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Abstract—Most classification approaches aim at achieving
high prediction accuracy on a given dataset. However, in most
practical cases, some action, such as mailing an offer or treating
a patient, is to be taken on the classified objects and we should
model not the class probabilities themselves, but instead, the
change in class probabilities caused by the action. The action
should then be performed on those objects for which it will
be most profitable. This problem is known as uplift modeling,
differential response analysis or true lift modeling, but has
received very little attention in Machine Learning literature. In
the paper we present a tree based classifier tailored specifically
to this task. To this end, we design new splitting criteria and
pruning methods. The experiments confirm the usefulness of
the proposed approach and show significant improvement over
previous uplift modeling techniques.

Keywords-uplift modeling; decision trees; information the-
ory;

I. INTRODUCTION AND NOTATION

In most practical problems involving classification, the

aim of building models is to later use them to select a subset

of cases to which some action is to be applied. A typical

example is training a classifier, after a pilot campaign, to

predict which customers are most likely to buy after a

marketing action. The offer is then targeted to the customers

which, according to the model’s predictions, are the most

likely buyers. Unfortunately, this is not what the marketer

wants. They want to target people who will buy because

they received the offer.

These two aims are clearly not equivalent, certain cus-

tomers may buy the product even if they have not been

targeted by a campaign. Targeting them at best incurs

additional cost. At worst, excessive marketing may annoy

them and prevent any future purchases. It is in fact well

known in the advertising community that campaigns do put

off some percentage of customers, there are however no easy

means of identifying them. See [1], [2] for more information.

Similar problems arise very frequently in medicine. In

a typical clinical trial, a random subgroup of patients is

assigned treatment A and the other, treatment B or placebo.

A statistical test is then performed to assess the overall

difference between the two groups. If, however, treatment

A only works for a subgroup of people (e.g. people with

some genetic traits) and not for others, such a fact might

go undetected. In some cases the analysis is carried out

separately in several subgroups, but there is no systematic

methodology for automatic detection of such subgroups or

modeling differences in response directly.

Despite its ubiquity and importance, the problem has

received scarce attention in literature [1]–[3], where it is

known as uplift modeling, differential response analysis,

incremental value modeling or true lift modeling. Typically a

random sample of the population is selected and subjected to

the action being analyzed (a medical treatment or marketing

campaign). This sample is called the treatment dataset.

Another, disjoint, random sample is also selected, to which

the action is not applied. This is the control dataset, serving

as the background against which the results of the action will

be evaluated. The task now is to build a model predicting

not the probability of objects belonging to a given class, but

the difference between such probabilities on the two sets of

data: treatment and control.

If the treatment group selection is completely random,

this type of modeling has another advantage: it allows for

modeling the effect caused by the action. Objects are often

subject to other actions (such as competition’s marketing

campaigns) the influence of which cannot be taken into

account directly. By selecting random treatment and control

groups, we automatically factor out all such effects, as they

apply to those groups equally. A more thorough motivation

for uplift modeling can be found in [2].

While decision trees are no longer an active research

area, they are still widely used in the industry (included

in practically all commercial analytical products), and, as a

historically first Machine Learning approach are a natural

first candidate to adapt to the uplift methodology. Adapting

other models will be a topic of future research.

We now describe the contribution of our paper. While ap-

proaches to uplift decision tree learning are already present

in literature [1], [2], [4], they are quite basic and use simple



splitting criteria which maximize class differences directly.

Also, no specific pruning methodology is described. The

uplift decision trees we propose are more in the style of

modern algorithms [5]–[7], which use splitting criteria based

on information theory. Unlike [1], which only allows two

class problems and binary splits, our algorithm can handle

arbitrary number of classes and multiway splits.

Moreover, all steps of the proposed methods are carefully

designed such that they are direct generalizations of standard

decision trees used in classification, by which we specifically

mean the CART [7] and C4.5 [6] approaches. That is,

when the control group is empty, they behave identically to

decision trees known in the literature. The advantages of this

approach are twofold: first, when no control data is present

(this can frequently happen at lower levels of the tree), it is

natural to just try to predict the class, even though we are

no longer able to perform uplift modeling; second, the fact

that, as a special case, the methods reduce to well known,

well justified and well researched approaches, corroborates

the intuitions behind them and the design principles used.

A. Notation

Let us now introduce the notation used throughout the

paper. The situation considered is different from standard

Machine Learning setting in that we now have two datasets

(samples): treatment and control. This presence of double

datasets necessitates a special notation.

Recall that nonleaf nodes of decision trees are labeled

with tests [6]. A test may have a finite number of outcomes.

We create a single test for each categorical attribute, the

outcomes of this test are all attribute’s values, as is done for

example in C4.5. For each numerical attribute X we create

several tests of the form X < v, where v is a real number.

