D be a database over itemsets Z and
BN a Bayesian network. The n approximately most in-
teresting attribute sets problem is to find n attribute sets
H = {I1, . . . , In}; Ij ⊆ Z, such that, with high probabil-
ity 1 − δ, there is no other attribute set I ′ which is ε more
interesting than any of H (Equation 6).

with confidence 1− δ, there is no I ′ ⊆ Z :

I ′ 6∈ H and I(I ′) > min
I∈H
I(I) + ε (6)

4. FAST DISCOVERY OF INTERESTING
ATTRIBUTE SETS

We are now ready to present our solution to the n approx-
imately most interesting attribute sets problem. The Apri-
oriBNS algorithm is presented in Table 1; it refers to con-
fidence bounds provided in Table 2. We will now briefly
sketch the algorithm, then state our main Theorem, and
finally discuss some additional details and design choices.

AprioriBNS generates candidate attribute sets like the
Apriori algorithm does: starting from all one-element sets in
step 1, candidates with i+1 attributes are generated in step
2g by merging all sets which differ in only the last element,
and pruning those with infrequent subsets.

In each iteration of the main loop, we draw a batch of
database records and observations from the Bayesian net-
work. Only one such batch is stored at a time and the sam-
ple size and frequency counts of all patterns under consid-
erations are updated; the batch is deleted after an iteration
of the loop and a new batch is drawn. The interestingness
of each attribute set I is estimated based on NBN (I) obser-
vations from the network and ND(I) database records.

There are two mechanisms for eliminating patterns which
are not among the n best ones. These rejection mechanisms
are data dependent: if some attribute sets are very uninter-
esting, only few observations are needed to eliminate them
from the search space and the algorithm requires few sam-
pling operations. Step 2c is analogous to the pruning of low
support itemsets in Apriori. P D

I (i) can be interpreted as the
support of the itemset I = i with respect to the database,
and P BN

I (i) as the support of I = i with respect to the net-
work. The interestingness – which is the absolute difference
– can be bounded from above by the maximum of these. No
superset of I can be more frequent than I and therefore all
supersets can be removed from the search space, if this up-
per bound is below the currently found n-th most interesting
attribute set. Since only estimates P̂ BN

I (i) and P̂ D
I (i) are

known, we add a confidence bounds EI and Es to account
for possible misestimation.

The pruning step is powerful because it removes an entire
branch, but it can only be executed when an attribute set is
very infrequent. Therefore, in step 2d, we delete an attribute
set I ′ if its interestingness (plus confidence bound) is below
that of the currently n-th most interesting pattern (minus
confidence bound). We can then delete I ′ but since interest-

Table 1: AprioriBNS: Fast Discovery of the Approx-
imately Most Interesting Attribute Sets
Input: Bayesian network BN , database D over attributes
Z, approximation and confidence parameters ε and δ, the
desired number of interesting itemsets n.

1. Let i ← 1 (iteration); generate initial candidates
C1 = {{Ai} : Ai ∈ Z}; let H1 ← C1 (itemsets under
consideration); for all I ∈ H1, initialize NBN (I) = 0
and ND(I) = 0 (Bayesian network and database sam-
ple size for itemset I).

2. Repeat until break:

(a) Draw batch of observations SBN
i according to

P BN and a batch of database records SD
i at ran-

dom from D.

(b) For all I ∈ Hi, increment ND(I) by |SD
i |; in-

crement NBN (I) by |SBN
i |; update frequency

counts P̂ D
I , P̂ BN

I , and consequently, I(I) (Equa-
tion 4). Let H∗

i be the n best itemsets in Hi,

according to the current Î.
(c) For all I ′ ∈ Hi \H∗

i : if

max{maxi∈Dom(I′) P̂ D
I′ (i), maxi∈Dom(I′) P̂ BN

I′ (i)}
+Es

“
I′, δ

3|Hi|i(i+1)

”
<

minI∈H∗
i

n
Î(I)−EI

“
I, δ

3|Hi|i(i+1)

”o
then remove I ′ and all its supersets from Hi and
Ci. (For EI and Es, refer to Table 2; neither I ′

nor any superset will ever become a champion.)

(d) For all I ′ ∈ Hi \H∗
i : if

Î(I′) + EI

“
I′, δ

3|Hi|i(i+1)

”
<

minI∈H∗
i

n
Î(I)−EI

“
I, δ

3|Hi|i(i+1)

”o
then remove I ′ from Hi. (I ′ is most likely not a
champion but its supersets might still.)

(e) If Ci = ∅ and for all I ∈ H∗
i , I ′ ∈ (Hi \H∗

i ):

Î(I)− EI

“
I, δ

3|Hi|i(i+1)

”
>

Î(I′) + EI

“
I′, δ

3|Hi|i(i+1)

”
− ε

then break.

(f) Let nBN = minI∈Hi NBN (I), nD =
minI∈Hi ND(I); if Ci = ∅ and

Ed

0@n
BN

, n
D

,
δ

“
1− 2

3

Pi
j=1

1
j(j+1)

”
P

I∈Hi
|Dom(I)|

1A ≤
ε

2

then break.

(g) Ci+1 ← generate new candidates from Ci.

(h) Let Hi+1 ← Hi ∪ Ci+1; let i← i + 1.

3. Return the n best itemsets (according to Î) from Hi.



Table 2: Confidence bounds used by AprioriBNS
Based on Hoeffding inequality, sampling from Bayesian network and data.

EI(I, δ) =

r
1
2

NBN (I)+ND(I)

NBN (I)ND(I)
log

2|Dom(I)|
δ

, Es(I, δ) =
q

log
4|Dom(I)|

δ
· max


1√

2NBN (I)
, 1√

2ND(I)

ff
Ed(nBN , nD, δ) =

q
1
2

nBN +nD

nBN nD log 2
δ

Based on Hoeffding inequality, all data used, sampling from Bayesian network only.

