Accurate Schema Matching on Streams

Szymon Jaroszewicz!, Lenka Ivantysynova?, Tobias Scheffer?

!National Institute of Telecommunications, Warsaw, Poland, sj@cs.umb.edu
2Humboldt-Universitéit zu Berlin, Germany
{ivantysy,scheffer}@informatik.hu-berlin.de

Abstract. We address the problem of matching imperfectly docu-
mented schemas of data streams and large databases. Instance-level
schema matching algorithms identify likely correspondences between at-
tributes by quantifying the similarity of their corresponding values. How-
ever, exact calculation of these similarities requires processing of all
database records—which is infeasible for data streams. We devise a fast
matching algorithm that uses only a small sample of records, and is yet
guaranteed to match the most similar attributes with high probability.
The method can be applied to any given (combination of) similarity
metrics that can be estimated from a sample with bounded error; we
apply the algorithm to several metrics. We give a rigorous proof of the
method’s correctness and report on experiments using large databases.

1 Introduction

In many practical situations, data mining processes are preceded by a prepro-
cessing step in which multiple heterogeneous transaction databases are inte-
grated into a single data warehouse. Integration requires the identification of se-
mantic correspondences between attributes across multiple transaction database
schemas [2]. In practical applications that often involve large databases, schema
matching is a tedioustask, often further hindered by insufficient documentation.

Research revolves around the question how schema matching can be sup-
ported, or even automated, effectively. Schema matching algorithms generally
match elements of the distinct schemas such that some similarity criterion is
maximized. Schema-level matchers utilize a similarity criterion that refers to
schema information such as attribute names, descriptions, or the schemas’ struc-
ture. Unfortunately, the available schema information is often insufficient. Cases
arise in which attribute names are opaque and clues on their semantics can only
be found by inspecting the attributes’ values. Instance-level schema matchers
quantify the similarity of attributes by comparing properties of their values.

In order to guarantee that the produced mapping in fact maximizes the
chosen similarity function, instance-level matchers need to exercise at least one
entire pass over the databases. A complete pass is unreasonable for transactional
databases that record high-speed data streams as they occur, for instance, in
retail chains, and telecommunication and banking applications and can easily
grow into the order of hundreds of terabytes. The ad-hoc solution of processing

only a small sample of transactions results in a loss of any guarantee on the
optimality of the produced match. Known methods that utilize sampling do not
guarantee any properties of the retrieved mappings.

We formalize the matching problem in a way that is both mathematically
rigorous and closely tied to practical applications. We devise a schema matching
algorithm, which is guaranteed to produce a “near-optimal” match; we detail the
term “near-optimal” by means of probabilistic bounds on attribute similarity.

A useful similarity metric for the matching problem at hand is a base require-
ment for any sampling algorithm, and designing such a problem-specific metric
clearly is a challenging issue in itself. Therefore, we design our solution to be
generic with respect to the similarity criterion; weighted combinations of several
schema-level and instance-level criteria can be applied. We review a selection of
criteria, many more can be inserted into the algorithm.

The rest of this paper is organized as follows: after reviewing related work in
Section 2, we formalize the problem setting in Section 3. We phrase the schema
matching problem in a way that pays tribute to typical practical application
scenarios, and that is sufficiently rigid to allow us to state and rigorously prove
the correctness of our solutions. We detail our solution to the problem in Section
4, discuss attribute similarity metrics in Section 5 and report on experimental
results on real-world data in Section 6. Section 7 concludes.

2 Related Work

Bernstein and Rahm [13] provide an overview of the schema matching problem
and a taxonomy of schema matching algorithms. Matchers can be dichotomized
into schema-level and instance-level methods. Schema-level matchers maximize
some similarity function that refers to attribute names and other structural
information (e.g., [12,6,4]) whereas the similarity metrics employed by instance-
level approaches [10] refer to the instance data; that is, to the attributes’ values.

The instance-level approach can even be applied in the complete absence of
useful schema-level information and it allows to even identify complex matching
relations — e.g., a factor-equivalence relation between an income attribute in
Euros and a corresponding salary attribute in Yen [3].

The schema matching problem also plays a role in the exchange of messages
in ecommerce applications [1], or the integration of databases due to merges or
other changes of organizational structures. Most practical systems — such as Clio
[16], SemlInt [11], and LSD [5] — combine schema- and instance-level similarity
metrics. Assembling and balancing the similarity metric requires experience and
domain knowledge; machine learning [5] and experiments on synthetic matching
problems can guide the parameter optimization [14].