A test is created for each v being a midpoint between two

consecutive different values of the attribute X present in

data (treatment and control datasets are concatenated for this

purpose). We omit further details as they can be found in

any book on decision trees [6], [7].

Tests will be denoted with uppercase letter A. The dis-

tinguished class attribute will be denoted with the letter Y .

The class attribute is assumed to have a finite domain and all

tests are assumed to have finite numbers of outcomes, so all

probability distributions involved are discrete. Values from

the domains of attributes and test outcomes will be denoted

by corresponding lowercase letters, e.g. a will denote an

outcome of a test A, and y one of the classes. Similarly,
∑

a is the sum over all outcomes of a test A, and
∑

y is the

sum over all classes.

The probabilities estimated based on the treatment dataset

will be denoted by PT and on the control dataset by

PC . PT (Y ) will denote the probability distribution of

the attribute Y estimated on the treatment sample, and

PT (y) the corresponding estimate of the probability of the

event Y = y; notation for tests and the control sample

is analogous. Conditional probabilities are denoted in the

usual manner, for example PC(Y |a) is the class probability

distribution conditional on the test outcome A = a estimated

from the control sample.

We will always use Laplace correction while estimating

the probabilities PT and PC .

Additionally, let NT and NC denote the number of

records in the treatment and control samples respectively,

and NT (a) and NC(a), the number of records in which the

outcome of a test A is a. Finally let N = NT + NC and

N(a) = NT (a) +NC(a).

II. RELATED WORK

Despite its practical importance the problem of uplift

modeling has received surprisingly little attention in liter-

ature. Most available publications are business whitepapers

offering only vague descriptions of algorithms used [8], [9].

The details are typically omitted, probably not to disclose the

inner workings of commercial products. Below we discuss

the handful of available research papers.

There are two overall approaches to uplift modeling. The

obvious approach is to build two separate classifiers, one

on the treatment and the other on the control dataset. For

each classified object we then subtract the class probabil-

ities predicted by the control group classifier from those

predicted by the treatment group model. This approach

suffers from a major drawback: the pattern of differences

between probabilities can be quite different then the pattern

of the probabilities themselves, so predicting treatment and

control probabilities separately can result in poor model

performance [1], [4], [10]. In case of decision trees, it does

not necessarily favor splits which lead to different responses

in treatment and control groups, just splits which lead to

predictable outcomes in each of the groups separately.

This brings us to the second class of methods, which

attempt to directly model the difference between treatment

and control probabilities.

The first paper explicitly discussing uplift modeling

was [2]. It presents a thorough motivation including several

use cases. A modified decision tree learning algorithm is

also proposed, albeit with very few details given. It is only

stated that the tree building algorithm favors splits for which

on one side of the split the outcome rates in the treated

group are higher than in the control group by more than

in the whole population, and on the other this difference

is respectively smaller. The actual splitting criterion used is

probably similar to ∆∆P discussed below.

Hansotia and Rukstales [1] offer a detailed description of

their uplift approach. They describe two ideas, one based on

logistic regression, the other on decision trees. The decision

tree part of [1] again describes two approaches. The first

is based on building two separate trees for treatment and

control groups with cross-validation used to improve the ac-

curacy of probability estimates. The second approach, most



relevant to this work, builds a single tree which explicitly

models the difference between responses in treatment and

control groups.

The algorithm uses a splitting criterion called ∆∆P ,

which selects tests maximizing the difference between the

differences between treatment and control probabilities in

the left and right subtrees. Suppose we have a test A with

outcomes a0 and a1. The splitting criterion used in [1] is

defined as

∆∆P (A) =
∣

∣

(

PT (y0|a0)− PC(y0|a0)
)

−
(

PT (y0|a1)− PC(y0|a1)
)∣

∣ ,

where y0 is a selected class. The criterion is based on

maximizing the desired difference directly, while our ap-

proach follows the more modern criteria based on informa-

tion theory. Our experiments demonstrate that this results

in significant performance improvements. Moreover, ∆∆P

works only for binary trees and two-class problems while

our approach works for multiway splits and with an arbitrary

number of classes (in Section IV we generalize the ∆∆P

measure to multiway splits).

In [4], the authors propose a decision tree building method

for uplift modeling. The tree is modified such that every

path ends with a split on whether a given person has been

treated (mailed an offer) or not. Otherwise the algorithm is

a standard decision tree construction procedure from [11],

so all remaining splits are selected such that the class

is well predicted, while our approach selects splits which

lead to large differences between treatment and control

distributions. In [12] logistic regression has been applied,

along with a simple approach based on building two separate

Naive Bayes classifiers.

The problem has been more popular in medical literature

where the use of treatment and control groups is common.

Several approaches have been proposed for modeling the

difference between treatment and control responses based

on regression analysis. One example are nested mean mod-

els [13]–[15] similar to regression models proposed in [12].