Es(I, δ) = EI(I, δ) =

r
1

2NBN (I)
log

2|Dom(I)|
δ

, Ed(nBN , δ) =
q

1
2nBN log 2

δ

Based on normal approximation, sampling from Bayesian network and data.

EI(I, δ) = z
1− δ

2|Dom(I)|
maxi∈Dom(I)

r
P̂ BN

I
(i)·(1−P̂ BN

I
(i))

NBN (I)
+

P̂ D
I

(i)·(1−P̂ D
I

(i))

ND(I)
· |D|−ND(I)

|D|−1

Es(I, δ) = z
1− δ

4|Dom(I)|
maxi∈Dom(I) max

(r
P̂ BN

I
(i)·(1−P̂ BN

I
(i))

NBN (I)
,

r
P̂ D

I
(i)(1−P̂ D

I
(i))

ND(I)
· |D|−ND(I)

|D|−1

)
Ed(nBN , nD, δ) = 1

2
z
1− δ

2

r
1

nBN + 1
|D| ·

|D|−nD

ND−1

Based on normal approximation, all data used, sampling from Bayesian network only.

Es(I, δ) = EI(I, δ) = z
1− δ

2|Dom(I)|
maxi∈Dom(I)

r
P̂ BN

I
(i)·(1−P̂ BN

I
(i))

NBN (I)
, Ed(nBN , nD, δ) = 1

2
z
1− δ

2
maxi∈Dom(I)

1√
nBN

ingness does not decrease monotonically with the number of
attributes, we cannot prune the entire branch.

There are two alternative stopping criteria. If every at-
tribute set in the current set of “champions” H∗

i (minus an
appropriate confidence bound) outperforms every attribute
outside (plus confidence bound), then the current estimates
are sufficiently accurate to end the search (step 2e). This
stopping criterion is data dependent: If there are hypothe-
ses which clearly set themselves apart from the rest of the
hypothesis space, then the algorithm terminates early.

In addition, the algorithm may terminate if all estimates
are tight up to ε

2
. This worst-case criterion uses bounds

which are independent of specific hypotheses (data indepen-
dent) and a fixed amount of allowable error is set aside for it.
Its purpose is to guarantee that the algorithm will always
terminate. As long as the candidate set Ci is not empty,
there are still hypotheses which have not yet been assessed
at all. In this case, the search cannot yet terminate. Af-
ter exiting the main loop, the n apparently most interesting
attribute sets are returned.

AprioriBNS refers to error bounds which are detailed in
Table 2. We provide both, exact but loose confidence bounds
based on Hoeffding’s inequality, and their practically more
relevant normal approximation. Statistical folklore says nor-
mal approximations can be used for sample sizes from 30
onwards; in our experiments, we encounter sample sizes of
1000 or more. z denotes the inverse standard normal cumu-
lative distribution function and nBN , nD the minimum sam-
ple size (from Bayesian network and database, respectively)
for any I ∈ H. We furthermore distinguish the general
case in which samples are drawn from both, the Bayesian
network and database, from the special case in which the
database is feasibly small and therefore P̂ D

I = P D
I , samples

are drawn only from the network. We are now ready to state
our main result on the optimality of the result returned by
our discovery algorithm.

Theorem 1. Given a database D, a Bayesian network
BN over nodes Z, and parameters n, ε, and δ, the Apri-
oriBNS algorithm will output a set of the n approximately
most interesting attribute sets H∗. That is, with probabil-
ity 1 − δ, there is no I ′ ⊆ Z with I 6∈ H∗ and I(I ′) >

minI∈H∗ I(I) + ε. Furthermore, the algorithm will always
terminate (even if the database is an infinite stream); the
number of sampling operations from the database and from
the Bayesian network is bounded by O(|Z| 1

ε2 log 1
δ
).

The proof of Theorem 1 is given in the Appendix. We
will conclude this section by providing additional design de-
cisions of the algorithm. A copy of the source code is avail-
able from the authors for research purposes.

In step 2a, we are free to choose any size of the batch to
draw from the network and database. As long as Ci 6= ∅, the
greatest benefit is obtained by pruning attribute sets in step
2c (all supersets are removed from the search space). When
Ci = ∅, then terminating early in step 2e becomes possible,
and rejecting attribute sets in step 2d is as beneficial as
pruning in step 2c, but easier to achieve. We select the
batch size such that we can expect to be able to prune a
substantial part of the search space (Ci 6= ∅), terminate
early, or reject substantially many hypotheses (Ci = ∅).

We estimate the batch size required to prune 25% of the
hypotheses by comparing the least interesting hypothesis in
H∗

i to a hypothesis at the 75-th percentile of interestingness.
We find the sample size that satisfies the precondition of
step 2c for these two hypotheses (this is achieved easily by
inverting EI and Es). If Ci = ∅, then we analogously find
the batch size that would allow us to terminate early in step
2e and the batch size that would allow to reject 25% of the
hypotheses in step 2d and take the minimum. In order to
efficiently update the interestingness of many attribute sets
simultaneously, we use a marginalization algorithm similar
to the one described in [10].

5. EXPERIMENTS
Theorem 1 already guarantees that the attribute sets re-

turned by the algorithm are, with high probability, nearly
optimal with respect to the interestingness measure. But
we still have to study the practical usefulness of the method
for large-scale problems. In our experiments, we will first
focus on problems that can be solved with the exact dis-
covery method AprioriBN [10] and investigate whether the
sampling approach speeds up the discovery process (while
[10] call only the core part of their algorithm AprioriBN, we



use this term to refer to the entire exact discovery method).
More importantly, we will then turn towards discovery prob-
lems with large-scale Bayesian networks that cannot be han-
dled by known exact methods. We will investigate whether
any of these problems can be solved using our sampling-
based discovery method.