Our algorithm relies on sampling and on data-dependent confidence bounds.
Sampling strategies play an important role for a range of data mining tasks.
They have been utilized to find the approximately most interesting association
rules [7,15], or the most significant differences between graphical models and
corresponding databases [9].

3 Approximately Optimal Schema Matching

We focus on the following schema matching problem setting. Given are two
schemas R and S over attributes (r1,...,r,) and (s1,...,s,,), respectively. The
goal is to identify semantically identical pairs of attributes (r;, s;).

In order to approach this problem computationally, a similarity metric
fr,s(ri,s;) quantifies the similarity of attributes r; and s;. The similarity can
exploit schema-level information such as attribute names if such information is
available, and instance-level information. Instance-level similarity metrics refer
to the values that occur in R and S. Naturally, instance-level information is
always available—unless the databases are empty or inaccessible.

The contribution of this paper is relevant when the similarity metric
fr,s(ri, s;) involves instance-level information. In order to evaluate an instance-
level metric exactly, it is necessary to exercise a pass over the databases R and S;
the main challenge that we address is that this is computationally infeasible for
large databases and impossible for streams. The similarity criterion fg s(rs, s;)
is problem-specific and given in advance. We will only assume that it is possible
to obtain an estimate of fr g that lies within a bounded confidence interval.

In practice, the schema matching process is highly interactive. A user typi-
cally seeks to find out which attributes in R have counterparts in 5. We phrase
this problem setting as follows. We seek to construct an algorithm that finds, for
every attribute in R, a set of the k best matching candidates in S, sorted by their
stmialarity to the attribute from R, and vice versa for all attributes in S. In ad-
dition, the algorithm has to order all attributes in R and S by their likelihood of
having a counterpart in the other schema. Based on a result of this form, a user
may inspect the sorted attributes and their alleged matches and may dismiss all
proposed matches occurring after some point as unlikely.

Our formulation of the problem setting builds upon e-correct orderings of
sequences. In an e-correct ordering, values are sorted in decreasing order, but
in case of near-ties between adjacent values (differences of no more than €), any
ordering is considered correct. The € = 0 case corresponds to a regular ordering.

Definition 1 (¢e-Correct Ordering). A sequence of values (xy,...,xy) is in
e-correct ordering if, for all i between 1 and k and all j between 1 and i — 1, the
inequality x; > x; — € 1s satisfied.

In order to formalize the approzimately optimal matching problem we refer to
stochastic approximations with confidence bounds. Intuitively, the parameters
€ and ¢ that are involved have the following meaning. When the algorithm is
restarted multiple times, then the resulting match is “c-close” to the optimal
match in a fraction of at least 1 — § of all runs.

Definition 2 (Approximately Optimal Matching). Given schemas R and
S over attributes (r1,...,rn) and (s1,...,sm) respectively, a desired number of
matches k, approximation and confidence parameters € and 9, find a sequence of
k attributes (sq,, - .., Si,) for eachr; in R, a sequence of k attributes (rj,,...,7j,)
for each s; in S, and permutations " and 7° such that, with confidence 1 — 9,

1. for all attributes r;, the retrieved sequence (si,,...,S;) contains the
best matching attributes (accurately up to €) and, analogously, the se-

quence (rj,,...,rj,) contains the best matching attributes for each s;;
i.e., there is no offending sy & (siy,.-.,si,) such that frs(ri,sy) >
mingr e, i fRs(ri,sie) + € and no vy & (rj,...,rj,) such that
frs(rj,sj) > mingeeg, iy frs(rye,s;) +&;

2. for all attributes r;, the corresponding (si,,...,S;) are ordered by their
similarity to r; and for all s;, the corresponding (rj,,...,rj,) are or-
dered by their similarity to sj; i.e., (frs(ri,si),---,frs(ri,si)) and
(fr,s(rj1,85),. .., fr,s(rj.,8;)) are e-correct orderings;

3. the permutations 7" and w° sort the attributes of R and S, respectively, ac-
cording to their likelihood of having a matching partner in the other schema;
i.e., the sequences (max; fr s(rzr(1),85),---, maxjy fr s(rzr(n),s;j)) and
(maxy fr,s(rir,Sxs(1)), .-+ maXy fr s(rir, Spe(m))) are e-correct orderings.