An overview with a list of related literature can be found

in [16]. The purpose of those methods is different from

the problem discussed here, as the main goal of those

approaches is to demonstrate that the treatment works after

taking into account confounding factors, while our goal is

to find subgroups in which the treatment works best. Also,

only linear models are used, and typically the problem of

regression not classification is addressed.

In [17] the authors set themselves an ambitions goal of

modeling long term influence of various advertising channels

on the customer. Our approach can be seen as a small part

of such a process which only deals with a single campaign.

Otherwise the approach is completely different from ours.

Action rules discovery [18], [19] is concerned with finding

actions which should be taken to achieve a specific goal.

This is different from our approach as we are trying to

identify groups on which a predetermined action will have

the desired effect.

Ways of measuring performance of uplift models are

discussed in [1], [3], [4], these include analogues of ROC

and lift curves. See Section IV for more details.

III. SPLITTING CRITERION

A key part of a decision tree learning algorithm is the

criterion used to select tests in nonleaf nodes of the tree.

In this section we present two splitting criteria designed

especially for the uplift modeling problem.

While previous approaches [1], [2] used directly the

difference between response probabilities, i.e. the predicted

quantity, we follow an approach more typical to decision

trees, that is modeling the amount of information that a test

gives about this difference.

We will now describe several postulates which a splitting

criterion should satisfy, later we will prove that our criteria

do indeed satisfy those postulates.

1) The value of the splitting criterion should be minimum

if and only if the class distributions in treatment and

control groups are the same in all branches. More

formally this happens when for all outcomes of a test

A we have

PT (Y |a) = PC(Y |a).

2) If A is statistically independent of Y in both treatment

and control groups then the value of the splitting

criterion should be zero.

3) If the control group is empty, the criterion should

reduce to one of classical splitting criteria used for

decision tree learning.

Postulate 1 is motivated by the fact that we want to

achieve as high a difference between class distributions in

the treatment and control groups as possible. Postulate 2

says, that tests statistically independent of the class should

not be used for splitting, just as in standard decision trees.

Note however, that the analogy in this case is not perfect.

It is in fact possible for the treatment and control class

distributions after the split to be more similar than before, so

the splitting criterion can take negative values. This means

that an independent split is not necessarily the worst. The-

orem 3.2 and discussion below further clarify the situation.

A. Splitting criteria based on distribution divergences

As we want to maximize the differences between class

distributions in treatment and control sets, it is natural that

the splitting criteria we propose are based on distribution di-

vergences [20]–[22]. A distribution divergence is a measure

of how much two probability distributions differ. We will

only require that the divergence of two discrete distributions

be nonnegative, and equal to zero if and only if the two

distributions are identical.



We will use two distribution divergence measures, the

Kullback-Leibler divergence [20], [22] and the squared Eu-

clidean distance [21]. Those divergences, from a distribution

Q = (q1, . . . , qn) to a distribution P = (p1, . . . , pn), are
defined respectively as

KL(P : Q) =
∑

i

pi log
pi

qi
,

E(P : Q) =
∑

i

(pi − qi)
2.

The Kullback-Leibler divergence is a well known and widely

used information theoretic measure. The squared Euclidean

distance is less frequently applied to compare distributions,

but has been used in literature [21], [23], and applied for

example to Schema Matching [24].

We will argue that the squared Euclidean distance has

some important advantages which make it an attractive

alternative to the Kullback-Leibler measure. First, it is

symmetric, which will have consequences for tree learning

when only control data is present. We note however, that the

asymmetry of Kullback-Leibler divergence is not necessarily

a problem in our application, as the control dataset is

naturally a background from which the treatment set is

supposed to differ.

A second, more subtle advantage of squared Euclidean

distance is its higher stability. The KL divergence tends to

infinity if one of the qi probabilities tends to zero, while the

corresponding pi remains nonzero. This makes estimates of

its value extremely uncertain in such cases [24]. Moreover, it

is enough for just one of control group probabilities in one of

the tree branches to have a small value for the KL-divergence

to be extremely large, which may result in selection of a

wrong attribute.

The proposed splitting criterion for a test A is defined for

any divergence measure D as

Dgain(A) = D
(

PT (Y ) : PC(Y )|A
)

−D
(

PT (Y ) : PC(Y )
)

,

where D
(

PT (Y ) : PC(Y )|A
)

is the conditional divergence

defined below. Substituting for D the KL-divergence and

squared Euclidean distance we obtain our two proposed

splitting criteria KLgain and Egain.

The intuition behind the definition is as follows: we want

to build the tree such that the distributions in the treatment

and control groups differ as much as possible. The first part

of the expression picks a test which leads to most divergent

class distributions in each branch. We subtract the divergence

between class distributions on the whole dataset in order

to obtain the increase or gain of the divergence resulting

from splitting with test A. This is completely analogous

to how entropy gain [6] and Gini gain [7] are defined for

standard decision trees. In fact we will show that the analogy

goes deeper, and KLgain reduces to entropy gain when the

control set is missing, and Egain reduces to Gini gain when

either control or treatment set is missing. Recall that for

both measures we use Laplace correction while estimating

PC and PT , so that absent datasets lead to uniform class

probability distributions.

