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Abstract—The aim of this paper is to present an axiomati-

zation of a generalization of Shannon’s entropy starting from

partitions of finite sets. The proposed axiomatization yields

as special cases the Havrda-Charvat entropy, and thus, pro-

vides axiomatizations for the Shannon entropy, the Gini in-

dex, and for other types of entropy used in classification and

data mining.
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I. Introduction and Basic Notations

THE notion of partition of a finite set is naturally linked
to the notion of probability distribution. Namely, if A

is a finite set and π = {B1, . . . , Bn} is a partition of A, then
the probability distribution attached to π is (p1, . . . , pn),
where pi = |Bi|

|A| for 1 ≤ i ≤ n. Thus, it is natural to con-
sider the notion of entropy of a partition via the entropy
of the corresponding probability distribution. Axiomatiza-
tions for entropy and entropy-like characteristics of proba-
bility distributions represent a problem with a rich history
in information theory. Previous relevant work include the
results of A.I. Khinchin [11], D.K. Faddeev [5], R.S. In-
garden and K. Urbanik [8], A. Rényi [14] who investigated
various axiomatizations of entropy, and Z. Daróczy who
presented in [4] an unified treatment of entropy-like char-
acteristics of probability distributions using the notion of
information function.

In our previous work (see [15], [9]) we introduced an
axiomatization for the notion of functional entropy. This
numerical characteristic of functions is related to the com-
plexity of circuits that realize functions (cf.[1]) and serves
as an estimate for power dissipation of a circuit realizing a
function (cf.[7]) and is linked to the notion of entropy for
partitions, since every function f : A −→ B between the
finite sets A,B defines a partition on its definition domain
A whose blocks are {f−1(b) | b ∈ Ran(f)}.

Information measures, especially conditional entropy of
a logic function and its variables, have been used for mini-
mization of logic functions (See [12] and [2]).

In a different direction, starting from the notion of im-
purity of a set relative to a partition, we found a common
generalization of Shannon entropy and of Gini index and
we used this generalization in clustering of non-categorial
data (see [16]). P. A. Devijer used the Gini index in pattern
recognition in [3].
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Our main result is an axiomatization of this generaliza-
tion that illuminates the common nature of several known
ways of evaluating concentrations of values of functions.

All sets considered in the following discussion are
nonempty and finite unless stated explicitly otherwise. The
sets R, R≥0, Q, N, N1 denote the set of reals, the set of
nonnegative reals, the set of rational numbers, the set of
natural numbers, and the set {n ∈ N | n ≥ 1}, respec-
tively. The domain and range of a function f are denoted
by Dom(f) and Ran(f) respectively.

Let PART(A) be the set of partitions of the nonempty
set A. The class of all partitions of finite sets is denoted
by PART. The one-block partition of A is denoted by ωA.
The partition {{a} | a ∈ A} is denoted by ιA.

If π, π′ ∈ PART(A), then π ≤ π′ if every block of π is
included in a block of π′. Clearly, for every π ∈ PART(A)
we have ιA ≤ π ≤ ωA.

If A,B are two disjoint and nonempty sets, π ∈
PART(A), σ ∈ PART(B), where π = {A1, . . . , Am}, σ =
{B1, . . . , Bn}, then the partition π + σ is the partition of
A ∪ B given by

π + σ = {A1, . . . , Am, B1, . . . , Bn}.

Whenever the “+” operation is defined, then it is eas-
ily seen to be associative. In other words, if A,B,C are
pairwise disjoint and nonempty sets, and π ∈ PART(A),
σ ∈ PART(B), τ ∈ PART(C), then π+(σ+τ) = (π+σ)+τ .
Note that if A,B are disjoint, then ιA + ιB = ιA∪B. Also,
ωA + ωB is the partition {A,B} of the set A ∪ B.

If π = {A1, . . . , Am}, σ = {B1, . . . , Bn} are partitions of
two arbitrary sets, then we denote the partition {Ai ×Bj |
1 ≤ i ≤ m, 1 ≤ j ≤ n} of A × B by π × σ. Note that
ιA × ιB = ιA×B and ωA × ωB = ωA×B .

II. An Axiomatization of Generalized Entropy

We introduce below a system of four axioms satisfied by
several types of entropy-like characteristics of probability
distributions.