In order to study the performance of AprioriBN and Apri-
oriBNS over a range of network sizes, we need a controlled
environment with Bayesian networks of various sizes and
corresponding datasets. We have to be able to control the
divergence of background knowledge and data, and, in order
to assure that our experiments are reproducible, we would
like to restrict our experiments to publicly available data.
We create an experimental setting which satisfies these re-
quirements. For the first set of experiments, we use data sets
from the UCI repository and learn networks from the data
using the B-Course [17] website. These generated networks
play the role of expert knowledge in our experimentation.
In order to conduct experiments on a larger scale, we start
from large Bayesian networks, generate databases by draw-
ing from the network, and then learn a slightly distorted
network from the data which again serves as expert knowl-
edge (see below for a detailed description). For the small
UCI datasets, the algorithm processes the entire database
whereas, for the large-scale problems, AprioriBNS samples
from both, the database and the network.

We first compare the performance of AprioriBN and Apri-
oriBNS using the UCI data sets. For all experiments, we use
ε = 0.01, δ = 0.05, and n = 5. We constrain the cardinality
of the attribute sets to maxk. Here, the databases are small
and therefore only the network is sampled and P̂ D

I = P D
I

for all I. Table 3 shows the performance results. The |Z|
column contains numbers of attributes in each dataset, t[s]
computation time, NBN the number of samples drawn from
the Bayesian network, max Î and max I are the estimated
and actual interestingness of the most interesting attribute
set found by AprioriBNS and AprioriBN, respectively.

We refrain from drawing conclusions on the absolute run-
ning time of the algorithms because of a slight difference in
the problems that AprioriBN and AprioriBNS solve (finding
all sufficiently versus finding the most interesting rules). We
do, however, conclude from Table 3 that the relative benefit
of AprioriBNS over AprioriBN increases with growing net-
work size. For 61 nodes, AprioriBNS is many times faster
than AprioriBN. More importantly, AprioriBNS finds a so-
lution for the audiology problem; AprioriBN exceeds time
and memory resources for this problem.

The most interesting attribute set has always been picked
correctly by the sampling algorithm and its estimated in-
terestingness is close to the exact value. The remaining 4
most interesting sets were not always picked correctly, but
remained within the bounds guaranteed by the algorithm.

We will now study how the execution time of AprioriBNS
depends on the maximum attribute set size maxk. Figure 1
shows the computation time for various values of maxk for
the lymphography data set. Note that the search space size
grows exponentially in maxk and this growth would be max-
imal for maxk = 10 if no pruning was performed. By con-
trast, the runtime levels off after maxk = 7, indicating that
the pruning rule (step 2c of AprioriBNS) is effective and
reduces the computation time substantially.

Let us now investigate whether AprioriBNS can solve dis-
covery problems that involve much larger networks than
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Figure 1: Computation time versus maximum at-
tribute set size maxk for lymphography data.

AprioriBN can handle. We draw 1 million observations
governed by the Munin1 network from the Bayesian Net-
work Repository. We then use a small part of the resulting
dataset to learn a Bayesian network. Thus, the original net-
work plays the role of a real world system (from which the
dataset is obtained) and the network learned from a subset
of the data plays the role of our imperfect knowledge about
the system. By varying the sample size M used to build
the network we can affect the quality of our ‘background’
knowledge. The Munin1 network has 189 attributes. Exact
inference from networks of this size is very hard in practice.

Table 4 shows the results for various values of M and
maxk = 2 . . . 3. We sample at equal rates from the Bayesian
network and from data; both numbers of examples are there-
fore equal and denoted by N in the table. We use the same
setting for the next experiment with the Munin2 network
containing 1003 attributes. The problem is huge both in
terms of the size of Bayesian network and the size of data:
The file containing 1 million rows sampled from the original
network is over 4GB large, and 239227 rows sampled by the
algorithm amount to almost 1GB. The experiment took 4
hours and 50 minutes for maxk = 2.

Figure 2 summarizes Tables 3 and 4, it details the rela-
tionship between the number of nodes in the network and
the computation time of AprioriBN and AprioriBNS. We
observe a roughly linear relationship between logarithmic
network size and the logarithmic execution time, Figure 2
shows a model fitted to the data. From these experiments,
we conclude that the AprioriBNS algorithm scales to very
large Bayesian networks and databases, yet it is guaranteed
to find a near-optimal solution to the most interesting at-
tribute set problem with high confidence. We can apply the
exact AprioriBN algorithm to networks of up to about 60
nodes. Using the same computer hardware, we can solve
discovery problems over networks of more than 1000 nodes
using the sampling-based AprioriBNS method.

6. CONCLUSION
We studied the problem of discovering unexpected pat-

terns in a database. We formulated the approximately most
interesting attribute sets problem and developed an algo-
rithm which solves this problem. AprioriBNS uses sampling-
based approximate inference in the Bayesian network and,
when the database is large, also samples the data.

We proved that AprioriBNS always finds, with high con-
fidence, the approximately most interesting attribute sets.