The key problem is the definition of conditional diver-

gence. Conditional KL-divergences have been used in liter-

ature [22] but the definition is not directly applicable to our

case. The difficulty comes from the fact that the probability

distributions of the test A may differ in the treatment and

control groups. We have thus chosen the following definition

(recall that N = NT +NC and N(a) = NT (a) +NC(a)):

D(PT (Y ) : PC(Y )|A)

=
∑

a

N(a)

N
D

(

PT (Y |a) : PC(Y |a)

)

, (1)

where the relative influence of each test value is proportional

to the total number of training examples falling into its

branch in both treatment and control groups. Notice that

when treatment and control distributions of A are identical,

the definition reduces to conditional divergence as defined

in [22].

The theorem below shows that the proposed splitting

criteria do indeed satisfy our postulates.

Theorem 3.1: The KLgain and Egain test selection crite-

ria satisfy postulates 1–3. Moreover, if the control group is

empty, KLgain reduces to entropy gain [5], and when either

the treatment or control set is empty, Egain reduces to Gini

gain [7].

The proof can be found in the Appendix. More properties

of divergences can be found in [20], [22]. The ∆∆P

splitting criterion used in [1] only satisfies the first two

postulates.

Notice that the value of KLgain and Egain can be

negative. Splitting a dataset can indeed lead to more similar

treatment and control distributions in all leaves. This is a

variant of the well known Simpson’s paradox [25]. However,

it is usually desirable that the assignment of cases to treat-

ment and control groups be independent from all attributes

in the data. For example in clinical trials, great care is taken

to ensure that this assumption does indeed hold. We then

have the following theorem, which ensures that in such a

case, both gains stay nonnegative, just as is the case with

entropy and Gini gains for classification trees.

Theorem 3.2: If outcomes of a test A are indepen-

dent of the assignment to treatment and control groups,

i.e. PC(A) = PT (A) then both KLgain and Egain are

nonnegative.

The proof can be found in the Appendix. Recall that in

this caseKLgain becomes the conditional divergence known

in the literature [22].



B. Normalization: correcting for tests with large number of

splits and imbalanced treatment and control splits

In order to prevent a bias towards tests with high number

of outcomes standard decision tree learning algorithms nor-

malize the information gain dividing it by the information

value (usually measured by entropy) of the test itself [6].

In our case the normalization factor is more complicated,

as the information value can be different in the control and

treatment groups.

Moreover, we would like to punish tests which split the

control and treatment groups in different proportions since

such splits indicate that the test is not independent from

the assignment of cases between the treatment and control

groups. Apart from violating the assumptions of randomized

trials, such splits lead to problems with probability estima-

tion. As an extreme example consider a test which puts

all treatment group records in one subtree and all control

records in another; the tree construction will proceed based

on only one dataset, as in classification tree learning (except

for KLgain and empty treatment dataset), but the ability to

detect uplift will be completely lost.

The proposed normalization value for a test A is given

by (recall again that N = NT +NC is the total number of

records in both treatment and control datasets)

I(A) = H

(

NT

N
,
NC

N

)

KL(PT (A) : PC(A))

+
NT

N
H(PT (A)) +

NC

N
H(PC(A)) +

1

2

for the KLgain criterion, and

J(A) = Gini

(

NT

N
,
NC

N

)

E(PT (A) : PC(A))

+
NT

N
Gini(PT (A)) +

NC

N
Gini(PC(A)) +

1

2

for the Egain criterion. For the sake of symmetry, we use

entropy related measures for KLgain and Gini index related

measures for Egain, although one can also imagine using

different types of gain and normalization factors.

The first term is responsible for penalizing uneven splits.

The unevenness of splitting proportions is measured using

the divergence between the distributions of the test outcomes

in treatment and control datasets. Tests which are strongly

dependent on group assignment will thus be strongly penal-

ized (note that the value of I(A) can be arbitrarily close

to infinity). However, penalizing uneven splits only makes

sense if there is enough data in both treatment and control

groups. The KL(PT (A) : PC(A)) term is thus multiplied

by H
(

NT

N
, NC

N

)

which is close to zero when there is a

large imbalance between the number of data in treatment

and control groups (analogous Gini based measures are used

for Egain). The result is that when only treatment or only

control data are available the first term in the expression is

zero, as penalizing uneven splits no longer makes sense.

The following two terms penalize tests with large number

of outcomes [6]. We use the sum of entropies (Gini indices)

of the test’s outcomes in treatment and control groups

weighted by the number of records in those groups.

