Decision trees for uplift modeling

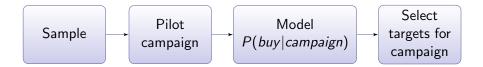
Piotr Rzepakowski

National Institute of Telecommunications Warsaw, Poland Warsaw University of Technology Warsaw, Poland

Szymon Jaroszewicz

National Institute of Telecommunications Warsaw, Poland Polish Academy of Sciences Warsaw, Poland

ICDM 2010



ICDM 2010 2 / 21

We can divide objects into four groups

- Responded because of the action
- Responded regardless of whether the action is taken (unnecessary costs)
- Solution of the section of the action of the section of the sectio
- Oid not respond because the action had a negative impact (e.g. customer got annoyed by the campaign, may even churn)

Traditional models predict the conditional probability

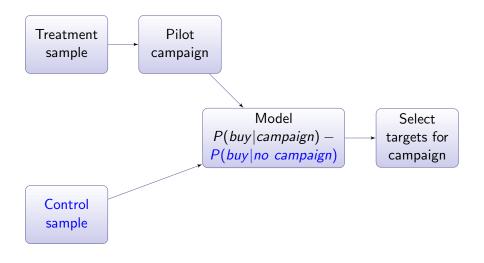
P(response|treatment)

Traditional models predict the conditional probability

P(response|treatment)

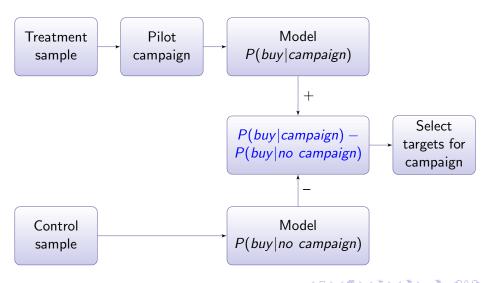
Uplift models predict change in behaviour resulting from the action

P(response|treatment) - P(response|no treatment)



Literature

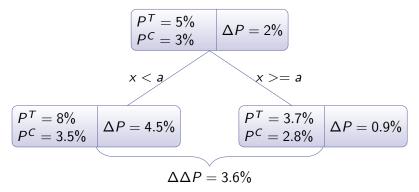
- Surprisingly little attention in literature
- Business whitepapers offering vague descriptions of algorithms used
- Two general approaches
 - Subtraction of two models
 - Modification of model learning algorithms



ICDM 2010 7 / 21

Current approaches to uplift decision trees

• Create splits using difference of probabilities $(\Delta \Delta P)$



- Pruning not used (or not described)
- Work only for two class problems and binary splits

- Spliting criteria based on Information Theory
- Pruning strategy designed for uplift modeling
- Multiclass problems and multiway splits possible
- If the **control group is empty**, the criterion should reduce to one of classical splitting criteria used for decision tree learning

Kullback-Leibler divergence

Measure difference between treatment and control groups using KL divergence

$$KL\left(P^{T}(Class): P^{C}(Class)\right) = \sum_{y \in Dom(Class)} P^{T}(y) \log \frac{P^{T}(y)}{P^{C}(y)}$$

Kullback-Leibler divergence

I

Measure difference between treatment and control groups using KL divergence

$$KL\left(P^{T}(Class): P^{C}(Class)\right) = \sum_{y \in Dom(Class)} P^{T}(y) \log \frac{P^{T}(y)}{P^{C}(y)}$$

• Need KL-divergence conditional on a given test

$$KL(P^{T}(Class) : P^{C}(Class)|Test) = \sum_{a \in Dom(Test)} \frac{N^{T}(a) + N^{C}(a)}{N^{T} + N^{C}} KL\left(P^{T}(Class|a) : P^{C}(Class|a)\right)$$

Measures how much the two groups differ given a test's outcome

$$\begin{aligned} \mathsf{KL}_{\mathsf{gain}}(\mathsf{Test}) &= \\ \mathsf{KL}\left(\mathsf{P}^{\mathsf{T}}(\mathsf{Class}) : \mathsf{P}^{\mathsf{C}}(\mathsf{Class}) | \mathsf{Test}\right) - \mathsf{KL}\left(\mathsf{P}^{\mathsf{T}}(\mathsf{Class}) : \mathsf{P}^{\mathsf{C}}(\mathsf{Class})\right) \end{aligned}$$