4 Schema Matching Algorithms

We are about to present two algorithms that estimate the similarity of attributes
based on samples R’ and S’ of records, drawn at random from R and S. They
differ from each other in the way they derive the required sample size.

The first algorithm, FSM, determines a “worst-case” sample size without
accessing the database or observing the stream; it only depends on the similarity
metric and parameters € and §. The sample size suffices to assure the quality
guarantee for any possible database; it may be pessimistically large for a given,
particular database. The second algorithm is called progressive FSM. Its sample
size depends on the database at hand; the sample-dependent bounds used within
progressive FSM are technically more involved than the worst-case bounds of
regular FSM. Therefore, FSM is a natural baseline for progressive FSM.

Both algorithms use similarity confidence intervals which bound the similar-
ity fr,s. A similarity confidence interval lays out a range of values such that,
with a probability of at least 1 — ¢, the true similarity lies within that range. The
confidence interval is wide for small samples and tightens for increasingly large
samples. Similarity confidence intervals can be constructed for a wide range of
instance-level similarity functions.

Definition 3 (Similarity Confidence Interval). Let frs be an arbitrary
similarity function. Let R', S’ be random samples from R and S; Then, | fr s |s
and [fr 15 form a similarity confidence interval if, with probability at least
1 -4, there is no pair of any r; € R and s; € S that violates

Lfr,s(ri,85) |6 < fros(riys5) < [fre s (ri,s5)]s. (1)

The first algorithm, “FSM”, is detailed in Table 1. In Step 1, it uses a binary
search to determine the smallest sample size N that suffices to guarantee that
the similarity confidence intervals are tight up to e. For a given similarity metric

Table 1. FSM: Fast Schema Matching Algorithm.

Input: Schemas R and S, respectively; desired number of candidates k; approximation
and confidence parameters € and J.

1. Let N be the smallest number such that [fr s/ (-,)]s — [fr',s'(-,-)]s < € when
R’ and S’ contain N records. (Where we parameterize the bound with “” this
means “for any argument”.)

2. Draw N records at random from R and S, let them be R' and S’

3. For all (ri,s;), determine frr s (ri,5;5) = 5([frr,5'(ri,$)1s + Lfr,s0 (ri,55)]s)
based on the samples.

4. For all attributes r;: Let H,, be the k elements s; that maximize Frrsr(ri, s5);
For all attributes s;: Let H] be the k elements r; that maximize fRz,Sz (r,85).

5. Let ©" sort the attributes in R by max,, exsy, fRz,Sr (ri, s4); let w° sort the at-
tributes in S by max, ey, fRz,Sr (rjr,55).

6. Return n", 7°, and for all attributes p in R U S: return the sequence of elements
in H, sorted by fR/,Sr (p,q) as k best matches.

fr,s, the corresponding confidence interval is inserted into the algorithm. (Pa-
rameterization with “” indicates “for any pair of attributes”.) By contrast, the
progressive FSM algorithm described in Table 2 starts to draw batches of records
from the databases and then calculates confidence intervals in each step that de-
pend on the sample processed so far. The progressive algorithm can terminate
earlier than the sample-independent bound would have suggested, depending on
characteristics of the database.

Our main result is that both, the FSM and progressive FSM algorithm solve
the approximately optimal matching problem.

Theorem 1. Let [fr s(-,-)]s and |fr.s/(-,-)]s be arbitrary similarity confi-
dence bounds that satisfy Definition 3. Then both, the FSM (Table 1) and pro-
gressive FSM algorithm (Table 2) find, for any pair of schemas R and S and any
input parameters 0 < § < 1, 0 < g, and k, an approzimately optimal matching
as detailed in Definition 2.

The proof of Theorem 1 is given in Appendix A of [8]. Copies of the imple-
mentation can be obtained for research purposes from the authors.

5 Attribute Similarity Metrics

We will now briefly sketch three exemplary similarity measures for attributes; we
refer the reader to the corresponding technical report [8] for the full treatment.
Various similarity measures require measuring the similarity of two probability
distributions. For this purpose we will use a measure E based on Euclidean
distance. Let P = (p1,...,pn) and @ = (q1, - - .,qn) be probability distributions.
E is defined as E(P,Q) =2 — Y1, (pi — ¢;)*. We subtract the sum of squares
from 2 in order to guarantee that E has high values for similar distributions,
while remaining nonnegative.

Table 2. Progressive FSM Algorithm.

Input: Schemas R and S, respectively; desired number of candidates k; approximation
and confidence parameters € and J.