Definition II.1: Let β ∈ R, β > 0, and let Φ : R
2
≥0 −→

R≥0 be a continuous function such that Φ(x, y) = Φ(y, x),
Φ(x, 0) = x for x, y ∈ R.

A (Φ, β)-system of axioms for a partition entropy H :
PART(A) −→ {x ∈ R | x ≥ 0} consists of the following
axioms:

(P1) If π, π′ ∈ PART(A) are such that π ≤ π′, then
H(π′) ≤ H(π).

(P2) If A,B are two finite sets such that |A| ≤ |B|, then
H(ιA) ≤ H(ιB).

(P3) For every disjoint sets A,B and partitions π ∈
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PART(A), and σ ∈ PART(B) we have:

H(π + σ)

=

(

|A|

|A| + |B|

)β

H(π) +

(

|B|

|A| + |B|

)β

H(σ)

+H({A,B}).

(P4) If π ∈ PART(A) and σ ∈ PART(B), then

H(π × σ) = Φ(H(π),H(σ)).

Lemma II.2: For every (Φ, β)-entropy H and set A we
have H(ωA) = 0.

Proof: Let A,B be two sets that have the same cardi-
nality, |A| = |B|. Since ωA + ωB is the partition {A,B} of
the set A ∪ B, by Axiom (P3) we have

H(ωA + ωB) =

(

1

2

)β

(H(ωA) + H(ωB)) + H({A,B}),

which implies H(ωA) + H(ωB) = 0. Since H(ωA) ≥ 0 and
H(ωB)) ≥ 0 it follows that H(ωA) = H(ωB) = 0.

Lemma II.3: Let A,B be two disjoint sets and let π, π′ ∈
PART(A ∪ B) be defined by π = σ + ιB and π′ = σ + ωB ,
where σ ∈ PART(A). Then,

H(π) = H(π′) +

(

|B|

|A| + |B|

)β

H(ιB).

Proof: By Axiom (P3) we can write:

H(π) =

(

|A|

|A| + |B|

)β

H(σ)

+

(

|B|

|A| + |B|

)β

H(ιB) + H({A,B}),

and

H(π′) =

(

|A|

|A| + |B|

)β

H(σ)

+

(

|B|

|A| + |B|

)β

H(ωB) + H({A,B})

=

(

|A|

|A| + |B|

)β

H(σ) + H({A,B})

(by Lemma II.2).

The above equalities imply immediately the equality of the
lemma.

Theorem II.4: For every (Φ, β)-entropy and partition
π = {A1, . . . , An} ∈ PART(A) we have:

H(π) = H(ιA) −
n

∑

j=1

(

|Aj |

|A|

)β

H(ιAj
).

Proof: Starting from the partition π consider the fol-
lowing sequence of partitions in PART(A):

π0 = ωA1
+ ωA2

+ ωA3
+ · · · + ωAn

π1 = ιA1
+ ωA2

+ ωA3
+ · · · + ωAn

π2 = ιA1
+ ιA2

+ ωA3
+ · · · + ωAn

...

πn = ιA1
+ ιA2

+ ιA3
+ · · · + ιAn

.

Let σj = ιA1
+ · · · + ιAj

+ ωAj+2
+ · · · + ωAn

. Then,
πj = σj + ωAj+1

and πj+1 = σj + ιAj+1
; therefore, by

Lemma II.3, we have

H(πj+1) = H(πj) +

(

|Aj+1|

|A|

)β

H(ιAj+1
)

for 0 ≤ j ≤ n − 1.
A repeated application of this equality yields:

H(πn) = H(π0) +

n−1
∑

j=0

(

|Aj+1|

|A|

)β

H(ιAj+1
).

Observe that π0 = π and πn = ιA. Consequently,

H(π) = H(ιA) −
n

∑

j=1

(

|Aj |

|A|

)β

H(ιAj
).

Note that if A,B are two sets such that |A| = |B| > 0,
then, by Axiom (P2), we have H(ιA) = H(ιB). Therefore,
the value of H(ιA) depends only on the cardinality of A,
and there exists a function µ : N1 −→ R such that H(ιA) =
µ(|A|) for every nonempty set A. Axiom (P2) also implies
that µ is an increasing function. We will refer to µ as the
core of the (Φ, β)-system of axioms.