Table 3: Evaluation on networks learned from UCI datasets.
dataset |Z| maxk NBN AprioriBNS: max Î AprioriBN: max I AprioriBNS: t[s] AprioriBN: t[s]
KSL 9 5 205582 0.03229 0.03201 55 1
lymphography 19 3 88333 0.09943 0.12308 43 29
lymphography 19 4 159524 0.12343 0.12631 83 106
soybean 36 3 282721 0.06388 0.06440 409 1292
soybean 36 4 292746 0.07185 0.07196 1748 7779
annealing 40 3 273948 0.04985 0.04892 407 1006
annealing 40 4 288331 0.06159 0.06118 2246 6762
splice 61 3 190164 0.03652 0.03643 1795 8456
audiology 70 3 211712 0.09723 – 727 –
audiology 70 4 228857 0.10478 – 9727 –

Table 4: Results for the Munin networks.
dataset |Z| M maxk t[s] N max Î
Munin1 189 100 2 874 136972 0.4138
Munin1 189 150 2 1754 312139 0.2882
Munin1 189 200 2 1004 139500 0.2345
Munin1 189 250 2 2292 373191 0.1819
Munin1 189 500 2 2769 431269 0.1174
Munin1 189 1000 2 3502 480432 0.0674

Munin1 189 100 3 14375 375249 0.4603
Munin1 189 150 3 16989 450820 0.3272

Munin2 1003 100 2 17424 239227 0.3438
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Figure 2: Network size and computation time.

We studied AprioriBNS empirically using moderately sized
as well as large-scale Bayesian networks and databases.
From our experiments, we can draw the following main
conclusions. (1) The relative performance benefit of Apri-
oriBNS over the corresponding exact method AprioriBN in-
creases with the network size. For moderately sized net-
works, AprioriBNS can be many times faster than Apri-
oriBN. (2) More importantly, while AprioriBN scales to net-
works with about 60 nodes, we can apply AprioriBNS to
Bayesian networks of 1000 nodes and databases of several
gigabytes using the same hardware.
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APPENDIX

A. PROOF OF THEOREM 1
The proof of Theorem 1 has two parts: we will first prove

the guaranteed sample bound of O(|Z| 1
ε2 log 1

δ
). We will

then show that AprioriBNS in fact solves the approximately
most interesting attribute sets problem.

A.1 AprioriBNS Samples Only Polynomially
Many Observations

Theorem 2. The number of sampling operations of Apri-
oriBNS from the database and from the Bayesian network is
bounded by O(|Z| 1

ε2 log 1
δ
).

Proof. We can disregard the possibility of early stopping
and show that the stopping criterion in step 2f applies after
polynomially many sampling operations.

Let r = maxA∈Z |Dom(A)|. First note thatP
I∈Himax

|Dom(I)| ≤ (r + 1)|I|. For clarity of the pre-

sentation, let nBN = nD = N . The stopping condition
becomes Equation 7.vuuut 1

N
log

2
P

I∈Himax
|Dom(I)|

δ
“
1− 2

3

Pimax
j=1

1
j(j+1)

” ≤
ε

2
(7)

From the Hoeffding bound, it follows that Equation 7 is
satisfied for N given in Equation 8.

N ≥
4

ε2
log

2
P

I∈Himax
|Dom(I)|

δ
“
1− 2

3

Pimax
j=1

1
j(j+1)

” (8)

≤
4

ε2
log

2(r + 1)|Z|

1
3 δ

=
4

ε2
|Z| log

6(r + 1)

δ
(9)

This proves Theorem 2

A.2 AprioriBNS Solves Approximately Most
Interesting Attribute Sets Problem

Throughout the proof,
P

i and maxi are abbreviations forP
i∈Dom(I) and maxi∈Dom(I) respectively. We will first define

a helpful concept which we call the support of an attribute
set. The support of an attribute set I is the maximum sup-
port of any itemset I = i with respect to the Bayesian net-
work or the database, whichever is greater. Using this defini-
tion, it is easy to see that support upper-bounds interesting-
ness which is helpful to understand the pruning mechanism
of step 2c.

Definition 4. The support of an attribute set I is de-
fined in Equation 10.

supp(I) = max
n

max
i

P BN
I (i), max

i
P D

I (i)
o

(10)

We write the estimated support as ŝupp(I) =

max
n

maxi P̂
BN
I (i), maxi P̂

D
I (i)

o
.

Table 5: Notation used in the proof.
G “Good” hypotheses output by AprioriBNS in

step 3.
Ri Attribute sets rejected before iteration i. Note

that if an attribute set is pruned (step 2c) then
R will contain that set and all of its supersets.

Hi Collection of attribute sets still under consid-
eration in iteration i.

H∗
i n most interesting attribute sets in Hi.

Ci Collection of candidate attribute sets in itera-
tion i.

Ui Collection of unseen attribute sets: Ui = 2Z \
({∅} ∪Hi ∪Ri).

imax Value of i after the main loop terminates.

Î(I) Estimate of interestingness of attribute set I
during i-th iteration.

ŝupp(I) Estimate of support of attribute set I during
current iteration.

nBN , nD Minimum sample size (from Bayesian network
and database, respectively) for any I ∈ Hi.

Lemma 1. The support of an attribute set I upper-bounds
its interestingness: supp(I) ≥ I(I).

Proof. The proof of Lemma 1 follows directly from Def-
inition 1: the absolute difference maxi |P BN

I (i) − P D
I (i)| is

greatest if either P BN
I (i) or P D

I (i) is zero.
Table 5 defines additional notation that we use during the

proof. Ui is the set of unseen attribute sets in iteration i.
It is important to note that no hypotheses remain unseen
when the candidate set Ci is empty.

Lemma 2. Ci = ∅ implies Ui = ∅ for all 1 ≤ i ≤ imax.

Proof. Lemma 2 follows primarily from the complete-
ness of Apriori’s candidate generation procedure invoked in
step 2g: if no attribute set was ever pruned, then

S
i Ci =

2Z \ {∅}. In step 2h, the candidates Ci are accumulated in
Hi+1. In step 2d, one or more hypotheses I ′ can be removed
from Hi. By the definition of Ri, each removed I ′ is then
an element of Ri. In step 2c, hypotheses I ′ and all their su-
persets are removed from Ci and Hi. In this case, supersets
of Ci will not be generated in step 2g but, by the definition
of Ri all of them become members of Ri. This implies that
Ui = 2Z \ {∅} \Hi \Ri = ∅.