Let R = S’ = (). Let the batch size parameter be 10,000, by default. Let ¢t = 1.

Let N be the smallest number such that [frs s/ (-,)]% — |fr,s'(,)] s < & when R’
and S’ contain N records. Let T = N/batch size.

Fort=1...T Repeat:

1. Let 6,5 = L
2t(t+1)
2. Draw batches of records from R and S, add them to R’ and S, respectively.
3. For all (rq,s;), calculate |frr s:(ri,sj)ls., [fr,s/(ri;si)ls,, and frrsr(riys5) =
3([frest (riysi)1s, + Lfrr s (i, 89)15.)- (Lfrr s (riy 7) 15 + [fre,s0 (ris 55)16)-
4. If all pairs (7, s;) satisfy that [frr s/ (i, 85)]s. — [frr.s' (73, 85)]s; < € then break.

For all attributes r;: Let H; be the k elements s; that maximize er,S/ (r4,s;); For
all attributes s;: Let HS, be the k elements r; that maximize fr/ s (ri, s;).

Let =" sort the attributes in R by MaXsrcH;, er,Sr (rs, s7); let 7 sort the attributes
in S by max, ey, erysl (ry,s5).

Return 7", n°, and for all attributes p in R U S: return the sequence of elements in
H;; sorted by fr/ s/(p,q) as k best matches.

Euclidean Distance. Given two attributes r and s with identical domains, a
natural measure of their similarity is given by fg’s(r, s) = E(P,,Q), where
P, and @, are probability distributions of r and s respectively. The upper
and lower bounds are then

Nr

s (s 9)s = {2 =3 (ol)% + (il)* = 2Upril gy Lawil)
[fFs ()]s = {2 - fj((m«,ij 27+ (9])7 = 2pral g Tl) }-

Permuted Euclidean Distance. When comparing two categorical attributes,
it is not clear which values correspond to each other. Therefore, all possible
permutations of values in the domains of attributes have to be considered.
The similarity measure is now defined as

Fis(rs) = max E(P.,7Q,), (2)
’ rell(n)
where IT(n) is the set of all permutations of {1,...,n}. The following simi-

larity confidence intervals satisfy Definition 3.
L5 (1))5 = max| FE o (rms))oi [FiPs (rys)]s = max[fE o (r,ms)]s.
nell mell

Bigrams. This measure is based on the distribution of bigrams (i.e., two char-
acter subsequences) in attribute values. We hash all possible bigrams into B

buckets; the resulting bounds are

Nn.r

s s)s =2 = 32|12l 4)° + ([) = 2Lpri) g Lawi) 1]
A8)]s = 2= 3 (il)+ (il)2 = 2lbmil g Taw il]

Character Proportions. This measure compares the proportions of charac-
ters that fall into predefined subsets. We use four subsets: lowercase letters,
uppercase letters, digits, and an additional set for all remaining printable
characters. Vector P" = (P, P;, Py, P}) contains the averaged proportions
of records belonging too these classes. The similarity measure can now be
defined as ff; ¢(r,s) = E(P",P®). Bounds for ff, ¢ are defined analogously
to the above case.

Weighted Sum. A weighted sum of all similarity measures forms the most
general case. Any weighted subset of measures can be obtained by setting
weights to either zero or desired nonzero values.

wen [R5 (r,8) + wpg f7% (1, 5) + we [5 (1, 5)

WrE + WBg + We

frs(r,s) = 3)
The resulting bound for the weighted sum is simply the weighted sum of
the corresponding bounds.

Combining Schema- and Instance-Level. When schema-level information
is available — for instance in the form of attribute names or descriptions —
it is advisable to utilize this information. The similarity function can com-
bine schema- and instance-level components: fg s(r,s) = wg fo"eme(r, s) +
wr 57 (r, s). For instance, f¢"“* can quantify the similarity of at-
tributes’ names and descriptions. Since fS¢h¢™@ is independent of the
database, it follows immediately that the bounds are

Lfre s (r, 8)] = ws f31™ + wr | [0 (r,)], and

[fr s (r,s)] = wg fEREM 4oy fflﬁfgtfmce (r,s)].