One problem we encountered was, that small values of the

normalizing factor can give high preference to some tests

despite their low information gain. Solutions described in

literature [26] involve selecting a test only if its information

gain is greater or equal to the average gain of all remaining

attributes, and other heuristics. We found however that just

adding 1
2 to the value of I or J gives much better results.

Since the value is always at least 1
2 , it cannot inflate too

much the information value of a test.

Notice that when NC = 0 the criterion reduces to

H(PT (A)) + 1
2 which is identical to normalization used

in standard decision tree learning (except for the extra 1
2 ).

After taking the normalizing factors into account, the final

splitting criteria become

KLgain(A)

I(A)
and

Egain(A)

J(A)
.

The key step of tree pruning will be discussed after the

next section which describes assigning scores and actions to

leaves of the tree.

C. Application of the tree

Once the tree has been built its leaves will contain sub-

groups of objects for which the treatment class distribution

differs from control class distribution. The question now is

how to apply the tree to score new data and make decisions

on whether the action (treatment) should be applied to

objects falling into a given leaf. In general the action should

be applied only if it is expected to be profitable. We thus

annotate each leaf with an expected profit, which will also

be used for scoring new data.

We assign profits to leaves using an approach similar

to [1], [4] generalized to more than two classes. Each class

y is assigned a profit vy , that is, the expected gain if a

given object (whether treated or not) falls into this class.

There is also a fixed cost c of performing a given action

(treatment). Let PT (Y |l) and PC(Y |l) denote treatment and

control class distributions in a leaf l. If each object in a

leaf is treated, the expected profit (per object) is equal to

−c+
∑

y P
T (y|l)vy . If no object in the leaf is treated, the

expected profit is
∑

y P
C(y|l)vy . So the expected gain from

treating each object falling into that leaf is

−c+
∑

y

vy
(

PT (y|l)− PC(y|l)
)

. (2)

Objects falling into l should be treated only if this value is

greater than zero. The value itself is used for scoring new

data.



D. Pruning

Decision tree pruning is a step which has decisive in-

fluence on the generalization performance of the model.

There are several pruning methods, based on statistical tests,

Minimum Description Length principle, and so on. Full

discussion is beyond the scope of this paper, see [6], [26]–

[28] for details.

We choose the simplest, but nevertheless effective pruning

method based on using a separate validation set [27], [28].

For the classification problem, after the full tree has been

built on the training set, the method works by traversing the

tree bottom up and testing for each node, whether replacing

the subtree rooted at that node with a single leaf would

improve accuracy on the validation set. If this is the case,

the subtree is replaced, and the process continues.

In the case of uplift modeling obtaining an analogue of

accuracy is not easy. One option is assigning costs/profits to

each class (see the previous section) and pruning subtrees

based on the total increase in profits obtained by replacing a

subtree with a leaf. Unfortunately this method is ineffective.

The total expected gain in profit obtained in the leaves is

identical to that obtained in the root of a subtree. To see

this sum (2) over all leaves, weighting by the probability of

ending up in each leaf.

We have thus devised another measure of improvement,

the maximum class probability difference which can be

viewed as a generalization of classification accuracy to the

uplift case. The idea is to look at the differences between

treatment and control probabilities in the root of the subtree

and in its leaves, and prune if, overall, the differences in

leaves are not greater than the difference in the root. In each

node we only look at the class for which the difference was

largest on the training set, and in addition remember the sign

of that difference such that only differences which have the

same sign on the training and validation sets contribute to

the increase of our analogue of accuracy. This procedure

is consistent with the goal of maximizing the difference

between treatment and control probabilities.

More precisely, while building the tree on the training

set, for each node t, we remember the class y∗(t) for

which the difference
∣

∣PT (y∗|t)− PC(y∗|t)
∣

∣ is maximal,

and also remember the sign of this difference s(t) =
sgn(PT (y∗|t)−PC(y∗|t)). During the pruning step, suppose
we are examining a subtree with root r and leaves l1, . . . , lk.

We calculate the following quantities with the stored values

of y∗ and s, and all probabilities computed on the validation

set:

d1(r) =

k
∑

i=1

N(li)

N(r)
s(li)

(

PT (y∗(li)|li)− PC(y∗(li)|li)
)

,

d2(r) = s(r)
(

PT (y∗(r)|r)− PC(y∗(r)|r)
)

,

where N(li) is the number of validation examples (both

treatment and control) falling into leaf li. The first quantity is

the maximum class probability difference of the unpruned

subtree, and the second is the maximum class probability

difference we would obtain on the validation set if the

subtree was pruned and replaced with a single leaf. The

subtree is pruned if d1(r) ≤ d2(r).
The class y∗ is an analogue of the predicted class in

standard classification trees. In case either the treatment or

the control dataset is absent, the missing probabilities are set

to zero (we do not use Laplace correction in this step). It is

then easy to see that, as long as the same sets are missing in

the training and validation data, d1 and d2 reduce to standard

classification accuracies of the unpruned and pruned subtree

(note, that when the treatment set is missing, the value of

s will be negative guaranteeing that both d1 and d2 are

nonnegative).