Corollary II.5: Let H be a (Φ, β)-entropy. For the func-
tion µ defined in Axiom (P2) and every partition π =
{A1, . . . , An} ∈ PART(A) we have:

H(π) = µ(|A|) −
n

∑

j=1

(

|Aj |

|A|

)β

µ(|Aj |). (1)

Proof: The statement is an immediate consequence of
Theorems II.4.

Theorem II.6: Let π = {B1, . . . , Bn} be a partition of
the set A. Define the partition π′ obtained by fusing the
blocks B1 and B2 of π as π′ = {B1∪B2, B3, . . . , Bn} of the
same set. Then

H(π) = H(π′) +

(

|B1 ∪ B2|

|A|

)β

H({B1, B2}).

Proof: A double application of Corollary II.5 yields:

H(π′) = µ(|A|) −

(

|B1 ∪ B2|

|A|

)β

µ(|B1 ∪ B2|)

−
n

∑

i>2

(

|Bi|

|A|

)

µ(|Bi|)
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and

H({B1, B2}) = µ(|B1 ∪ B2|) −

(

|B1|

|B1 ∪ B2|

)β

µ(|B1|)

−

(

|B2|

|B1 ∪ B2|

)β

µ(|B2|).

Substituting the above expressions in

H(π′) +

(

|B1 ∪ B2|

|A|

)β

H({B1, B2})

we obtain H(π).

Theorem II.6 allows us to extend Axiom (P3):

Corollary II.7: Let A1, . . . , Am be n nonempty, disjoint
sets and let πi ∈ PART(A) for 1 ≤ i ≤ m. We have

H(π1 + · · · + πm) =

m
∑

i=1

(

|Ai|

|A|

)β

H(πi)

+H({A1, . . . , Am}),

where A = A1 ∪ · · · ∪ Am.

Proof: The argument is by induction on m ≥ 2. The
basis step, m = 2, is Axiom (P3). Suppose that the state-
ment holds for m and let A1, . . . , Am, Am+1 be m + 1 dis-
joint sets. Further, suppose that π1, . . . , πm, πm+1 are par-
titions of these sets, respectively. Then, πm + πm+1 is a
partition of the set Am ∪ Am+1. By the inductive hypoth-
esis we have

H(π1 + · · · + (πm + πm+1)) =
∑m−1

i=1

(

|Ai|
|A|

)β

H(πi)

+
(

|Am|+|Am+1|
|A|

)β

H(πm + πm+1)

+H({A1, . . . , (Am ∪ Am+1)}),

where A = A1 ∪ · · · ∪ Am ∪ Am+1.

Axiom (P3) implies:

H(π1 + · · · + (πm + πm+1)) =
∑m−1

i=1

(

|Ai|
|A|

)β

H(πi)

+
(

|Am|
|A|

)β

H(πm) +
(

|Am+1|
|A|

)β

H(πm+1)

+
(

|Am|+|Am+1|
|A|

)β

H{Am, Am+1}

+H({A1, . . . , (Am ∪ Am+1)}).

Finally, an application of Theorem II.6 gives the desired
equality.

Theorem II.8: Let µ be the core of a (Φ, β)-system. If
a, b ∈ N1, then

µ(ab) −
µ(a)

bβ−1
= µ(b).

Proof: Let A = {x1, . . . , xa} and B = {y1, . . . , yb} be
two nonempty sets. Note that ωA × ιB consists of b blocks
of size a: A × {y1}, . . . , A × {yb}. By Axiom (P4),

H(ωA × ιB) = Φ(H(ωA),H(ιB)) = Φ(0,H(ιB)) = H(ιB).

On the other hand,

H(ωA × ιB) = H(ιA×B) −
b

∑

i=1

(

1

b

)β

H(ιA×{yi})

= µ(ab) −
1

bβ
b · µ(a),

which gives the needed equality.
An entropy is said to be non-Shannon if it defined by a

(Φ, β)-system of axioms such that β 6= 1; otherwise, that
is if β = 1, the entropy will be referred to as a Shannon
entropy.

III. Axiomatization of non-Shannon Entropies

Theorem III.1: Let H be a non-Shannon entropy defined
by a (Φ, β)-system of axioms and let µ be the core of this
system of axioms.