6 Experiments

In our experiments we want to investigate (a) whether the FSM and progressive
FSM algorithms are practically applicable for large databases; we want to (b)
compare the performances of FSM (using Hoeffding’s and Normal bounds), pro-
gressive FSM (using Normal bounds), and a baseline instance-based matcher.
The baseline matcher uses the same similarity function but processes the en-
tire database, thus always retrieving the matches that maximize the similarity
on the database. Theorem 1 guarantees that FSM and progressive FSM return
approximately optimal matches; nevertheless, we will (¢) empirically study the
chance of the algorithms finding the correct matches for attributes.

sample size for census with respect to e sample size for kddcup98 with respect to & sample size for KDDcup99 with respect to ¢

Fs|
FSM, normal ---+--- Af 90000 Esm normal ---a--- /4 7 90000 EsM, normal ---a---
L progressive FSM —H—

FS!
FSM, normal
80000 |- Pprogressive FSM —H—

sample size

oy

8

8

8

8
sample size
sample size

@

3

8

8

8

L L L L L L L L L L L L L L L
04 035 03 025 02 015 01 04 035 03 025 02 015 01 04 035 03 025 02 015 01
B B e

Fig. 1. Sample size against ¢ for schema matching algorithms.

execution time for census with respect to e execution time for kddcup98 with respect to ¢ execution time for kddcup99 with respect to e

500

400

300 -

time in sec
&
8
time in sec

FSM
progressive FSM ---a---
basel

time in sec
IS
&

200 F

r o A S R L L L
1 09 08 07 06 05 04 03 02 01 1 09 08 07 06 05 04 03 02 01 1 09 08 07 06 05 04 03 02 0.1
e e e

Fig. 2. Execution time against € for schema matching algorithms.

The similarity function used for all experiments is the weighted average of
all similarity functions studied in Section 5, with all weights fixed to 1. We
use three publicly available databases: the KDDCup 1998 customer relationship
management database ! contains with 481 attributes and over 190,000 records;
the KDDCup 1999 database 2 with nearly 5 million records and 42 attributes,
17 of which are almost always zero; and the census database 2 with 42 attributes
(the majority of them contain text) and close to 300,000 records.

In order to conduct controlled experiments, we randomly split each of the
databases into two parts containing half of the records. We then use the schema
matching algorithms to match the two halves of the databases. When the algo-
rithm matches an attribute with itself, this is counted as a true positive. Based
on the number of attributes that are matched with itself, we determine precision,
recall, and F-measure.

Figure 1 shows the number of database records that FSM and progressive
FSM draw from the database and process before finding an approximately op-
timal match. For the census and KDD Cup 1998 data, the early stopping crite-
rion (Step 4) of progressive FSM occasionally kicks in, reducing the number of
samples on average compared to FSM. For the KDD Cup 1999 database, early
stopping in Step 4 is never exercised. The reason is that due to the sparseness of
the data the matching problem is very hard. For all databases, we observe that
the Normal bounds reduce the required sample size over the Hoeffding bounds
used by the FSM algorithm.

Figure 2 compares the execution time of FSM, progressive FSM, and the
baseline algorithm that executes a pass over the entire database for varying val-
ues of ¢ (with 6 = 0.1). Again, we observe that progressive FSM is the fastest

! http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html
% http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
% http://kdd.ics.uci.edu/databases/census-income/census-income.html

fmeasure for census with respect to e fmeasure for kdd9Bcup with respect to ¢ fmeasure for kddcupg9 with respect to ¢

T s
04l progressive FSM —x—

T T
progressive FSM ---a---
baseline —— 0.96

fmeasure
o
©
8
£
fmeasure
o
©
fmeasure

- FSM
\e” [progressive FSM ---a--- |
N i 0.84 baseline

0.9 S A S o8 01 S S S S S
1 09 08 07 06 05 04 03 02 01 1 09 08 07 06 05 04 03 02 01 1 09 08 07 06 05 04 03 02 01
e e e

Fig. 3. F-measure against ¢ for schema matching algorithms.

method, followed by FSM. For the KDD Cup 1999 database, the baseline algo-
rithm exceeds our patience.

Finally, Figure 3 compares the F-measure of FSM, progressive FSM and the
baseline algorithm that processes the entire database. For the census and KDD
Cup 1998 databases, the F-measures are above 0.9 and 0.8, respectively, even
for ¢ = 1! For decreasing values of ¢, the F-measure grows further. The KDD
Cup 1999 database, by contrast, is very difficult. Since many attributes almost
always assume a value of zero, most similarity values are very close and it is
difficult to identify the best match; the F-measure is lower, accordingly.