The proof heavily relies on confidence intervals for esti-
mates of the interestingness, support, and the difference of
interestingness values. We have to show that the confidence
bounds given in Table 2 are in fact valid.

Lemma 3. EI as defined in Table 2 is a valid confidence
bound: Pr

ˆ
|I(I) − Î(I)| > EI(I, δ)

˜
≤ δ. Table 2 details

different versions of EI based on the (exact but loose) Ho-
effding bound, and an approximate (but practically useful)
bound based on the normal approximation. For the spe-
cial case P̂ D

I = P D
I and samples are drawn only from the

Bayesian network (but not from the database), additional
Hoeffding and normal bounds are given.

Proof. Let us begin by giving a bound on the difference
of estimated probabilities. Let X1, . . . , Xn be independent
random variables and let Xi ∈ [ai, bi]. Let Sn =

Pn
i=1 Xi.



Hoeffding’s inequality states that

Pr
ˆ
|Sn − E(Sn)| ≥ ε

˜
≤ 2 exp

„
− 2ε2Pn

i=1(bi − ai)2

«
,

where E(Sn) denotes the expected value of Sn. Since

P̂ BN
I (i)−P̂ D

I (i) is a sum of NBN (I) random variables taking
values in {0, 1

NBN (I)
}, and ND(I) random variables taking

values in {0,− 1
ND(I)

}, Equation 11 follows.

Pr
h˛̨̨

(P̂ BN
I (i)− P̂ D

I (i))− (P BN
I (i)− P D

I (i))
˛̨̨
≥ ε

i
≤ 2 exp

„
−2ε2 NBN (I)ND(I)

NBN (I) + ND(I)

«
. (11)

In Equation 12 we expand the definition of I. We remove
the absolute value in Equation 13 by summing over the two
possible ways in which the absolute value can exceed the
bound EI . Since maxi{ai − bi} ≥ maxi{ai} − maxi{bi},
Equation 14 follows. We apply the union bound in Equation
15, replace the two symmetric differences by the absolute
value in Equation 16. Since |a− b| ≥ ||a| − |b||, Equation 17
follows; we expand EI , apply (11) and arrive in Equation 18

Pr
ˆ
|I(I)−Î(I)| ≥ EI(I, δ)

˜
(12)

=Pr
ˆ˛̨
max

i
|P̂ BN

(i)− P̂
D
(i)|−max

i
|P BN

(i)− P
D
(i)|

˛̨
≥ EI

˜
=Pr

ˆ
max

i
|P̂ BN

(i)− P̂
D
(i)|−max

i
|P BN

(i)− P
D
(i)| ≥ EI

˜
(13)

+Pr
ˆ
max

i
|P BN

(i)− P
D
(i)|−max

i
|P̂ BN

(i)− P̂
D
(i)| ≥ EI

˜
≤Pr

ˆ
max

i

“
|P̂ BN

(i)− P̂
D
(i)| − |P BN

(i)− P
D
(i)|

”
≥ EI

˜
(14)

+Pr
ˆ
max

i

“
|P BN

(i)− P
D
(i)| − |P̂ BN

(i)− P̂
D
(i)|

”
≥ EI

˜
≤

X
i

“
Pr

ˆ
|P BN

(i)− P
D

(i)| − |P̂ BN
(i)− P̂

D
(i)| ≥ EI

˜
(15)

+Pr
ˆ
|P BN

(i)− P
D

(i)| − |P̂ BN
(i)− P̂

D
(i)| ≥ EI

˜”
=

X
i

Pr
ˆ˛̨
|P BN

(i)− P
D

(i)| − |P̂ BN
(i)− P̂

D
(i)|

˛̨
≥ EI

˜
(16)

≤
X
i

Pr

"˛̨
(P

BN
(i)− P

D
(i)) − (P̂

BN
(i)− P̂

D
(i))

˛̨
≥

s
1

2

NBN (I) + ND(I)

NBN (I)ND(I)
log

2|Dom(I)|
δ

#
(17)

=
X
i

δ

|Dom(I)|
= δ (18)

To prove the bounds based on normal approxima-
tion notice that P̂ BN

I (i) follows the binomial distribu-
tion, which can be approximated by the normal dis-
tribution with mean P BN

I (i) and standard deviationp
(NBN (I))−1P BN

I (i) · (1− P BN
I (i)). When sampling from

data, P̂ D
I (i) follows the hypergeometric distribution which

can be approximated by the normal distribution with mean
P D

I (i), and standard deviations
P D

I (i)(1− P D
I (i))

ND(I)
· |D| −ND(I)

|D| − 1
. (19)

Combining the two we get

Pr

"
|(P̂ BN

(i)− P̂
D

(i)) − (P
BN

(i)− P
D

(i))| ≥ z1− δ
2

· (20)

s
P̂ BN

I (i)(1− P̂ BN
I (i))

NBN (I)
+

P̂ D
I (i)(1− P̂ D

I (i))

ND(I)
·
|D| − ND(I)

|D| − 1

#
≤ δ.

Since we use the estimates of probabilities to compute the
standard deviation, Student’s t distribution governs the ex-
act distribution, but for large sample sizes used in the algo-
rithm the t distribution is very close to normal.

The proof is identical to the Hoeffding case until Equa-
tion 16, where the Hoeffding bound needs to be replaced
by the above expression. The special case of sampling only
from the Bayesian network (P̂ D

I = P D
I ) follows immediately

from the more general case discussed in detail.

Lemma 4. Es as defined in Table 2 is a valid confidence
bound for the support: Pr

ˆ
|supp(I)− ŝupp(I)| > Es(I, δ)

˜
≤

δ. Table 2 details a Hoeffding bound and an approximate
normal bound. For the special case that P̂ D

I = P D
I and sam-

ples are drawn only from the Bayesian network, Hoeffding
and normal bounds are given, too.