There is a constant k ∈ R such that k · (β − 1) ≥ 0 and

µ(a) = k ·

(

1 −
1

aβ−1

)

for a ∈ N1.
Proof: Theorem II.8 implies that

µ(ab) =
µ(a)

bβ−1
+ µ(b) =

µ(b)

aβ−1
+ µ(a),

for every a, b ∈ N1. Consequently,

µ(a)

1 − 1

aβ−1

=
µ(b)

1 − 1

bβ−1

,

for every a, b ∈ N1, which gives the desired equality.
Note that for β 6= 1 we have:

k =

{

lima→∞ µ(a) if β > 1

lima→0 µ(a) if β < 1.
(2)

Corollary III.2: If H is a non-Shannon entropy defined
by a (Φ, β)-system of axioms and π ∈ PART(A), where
π = {A1, . . . , An}, then there exists a constant k ∈ R such
that

H(π) = k ·



1 −
n

∑

j=1

(

|Aj |

|A|

)β



 . (3)

Proof: By Corollary II.5 and by Theorem III.1 we have

H(π)

= µ(|A|) −
n

∑

j=1

(

|Aj |

|A|

)β

µ(|Aj |)

= k ·

(

1 −
1

|A|β−1

)

− k ·
n

∑

j=1

(

|Aj |

|A|

)β

·

(

1 −
1

|Aj |β−1

)

= k ·

(

1 −
1

|A|β−1

)

− k ·
n

∑

j=1

(

|Aj |

|A|

)β

+ k ·
n

∑

j=1

|Aj |

|A|β

= k ·



1 −
n

∑

j=1

(

|Aj |

|A|

)β



 .
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Theorem III.3: Let H be the non-Shannon entropy de-
fined by a (Φ, β)-system and let k be as defined by Equal-
ity (2), where µ is the core of the (Φ, β)-system of ax-
ioms. The function Φ introduced by Axiom (P4) is given
by Φ(x, y) = x + y − 1

k
xy for x, y ∈ R≥0.

Proof: Let π = {A1, . . . , An} ∈ PART(A) and σ =
{B1, . . . , Bm} ∈ PART(B) be two partitions. Since

n
∑

j=1

|Aj |

|A|
= 1 −

1

k
H(π)

m
∑

k=1

|Bk|

|B|
= 1 −

1

k
H(σ)

we can write:

H(π × σ) = k



1 −
n

∑

j=1

m
∑

k=1

(

|Aj ||Bk|

|A||B|

)β





= k

(

1 −

(

1 −
1

k
H(π)

) (

1 −
1

k
H(σ)

))

= H(π) + H(σ) −
1

k
H(π)H(σ).

Since the set of values of entropies is dense in the interval
[0, k], the continuity of Φ implies the desired form of Φ.

Choosing k = 1

β−1
in the equality (3) we obtain the

Havrda-Charvat entropy (see [13]):

H(π) =
1

β − 1
·



1 −
n

∑

j=1

(

|Aj |

|A|

)β



 .

The limit case, limβ→1 H(π) yields the Shannon entropy.
The case β = 1 is considered independently in the next
section.

If β = 2 we obtain the Gini index,

H(π) = 1 −
n

∑

j=1

(

|Aj |

|A|

)2

,

which is widely used in machine learning and data mining.

IV. Axiomatization of Shannon Entropy

When β = 1, by Theorem II.8, we have

µ(ab) = µ(a) + µ(b)

for a, b ∈ N1. If η : N1 −→ R is the function defined by
η(a) = aµ(a) for a ∈ N1, then η is clearly an increasing
function and we have

η(ab) = abµ(ab) = bη(a) + aη(b)

for a, b ∈ N1. By Theorem A.6 from [15], there exists a
constant c ∈ R such that η(a) = ca log2 a for a ∈ N1, so
µ(a) = c log2(a). Then, equation (1) implies:

H(π) = c ·
n

∑

i=1

ai

a
log2

ai

a
,

for every partition π = {A1, . . . , An} of a set A, where
|Ai| = ai for 1 ≤ i ≤ n, and |A| = a. This is exactly the
expression of Shannon’s entropy.