IV. EXPERIMENTAL EVALUATION

In this section we present the results of experimental

evaluation of the proposed models. We compare four mod-

els: uplift decision trees based on Egain and KLgain, the

method of [1] based on the ∆∆P criterion and an approach

which builds separate decision trees for the treatment and

control groups. Throughout this section we will refer to

those models respectively as ‘Euclid’, ‘KL’, ‘DeltaDeltaP’

and ‘DoubleTree’.

In order to be able to compare against the DeltaDeltaP

method [1] we had to modify the ∆∆P criterion to work

for tests with more than two outcomes. The modification is

∆∆P (A) = max
a,a′

[(

PT (y0|a)− PC(y0|a)
)

−
(

PT (y0|a
′)− PC(y0|a

′)
)]

,

where a and a′ vary over all outcomes of the test A, and

y0 is a selected class (say the first). In other words, we take

the maximum difference between any two branches, which

reduces to the standard ∆∆P criterion for binary tests.

For the DoubleTree classifier we used our own implemen-

tation of decision trees, identical in all possible respects to

the uplift based models. This decision was made in order

to avoid biasing the comparison by different procedures

used during tree construction, such as different details of

the pruning strategy or the use of Laplace corrections.

A. Methods of evaluating uplift classifiers

Discussions on assessing the quality of uplift models can

be found in [1], [3]. In most classifier testing schemes, some

amount of data is set aside while training, and is later used

to assess performance. Using this approach with an uplift

classifier is more difficult. We now have two test sets, one

containing treated, the other control objects. The test set

for the treatment group is scored using the model, and the

scores can be used to calculate profits and draw lift curves.

However in order to assess the gain in profit we need to take

into account the behavior on the control group. This is not
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Figure 1. The uplift curve for the splice dataset.

easy, as records in the treatment group do not have natural

counterparts in the control group.

To select appropriate background data, the control dataset

is scored using the same model. The gain in profits resulting

from performing the action on p percent of the highest

scored objects is estimated by subtracting the profit on the p

percent highest scored objects from the control set from the

profit on the highest scored p percent of objects from the

treatment dataset. This solution is not ideal, as there is no

guarantee that the highest scoring examples in the treatment

and control groups are similar, but it works well in practice.

All approaches in literature use this method [1], [3].

Note, that when the sizes of treatment and control datasets

differ, profits calculated on the control group should be

weighted to compensate for the difference.

From an equivalent point of view this approach consists

of drawing two separate lift curves for treatment and control

groups using the same model, and then subtracting the

curves. The result of such a subtraction will be called an

uplift curve. In this work we will use those curves to assess

model performance. To obtain easy to compare numerical

values we computed areas under uplift curves (AUUC) and

the heights of the curve at the 40th percentile.

Notice that, contrary to lift curves, uplift curves can

achieve negative values (the results of an action can be worse

than doing nothing), and the area under an uplift curve can

also be negative. Figure 1 shows the uplift curves for the

four analyzed classifiers on the splice dataset.

B. Dataset preparation

The biggest problem we faced was lack of suitable data

to test uplift models. While the problem itself has wide

applicability, for example in clinical trials or marketing,

there seems to be very little publicly available data involving

treatment and control groups. This has been noted in other

papers, such as [17], where simulated data were used in

experiments.

We resorted to another approach: using publicly available

datasets from the UCI repository and splitting them into

treatment and control groups. Table I shows the datasets

used in our study, as well as the condition used for splitting

each dataset. For example the hepatitis dataset was

split into a treatment dataset containing records for which

the condition steroid = ’YES’ holds, and a control dataset

containing the remaining records. The group assignment

condition was chosen using the following rules:

1) If there is an attribute related to an action being

taken, pick it (for example the steroid attribute in the

hepatitis data).

2) Otherwise, pick the first attribute which gives a reason-

ably balanced split between the treatment and control

groups.

We note that the selection of the splitting conditions was

done before any experiments were carried out in order to

avoid biasing the results.

A further preprocessing step was necessary in order to

remove attributes which are too correlated with the splitting

condition. The presence of such attributes would bias the

results, since the KL and Euclid methods use the normal-

ization factors I and J to penalize the use of such attributes,

while other methods do not. A simple heuristic was used:

1) A numerical attribute was removed if its averages in

the treatment and control datasets differed by more

than 25%.

2) A categorical attribute was removed if the probabilities

of one of its values differed between treatment and

control datasets by more than 0.25.

Again, we note that the decision to remove such attributes

has been made, and the thresholds selected, before any

experiments have been performed. The number of removed

attributes (vs. the total number of attributes) is shown in

Table I.