Proof. In Equation 21, we expand the support defined
in Equation 10. To replace the absolute value, we sum over
both ways in which the absolute difference can exceed Es in
Equation 22. In Equation 23, we exploit maxi{ai − bi} ≥
maxi{ai} −maxi{bi}; we then use the union bound and in-
troduce the absolute value again in Equation 24. Equation
25 expands the definition of Es; the Chernoff bound (Equa-
tion 26) proves that the the confidence is in fact δ.

Pr
ˆ
|ŝupp(I)− supp(I)| ≥ Es(I, δ)

˜
(21)

= Pr
ˆ
|max

i
max{P̂

BN
I (i), P̂

D
I (i)} −max

i
max{P

BN
I (i), P

D
I (i)}|≥Es

˜
= Pr

ˆ
max

i
max{P̂

BN
I (i), P̂

D
I (i)}−max

i
max{P

BN
I (i), P

D
I (i)}≥Es

˜
(22)

+Pr
ˆ
max

i
max{P

BN
I (i), P

D
I (i)}−max

i
max{P̂

BN
I (i), P̂

D
I (i)}≥Es

˜
≤ Pr

ˆ
max

i
max{P̂

BN
I (i)− P

BN
I (i), P̂

D
I (i)− P

D
I (i)} ≥ Es

˜
(23)

+Pr
ˆ
max

i
max{P

BN
I (i)− P̂

BN
I (i), P

D
I (i)− P̂

D
I (i)} ≥ Es

˜
≤

X
i

Pr
ˆ
|P̂ BN

I (i)− P
BN
I (i)| ≥ Es

˜
+ Pr

ˆ
|P D

I (i)− P
D
I (i)| ≥ Es (̃24)

≤
X
i

Pr

"
|P̂ BN

I (i)− P
BN
I (i)| ≥

s
1

2NBN (I)
log

4|Dom(I)|
δ

#
(25)

+Pr

"
|P̂ D

I (i)− P
D
I (i)| ≥

s
1

2ND(I)
log

4|Dom(I)|
δ

#

=
X
i

»
2

δ

2|Dom(I)|

–
= δ (26)

For the normal approximation based bounds we start with
Equation 25 above which becomes

X
i

Pr

"
|P̂ BN

I (i)− P
BN
I (i)| ≥

z1− δ
4|Dom(I)|

s
P̂ BN

I (i) · (1 − P̂ BN
I (i))

NBN (I)
·
#

+Pr

"
|P̂ D

I (i)− P
D
I (i)| ≥

z1− δ
4|Dom(I)|

s
P̂ D

I (i)(1− P̂ D
I (i))

ND(I)
·
|D| − ND(I)

|D| − 1

#

=
X
i

»
2

δ

2|Dom(I)|

–
= δ.

The special case of P̂ D
I = P D

I follows immediately from the
general case.

Lemma 5. Ed as defined in Table 2 is a valid, data in-
dependent confidence bound for the interestingness value
of an attribute set values: Pr

ˆ
|I(I, i) − Î(I, i)| >



Ed(nBN , nD, δ)
˜
≤ δ. A Hoeffding bound for the special

case that P̂ D
I = P D

I and samples are drawn only from the
Bayesian network is given.

Proof. The proof for the Hoeffding inequality based
bound follows directly from (11) in the proof of Lemma 3.
For the normal case, it follows from (20) by substituting

P̂ BN
I (i) = P̂ D

I (i) = 1
2

which corresponds to the maximum
possible standard deviation.

Theorem 3. Let G be the collection of attribute sets out-
put by the algorithm. After the algorithm terminates the
following condition holds with the probability of 1− δ:

there is no I ′ ∈ 2Z \ {∅} such that I ′ 6∈ G

and I(I ′) > min
I∈G
I(I) + ε (27)

Proof. We will first assume that, throughout the course
of the algorithm, the estimates of all quantities lie within
their confidence intervals (assumptions A1a, A1b, and A2).
We will show that under this assumption the assertion in
Equation 27 is always satisfied when the algorithm termi-
nates. We will then quantify the risk that over the entire
execution of the algorithm at least one estimate lies outside
of its confidence interval; we will bound this risk to at most
δ. These two parts prove Theorem 3.

(A1a) ∀i ∈ {1, . . . , imax}∀I ∈ Hi : |Î(I) − I(I)| ≤
EI

“
I, δ

3|Hi|i(i+1)

”
(A1b) ∀i ∈ {1, . . . , imax}∀I ∈ Hi : |ŝupp(I) − supp(I)| ≤

Es

“
I, δ

3|Hi|i(i+1)

”
(A2) If Ed

“
nBN

imax
, nD

imax
,

δ
“
1− 2

3
Pi

j=1
1

j(j+1)

”
P

I∈Himax
|Dom(I)|

”
≤ ε

2
then ∀I ∈

H∗
imax
∀I ′ ∈ (Himax \H∗

imax
) : I(I) ≥ I(I ′)− ε

Equation (Inv1) shows the main loop invariant which, as we
will now show, is satisfied after every iteration of the main
loop as well as when the loop is exited.

(Inv1) ∀K ∈ Ri there exist distinct I1, . . . , In ∈ Hi : ∀j ∈
{1, . . . , n}I(Ij) ≥ I(K)

We will prove the loop invariant (Inv1) by induction. For
the base case (Ri = ∅), (Inv1) is trivially true. For the
inductive step, let us assume that (Inv1) is satisfied for Ri

and Hi before the loop is entered and show that it will hold
for Ri+1 and Hi+1 after the iteration. (Inv1) refers to R
and H, so we have to study steps 2c, 2d, and 2h, which
alter these sets. Note that, by the definition of R, Ri+1 is
always a superset of Ri; it contains all elements of Ri in
addition to those that are added in steps 2c and 2d.