Note that the low F-measure for the KDD Cup 1999 database is not in con-
tradiction to the guarantee provided by FSM: The F-measure quantifies how fre-
quently attributes are matched to their actually semantically equivalent partner
(in our experimental setting, to themselves). By contrast, Theorem 1 guarantees
that the retrieved match for each attribute is “nearly as good as the optimal
match”. The baseline algorithm processes the entire database in the first place
and therefore obtains a constantly high F- measure for the census and KDD
Cup 1998 databases. For the KDD Cup 1999 problem, the baseline algorithm
exceeds our patience, no result can be provided. For the FSM and progressive
FSM algorithms, execution time and sample size as well as the quality of the
solution depend on the parameters € and 4.

7 Conclusion

Our formulation of the approximately optimal schema matching problem is
closely tied to practical applications and at the same time mathematically rig-
orous. The FSM and progressive FSM algorithms provably solve this problem;
that is, for each attribute of either schema, they find the k& approximately best
matching partners, and approximately order them according to their similarity.
Finally, the attributes in either schema are approximately sorted according to
their likelihood of having a partner in the other schema.

The required sample size of the algorithms depends on parameters € and 4,
but is independent of the database size. The database can even be an infinite
stream. For the progressive FSM algorithm, sample size depends on the actual
databases, if there are some similar but many dissimilar potential matches, then
progressive FSM can identify the similar matches faster and terminate early.

Our experiments lead to a number of conclusions. (a) FSM and progressive
FSM are feasible and practically applicable for streams and very large databases.

They can be applied to a range of similarity metrics; we specified bounds for a
selection of measures that can easily be extended. (b) FSM with Normal bounds
and progressive FSM are equally fast for difficult matching problems with many
very similar attributes. Progressive FSM is faster than FSM otherwise. The
Normal bounds outperform the Hoeffding bounds. (c) While the theoretical re-
sults guarantee an approximately optimal match, we observe empirically that
attributes are often actually matched to semantically equivalent attributes.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

D. Aumueller, H. Do, S. Massmann, and E. Rahm. Schema and ontology matching
with COMA++. In Proceedings of the ACM SIGMOD Conference, 2005.

P. Bernstein and E. Rahm. Data warehouse scenarios for model management. In
Proceedings of the International Conference on Entity Relationship Modeling, 2000.
R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap: Discovering
complex semantic matches between database schemas. In Proceedings of the ACM
SIGMOD Conference, 2004.

H.-H. Do and E. Rahm. Coma - a system for flexible combination of schema
matching approaches. In Proceedings of the International Conference on Very
Large Databases, 2002.

A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data
sources: a machine-learning approach. In Proceedings of the ACM SIGMOD Con-
ference, 2001.

A. Doan, P. Domingos, and A. Levy. Learning source descriptions for data inte-
gration. In Proceedings of te WebDB Workshop, 2000.

C. Domingo, R. Gavalda, and Osamu Watanabe. Adaptive sampling methods for
scaling up knowledge discovery algorithms. Data Mining and Knowledge Discovery,
6(2):131-152, 2002.

S. Jaroszewicz, L. Ivantysynova, and T. Scheffer. Accurate schema matching on
streams. Technical report, Humboldt-Universitat zu Berlin, 2006.

S. Jaroszewicz and T. Scheffer. Fast discovery of unexpected patterns in data,
relative to a bayesian network. In Proceedings of the ACM SIGKDD Conference,
2005.

W. Li and C. Clifton. Semantic integration in heterogeneous databases using neural
networks. In Proceedings of the International Conference on Very Large Databases,

1994.

W. Li and C. Clifton. Semint: a tool for identifying attribute correspondences in
heterogeneous databases using neural network. Data and Knowledge Engineering,
33(1):49-84, 2000.

J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In Proceedings of the International Conference on Very Large Databases, 2001.

E. Rahm and P. Bernstein. A survey of approaches to automatic schema mapping.
VLDB Journal, 10:334-350, 2001.

M. Sayyadian, Y. Lee, A. Doan, and Arnon Rosenthal. Tuning schema matching
software using synthetic scenarios. In Proceedings of the VLDB Conference, 2005.
T. Scheffer and S. Wrobel. Finding the most interesting patterns in a database
quickly by using sequential sampling. Journal of Machine Learning Research,
3:833-862, 2002.

L. Yan, R. Miller, L. Haas, and R. Fagin. Data driven understanding and refinement
of schema mappings. In Proceedings of the ACM SIGMOD Conference, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