The continuous function Φ is determined, as in the pre-
vious case. Indeed, if A,B are two sets such that |A| = a

and |B| = b, then we must have

c · log2 ab = H(ιA × ιB) = Φ(c · log2 a, c · log2 b)

for any a, b ∈ N1 and any c ∈ R. The continuity of Φ
implies Φ(x, y) = x + y.

V. Conditional Entropy

The entropies previously introduced generate corre-
sponding conditional entropies.

Let π ∈ PART(A) and let C ⊆ A. Denote by πC the
“trace” of π on C given by

πC = {B ∩ C|B ∈ π such that B ∩ C 6= ∅}

Clearly, πC ∈ PART(C); also, if C is a block of π, then
πC = ωC .

Definition V.1: The conditional entropy defined by the
(Φ, β)-entropy H is the function C : PART

2 −→ R≥0 given
by:

C(π, σ) =

n
∑

j=1

|Cj |

|A|
· H(πCj

),

where π, σ ∈ PART(A) and σ = {C1, . . . , Cn}.
We denote the value of C(π, σ) by H(π|σ). Note that
H(π|ωA) = H(π).

The partition π∧σ whose blocks consist of the nonempty
intersections of the blocks of π and σ can be written as

π ∧ σ = πC1
+ · · · + πCn

= σB1
+ · · · + σBm

.

Therefore, by Corollary II.7, we have:

H(π ∧ σ) =
n

∑

j=1

(

|Cj |

|A|

)β

H(πCj
) + H(σ).

For those entropies with β > 1 we have

H(π ∧ σ) ≥ H(π|σ) + H(σ),

while for those having β < 1, the reverse inequality holds.
In the case of Shannon entropy, β = 1 and

H(π ∧ σ) = H(π|σ) + H(σ)

= H(σ|π) + H(π).

If H is a (Φ, β)-entropy, π, σ ∈ PART(A) are such that
π = {B1, . . . , Bm} and σ = {C1, . . . , Cn}, then the condi-
tional entropy H(π|σ) is given by:

H(π|σ) =

n
∑

j=1

|Cj |

|A|
µ(|Cj |)

=
n

∑

j=1

|Cj |

|A|
µ(|Cj |)

−
n

∑

j=1

m
∑

i=1

|Bi ∩ Cj |
β

|A| · |Cj |β−1
µ(|Bi ∩ Cj |).
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This equality follows immediately from Corollary II.5.
In the case of Shannon entropy, taking β = 1 and µ(n) =

log2 n we obtain the well-known expression of conditional
entropy:

H(π|σ) = −
m

∑

i=1

n
∑

j=1

|Bi ∩ Cj |

|A|
log2

|Bi ∩ Cj |

|Cj |
.

In the case of the Gini index we have β = 2 and µ(a) =
k

(

1 − 1

a

)

for a ∈ N1. Consequently, after some elementary
transformations, the conditional Gini index is:

H(π|σ) = 1 −
n

∑

j=1

m
∑

i=1

|Bi ∩ Cj |
2

|A| · |Cj |
.

For β = 0.5, we obtain the “square-root entropy” used
by us in clustering of categorial data (see [16]).

VI. Conclusions

The main result of the paper is a common axiomatization
of several numerical characteristics of partitions (or, equiv-
alently, of functions) that measure the “concentration” of
values. Some of these characteristics (the Shannon entropy,
Gini index, etc.) are widely used in data mining, machine
learning, and, in the area of multiple-valued logic, in con-
structing decision diagrams, minimization, etc.

The axiomatization constructed opens the possibility
that some of these measures can be used in new areas of
application, and some entirely new characteristics can be
used for the same purpose.
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[14] Rényi, A., On the Dimension and Entropy of Probability Distri-
butions, Acta Math. Acad. Sci. Hung., 10(1959), pp. 193–215.

[15] Simovici D.A. and Reischer C., On Functional Entropy, Proc.
ISMVL’93, pp. 100–104.

[16] D. A. Simovici, D. Cristofor, L. Cristofor, Generalized Entropy
and Projection Clustering of Categorial Data, in Principles of
Data Mining and Knowledge Discovery, the 4th European Confer-
ence, PKDD 2000, Lyon, Lecture Notes in Artificial Intelligence,
1910, Springer-Verlag, pp. 619–625.