Step 2c
Let K be an attribute set pruned in this step. The pruning
condition together with our definition of support (Equation
10) implies Equation 28; we omit the confidence parameter
of Es for brevity. Equation 28 is equivalent to Equation 29.
Assumption (A1a) says that Î(I ′′)− EI(I ′′) ≤ I(I ′′); from
assumption (A1b) we can conclude that ŝupp(K)+Es(K) ≥
supp(K) which leads to Equation 30. From the definition
of support, it follows that all supersets J of K must have
a smaller or equal support (Equation 31); Lemma 1 now
implies that if the support of K is lower than that of J , so

must be the interestingness (Equation 32).

ŝupp(K) ≤ min
I∈H∗

i

n
Î(I)− EI(I)

o
− Es(K) (28)

⇔ ∀I ′′ ∈ H∗
i : ŝupp(K)+Es(K) ≤ Î(I ′′)−EI(I ′′)(29)

⇒ ∀I ′′ ∈ H∗
i : supp(K) ≤ I(I ′′) (30)

⇒ ∀I ′′ ∈ H∗
i ∀J ⊇ K : supp(J) ≤ I(I ′′) (31)

⇒ ∀I ′′ ∈ H∗
i ∀J ⊇ K : I(J) ≤ I(I ′′) (32)

K cannot be an element of H∗
i because, in order to satisfy

Equation 28, the error bound Es would have to be zero or
negative which can never be the case. Since K 6∈ H∗

i , and
|H∗

i | = n, we can choose I1, . . . , In to lie in H∗
i . AprioriBNS

now prunes K and all supersets J ⊇ K, but Equation 32 im-
plies that for any J ⊇ K: I(J) ≤ I(I1), . . . , I(In). There-
fore, (Inv1) is satisfied for Ri+1 = Ri∪ (supersets of K) and
the “new” Hi (Hi\ rejected hypotheses).

Step 2d
Let K be one of the attribute sets rejected in this step. The
condition of rejection implies Equation 33; we omit the con-
fidence parameter of EI for brevity. Let I ′′ be any attribute
set in H∗

i . Equation 33 implies Equation 34. Together with
assumption (A1a), this leads to Equation 35.

Î(K) ≤ min
I∈H∗

i

n
Î(I)− EI(I)

o
− EI(K) (33)

⇔ ∀I ′′ ∈ H∗
i : Î(K) + EI(K) ≤ Î(I ′′)− EI(I ′′)(34)

⇒ ∀I ′′ ∈ H∗
i : I(K) ≤ I(I ′′) (35)

Note also that a rejected hypothesis K cannot be an ele-
ment of H∗

i because otherwise the error bounds EI and Es

would have to be zero or negative which can never be the
case. Since K 6∈ H∗

i , and |H∗
i | = n, we can choose I1, . . . , In

to lie in H∗
i and Equation 35 implies 36. Since furthermore

Ri+1 = Ri ∪ {K}, Equation 36 implies (Inv1) for Ri+1 and
the “new” Hi (Hi\ rejected hypotheses); below “∃∗” abbre-
viates “there exist distinct”.

∃∗I1, . . . , In ∈ Hi\{K} : ∀j ∈ {1, . . . , n}I(Ij) ≥ I(K) (36)

This implies that (Inv1) holds for Ri+1 and the current state
of Hi after step 2d.

Step 2h
Ri+1 is not altered, Hi+1 is assigned a superset of Hi. (Inv1)
requires the existence of n elements in H. If it is satisfied
for Ri+1 and Hi (which we have shown in the previous para-
graph), it also has to be satisfied for any superset Hi+1 ⊇ Hi.
This proves that the loop invariant (Inv1) is satisfied after
each loop iteration.

Final Step (immediately before Step 3)
The main loop terminates only when Ci = ∅, from Lemma 2
we know that Uimax = ∅. Since Uimax = ∅, and G = H∗

imax

we have 2Z \ ({∅} ∪ G) = Rimax ∪ (Himax \ H∗
imax

) and it
suffices to show that all attribute sets in G are better than all
sets in Rimax and in Himax \H∗

imax
. We distinguish between

the two possible termination criteria of the main loop.

Case (a): Early stopping in Step 2e
The stopping criterion, we are assured the Equation 37 is
satisfied. By assumption (A1a), this implies Equation 38.

∀I ∈ H∗
i , I ′ ∈ Hi \H∗

i :

Î(I) + EI(I) > Î(I ′)− EI(I ′)− ε (37)

⇒ ∀I ∈ H∗
i , I ′ ∈ Hi \H∗

i : I(I) > I(I ′)− ε (38)



From the invariant (Inv1) we know that ∀K ∈
Rimax∃∗I1, . . . , In ∈ Himax : ∀j ∈ {1, . . . , n}I(Ij) ≥ I(K);
that is, for every rejected hypothesis there are n hypothe-
ses in Hi which are at least as good. Take any such
S = {I ′1, . . . , I ′n}. For every I ′ ∈ S either I ′ ∈ H∗

imax
or

I ′ 6∈ H∗
imax

. In the former case it follows immediately that
I ′ ∈ G; that is, I ′ is better than the rejected K and I ′ is in
the returned set G. If I ′ 6∈ H∗

imax
, then Equation 38 guar-

antees that every hypothesis I ∈ H∗
imax

is “almost as good
as I ′”: ∀I ∈ H∗

imax
: I(I) ≥ I(I ′)− ε. This proves case (a)

of Theorem 3.

Case (b): Stopping in Step 2f
Assumption (A2) assures Equation 39.