Class profits were set to 1 for the most frequent class,

and 0 for the remaining classes. The cost of applying an

action was set to 0. This way, the profits reflect the difference
between the probabilities of the most frequent class.

C. Experimental results

To test the significance of differences between classifiers,

we use the statistical testing methodology described in [29].

First, all classifiers are compared using Friedman’s test,

a nonparametric analogue of ANOVA. If the test shows

significant differences, a post-hoc Nemenyi test is used to

assess which of the models are significantly different.

All algorithm parameters have been tuned on artificial

data, not on the datasets shown in Table I.

Table II shows the results of applying the classifiers to

the datasets in Table I. Each cell contains the AUUC (Area



Table I
DATASETS USED IN THE EXPERIMENTS.

dataset treatment/control #removed
split condition attrs/total

acute inflam. a3 = ‘YES’ 2/6

australian a1 = ‘1’ 2/14

breast-cancer menopause = ‘PREMENO’ 2/9

credit-a a7 6= ‘V’ 3/15

dermatology exocytosis ≤ 1 16/34

diabetes insu > 79.8 2/8

heart-c sex = ‘MALE’ 2/13

hepatitis steroid = ‘YES’ 1/19

hypothyroid on thyroxine = ‘T’ 2/29

labor education-allowance = ‘YES’ 4/16

liver-disorders drinks < 2 2/6

nursery children ∈ {‘3’, ‘MORE’} 1/8

primary-tumor sex =‘MALE’ 2/17

splice attribute1 ∈ {‘A’, ‘G’} 2/61

winequal-red sulfur dioxide < 46.47 2/11

winequal-white sulfur dioxide < 138.36 3/11

Table II
AREA UNDER THE UPLIFT CURVE

dataset DeltaDeltaP DoubleTree Euclid KL

acute inflam. -46.86 -53.34 -46.36 -47.76

australian 0.22 6.02 11.20 12.96

breast-cancer 26.28 28.00 36.49 25.90

credit-a 32.47 39.32 43.41 42.36

dermatology 270.90 280.20 305.33 275.10

diabetes 88.69 82.27 113.65 103.71

heart-c 149.39 145.37 156.91 162.92

hepatitis 10.45 20.10 22.80 12.90

hypothyroid -43.66 -26.85 -17.78 -11.21

labor 2.00 4.52 4.22 4.14

liver-disorders 40.69 27.96 51.05 43.56

nursery -5.00 -6.00 -3.90 -2.70

primary-tumor 75.89 87.65 64.04 62.38

splice 253.12 211.65 309.35 289.06

winequal-red 713.19 626.10 708.70 658.34

winequal-white 1747.58 1351.32 1647.79 1765.41

Under the Uplift Curve) obtained by 2 × 5 crossvalidation.

The best classifier for each dataset is marked in bold. It

can be seen that the model based on the squared Euclidean

distance had a clear advantage. We now proceed to quantify

these results using statistical tests.

We first applied the Friedman’s test to check whether there

are significant differences between the classifiers. The test

result was that the models are significantly different with

the p-value of 0.0029. We thus proceeded with the post-

hoc Nemenyi test in order to assess the differences between

specific classifiers. Figure 2 displays the results graphically.

The scale marks the average rank of each model over all

datasets; lower rank means a better model. For example,

the model based on the squared Euclidean distance criterion

had an average rank of 1.625, while the double tree based

approach, an average rank of 3.06. The horizontal line in the

upper part of the chart shows the critical difference at the

1 2 3 4

KL

Euclid DoubleTree
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Figure 2. Comparison of all classifiers using the Nemenyi test at p = 0.01.
Results for Area Under Uplift Curve.
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Figure 3. Comparison of all classifiers using the Nemenyi test at p = 0.01

and p = 0.05. Results for the height of the curve at the 40th percentile.

significance level of 0.01, that is the minimum difference

between the average ranks of classifiers, which is deemed

significant.

It can be seen that Euclid is a clear winner. It is sig-

nificantly better than both the DoubleTree and DeltaDeltaP

approaches. The two methods we propose in this paper, KL

and Euclid are not significantly different, but the Euclidean

distance based version did perform better. Also, the KL

algorithm is not significantly better than other approaches.

We conclude that methods designed specifically for up-

lift modeling (Euclid) are indeed better than building two

separate classifiers. Moreover this approach significantly

outperforms the DeltaDeltaP criterion [1], [2]. In fact there

was no significant difference between DeltaDeltaP and Dou-

bleTree. We suspect that the KL method also outperforms

the DeltaDeltaP and DoubleTree approaches, but more ex-

periments are needed to demonstrate this rigorously.

We also compared the results for the height of the

uplift curve at the 40th percentile. Friedman’s test showed

significant differences (with the p-value of 5.4 · 10−5), so

we proceeded with the Nemenyi test to further investigate

the differences. We only show the results graphically in Fig-

ure 3. The results are confirmed also in this case, although

sometimes only at the significance level of 0.05.



V. CONCLUSIONS AND FUTURE RESEARCH

The paper presents a method for decision tree construction

for uplift modeling. Two splitting criteria and a tree pruning

method have been designed specifically for this purpose,

and demonstrated experimentally to significantly outperform

previous approaches to uplift modeling. The methods are

more in style of modern decision tree learning and in fact

reduce to standard decision trees if the control dataset is

missing. Future work will concentrate on adapting other

classification methods to the problem of uplift modeling.
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APPENDIX

Proof of Theorem 3.1: Recall that N = NT +NC and

N(a) = NT (a) + NC(a). It is a well known property of

both Kullback-Leibler and E divergences that they are zero

if and only if their arguments are identical distributions and

are greater than zero otherwise. Combined with the fact that

the unconditional terms in the definitions of KLgain and

Egain do not depend on the test this proves postulate 1.

To prove postulate 2 notice that when the test A is inde-

pendent from Y then PT (Y |a) = PT (Y ) and PC(Y |a) =
PC(Y ) for all a. Thus, for any divergence D,

D(PT (Y ) : PC(Y )|A)

=
∑

a

N(a)

N
D

(

PT (Y |a) : PC(Y |a)

)

=
∑

a

N(a)

N
D

(

PT (Y ) : PC(Y )

)

= D

(

PT (Y ) : PC(Y )

)

,

giving

Dgain(A)

= D
(

PT (Y ) : PC(Y )|A
)

−D
(

PT (Y ) : PC(Y )
)

= D
(

PT (Y ) : PC(Y )
)

−D
(

PT (Y ) : PC(Y )
)

= 0.

To prove 3 let n be the number of classes, and U the

uniform distribution over all classes. It is easy to check that

KL
(

PT (Y ) : U
)

= log n−H(PT (Y )),

E
(

PT (Y ) : U
)

=
n− 1

n
−Gini(PT ).

Now, if PC(Y ) = U and, for all a, PC(Y |a) = U (recall the

use of Laplace correction while estimating the probabilities),

and since NC = 0, we have N = NT , and N(a) = NT (a).
It follows that

KLgain(A)

= KL
(

PT (Y ) : U |A
)

−KL
(

PT (Y ) : U
)

= − log n+H(PT (Y ))

+
∑

a

N(a)

N

(

log n−H(PT (Y |a))
)

= H(PT (Y ))−
∑

a

NT (a)

NT
H(PT (Y |a)).

Similarly

Egain(A) = E
(

PT (Y ) : U |A
)

− E
(

PT (Y ) : U
)

= Gini(PT (Y ))−
n− 1

n

+
∑

a

N(a)

N

(

n− 1

n
−Gini(PT (Y |a))

)

= Gini(PT (Y ))−
∑

a

NT (a)

NT
Gini(PT (Y |a)).

The symmetry of E implies that when the treatment dataset

is empty Egain(A) is equal to the Gini gain of A on the

control sample.

Proof of Theorem 3.2: From the independence assump-

tion it follows that PT (a) = PC(a) = P (a), which will be

used several times in the proof. Notice that KL(PT (Y ) :

PC(Y )) can be written as
∑

y P
C(y)f

(

PT (y)
PC(y)

)

with f(z)

equal to z log z; f is strictly convex. For every class y we

have

f

(

PT (y)

PC(y)

)

= f

(

∑

a

PT (y, a)

PC(y)

)

= f

(

∑

a

PC(y, a)

PC(y)
·
PT (y, a)

PC(y, a)

)

≤
∑

a

PC(y, a)

PC(y)
f

(

PT (y, a)

PC(y, a)

)

=
∑

a

PC(y, a)

PC(y)
f

(

PT (y|a)P (a)

PC(y|a)P (a)

)

=
∑

a

PC(y, a)

PC(y)
f

(

PT (y|a)

PC(y|a)

)

,

where the inequality follows from Jensen’s inequality and

the convexity of f . The desired result follows:

KL(PT (Y ) : PC(Y )) =
∑

y

PC(y)f

(

PT (y)

PC(y)

)

≤
∑

a

P (a)
∑

y

PC(y|a)f

(

PT (y|a)

PC(y|a)

)

= KL(PT (Y ) : PC(Y )|A).

A similar proof can be found in [20]. For the squared

Euclidean distance, notice that for every class y

(

PT (y)− PC(y)
)2

=

(

∑

a

P (a)(PT (y|a)− PC(y|a))

)2

≤
∑

a

P (a)
(

PT (y|a)− PC(y|a)
)2

,

where the inequality follows from Jensen’s inequality and

the convexity of z2. We now have

E(PT (Y ) : PC(Y )) =
∑

y

(

PT (y)− PC(y)
)2

≤
∑

a

P (a)
∑

y

(

PT (y|a)− PC(y|a)
)2

= KL(PT (Y ) : PC(Y )|A).