∀I ∈ H∗
imax
∀I ′ ∈ (Himax \H∗

imax
)I(I) ≥ I(I ′)− ε (39)

Analogously to case (a), we can argue that (Inv1) guar-
antees that ∀K ∈ Rimax∃∗I1, . . . , In ∈ Himax : ∀j ∈
{1, . . . , n}I(Ij) ≥ I(K). Identically to case (a), this implies
Theorem 3.

We have shown that if the main loop terminates, the out-
put will be correct. It is easy to see that the loop will in fact
terminate after finitely many iterations: Since Z is finite,
the candidate generation has to stop at some point i with
Ci = ∅. When the sample size becomes large enough, the
loop will be exited in step 2f. This is guaranteed because a
guaranteed fraction δ

3
is reserved for the error bound of step

2f and the error bound (Table 2) vanishes for large sample
sizes.

Risk of violation of (A1a), (A1b), and (A2)
We have proven Theorem 3 under assumptions (A1a),
(A1b), and (A2). We will now bound the risk of a violation
of any of these assumptions during the execution of Apri-
oriBNS. We first focus on the risk of a violation of (A1a).

A violation of |I(I)− Î(I)| ≤ EI can occur in any iteration
of the main loop and for any I ∈ Hi (Equation 40). We
use the union bound to take all of these possibilities into
account (Equation 41). Lemma 3 implies Equation 42.

Pr[(A1a) is violated for some I in some iteration]

= Pr

24imax_
i=1

_
I∈Hi

˛̨̨
Î(I)− I(I)

˛̨̨
> EI (I)

35 (40)

≤
imaxX
i=1

X
I∈Hi

Pr

"˛̨̨
Î(I)− I(I)

˛̨̨
> EI

„
I,

δ

3|Hi|i(i + 1)

«#
(41)

≤
imaxX
i=1

X
I∈Hi

δ

3|Hi|i(i + 1)
=

δ

3

imaxX
i=1

1

i(i + 1)
(42)

The risk of violating assumption (A1b) can be bounded
similarly in Equations 43 and 44.

Pr[(A1b) is violated for some I in some iteration]

= Pr

24imax_
i=1

_
I∈Hi

˛̨
ŝupp(I)− supp(I)

˛̨
> Es (I)

35 (43)

≤
imaxX
i=1

X
I∈Hi

Pr

"˛̨
ŝupp(I)− supp(I)

˛̨
> (44)

Es

„
I,

δ

3|Hi|i(i + 1)

«#
=

δ

3

imaxX
i=1

1

i(i + 1)

We now address the risk of a violation of (A2). In step
2b, H∗

i is assigned the hypotheses with highest values of

Î(I); i.e., for all I ∈ H∗
i and I ′ 6∈ H∗

i : Î(I) ≥ Î(I ′). For
(A2) to be violated, there has to be an I ∈ H∗

imax
and an

I ′ ∈ Himax \H∗
imax

such that I(I) < I(I ′)− ε but Equation
45 is satisfied in spite. This is only possible if there is at least

one hypothesis I ∈ Himax with |I(I)−Î(I)| > ε
2
. Intuitively,

Equation 45 assures that all elements of Himax have been
estimated to within a two-sided confidence interval of ε

2
;

since all I ∈ H∗
imax

appear at least as good as I ′ 6∈ H∗
imax

,
I ′ can be at most ε better than I.

Ed

0@n
BN
imax

, n
D
imax

,
δ

“
1− 2

3

Pi
j=1

1
j(j+1)

”
P

I∈Hi
|Dom(I)|

1A ≤
ε

2
(45)

In Equation 46 we substitute Equation 45 into this condi-
tion. We expand the definition of interestingness in Equa-
tion 47, use the union bound in Equation 48 and refer to
Lemma 5 in Equation 49.

Pr

»
∃I ∈ Himax : |Î(I)− I(I)| >

ε

2

–

≤ Pr

"
∃I ∈ Himax : |Î(I)− I(I)| >

Ed

0@n
BN
imax

, n
D
imax

,
δ

“
1− 2

3

Pimax
j=1

1
j(j+1)

”
P

I∈Hi
|Dom(I)|

1A#
(46)

≤ Pr

"
∃I ∈ Himax , i ∈ Dom(I) :˛̨̨

|P̂ BN
I (i)− P̂

D
I (i)| − |P BN

I (i)− P
D
I (i)|

˛̨̨
>

Ed

0@n
BN
imax

, n
D
imax

,
δ

“
1− 2

3

Pimax
j=1

1
j(j+1)

”
P

I∈Hi
|Dom(I)|

1A#
(47)

≤
X

I∈Himax
,

i∈Dom(I)

Pr

"˛̨̨
|P̂ BN

I (i)− P̂
D
I (i)| − |P BN

I (i)− P
D
I (i)|

˛̨̨
>

Ed

0@n
BN
imax

, n
D
imax

,
δ

“
1− 2

3

Pimax
j=1

1
j(j+1)

”
P

I∈Hi
|Dom(I)|

1A#
(48)

≤
X

I∈Himax
,

i∈Dom(I)

δ
“
1− 2

3

Pimax
j=1

1
j(j+1)

”
P

I∈Hi
|Dom(I)|

(49)

= δ

0@1−
2

3

imaxX
j=1

1

j(j + 1)

1A (50)

We can now calculate the combined risk of any violation of
(A1a), (A1b), or (A2) using the union bound in Equation
51; this risk can be bounded to at most δ in Equation 52
(note that

P∞
i=1

1
i(i+1)

= 1).

Pr[(A1a), (A1b), or (A2) violated during execution]

≤
2δ

3

imaxX
i=1

1

i(i + 1)
+ δ

0@1−
2

3

imaxX
i=1

1

i(i + 1)

1A (51)

= δ

imaxX
i=1

1

i(i + 1)
< δ (52)

This completes the proof of Theorem 3.
Together, Theorems 3 and 2 prove Theorem 1.