- Measures the *increase* in difference between treatment and control groups from splitting based on *Test*
- If the control group is empty, KL_{gain} reduces to entropy gain

$$\begin{aligned} \mathsf{KL}_{\mathsf{gain}}(\mathsf{Test}) &= \\ \mathsf{KL}\left(\mathsf{P}^{\mathsf{T}}(\mathsf{Class}) : \mathsf{P}^{\mathsf{C}}(\mathsf{Class}) | \mathsf{Test}\right) - \mathsf{KL}\left(\mathsf{P}^{\mathsf{T}}(\mathsf{Class}) : \mathsf{P}^{\mathsf{C}}(\mathsf{Class})\right) \end{aligned}$$

- Measures the *increase* in difference between treatment and control groups from splitting based on *Test*
- If the control group is empty, KL_{gain} reduces to entropy gain

$$KL_{ratio} = rac{KL_{gain}(Test)}{KL_{value}(Test)}$$

- Tests with large number of values are punished
- Tests which split the control and treatment groups in **different proportions** are punished
- Postulates are satisfied

$$Euclid\left(P^{T}(Class):P^{C}(Class)\right) = \sum_{y \in Dom(Class)} \left(P^{T}(y) - P^{C}(y)\right)^{2}$$

- Euclid_{gain}, Euclid_{ratio} analogous to KL
- Better statistical properties (values are bounded)
- Symmetry

Pruning procedure (maximum class probability difference)

Definitions

$$Diff(Class, node) = P^{T}(Class|node) - P^{C}(Class|node)$$

• Maximum class probability difference (MD)

$$MD(node) = max_{Class} |Diff(Class|node)|$$

sign(node) = sgn(Diff(Class*, node))

Pruning procedure (maximum class probability difference)

Definitions

 $Diff(Class, node) = P^{T}(Class|node) - P^{C}(Class|node)$

• Maximum class probability difference (MD)

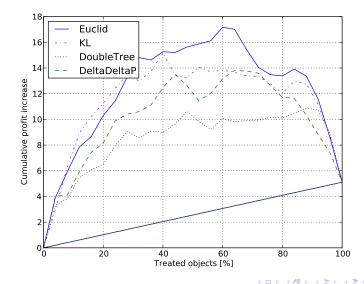
 $MD(node) = max_{Class} |Diff(Class|node)|$ sign(node) = sgn(Diff(Class*, node))

- Use separate validation sets
- Bottom up procedure
- Keep subtree if
 - On validation set: *MD* of the subtree is greater than if it was replaced with a leaf
 - And the sign of *MD* is the same in training and validation sets

- Compared models
 - Euclid uplift decision trees based on E_{ratio}
 - KL uplift decision trees based on KL_{ratio}
 - **Output DeltaDeltaP** based on the $\Delta\Delta P$ criterion
 - OoubleTree separate decision trees for the treatment and control groups

- Control and treatment datasets are scored using the same model
- Compute lift curves on both datasets
- Uplift curve = lift curve on treatment data lift curve on control data
- Measure model's performance based on
 - Area under the uplift curve (AUUC)
 - Height of the uplift curve at the 40th percentile

The uplift curve for the splice dataset

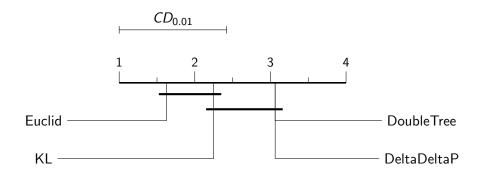


ICDM 2010 16 / 21

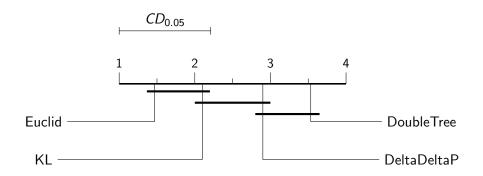
- Lack publicly available data to test uplift models
- Datasets from UCI repository were split into treatment and control groups based on one attribute
- Procedure of choosing the splitting attribute:
 - If an action was present it was picked (e.g. hepatitis data)
 - Otherwise pick the first attribute which gives a reasonably balanced split

- **()** Models are evaluated using 2×5 crossvalidation
- Ø Models are compared by ranking on all datasets
- Check if there are differences in model prformance using Friedman's test, a nonparametric analogue of ANOVA
- If the test shows significant differences, a post-hoc Nemenyi test is used to assess which of the models are significantly different

Results for Area Under Uplift Curve Nemenyi test at p = 0.01



Results for the height of the curve at the 40th percentile Nemenyi test at p = 0.05



- Method for decision tree construction for uplift modeling in the style of modern decision tree learning
 - Information Theory based splitting
 - Dedicated pruning strategy
- Two splitting criteria (KL and Euclidian distance)
- Reduce to standard decision trees if control data absent
- The new method significantly outperforms previous approaches to uplift modeling

ICDM 2010

21 / 21

• Other applications e.g. medicine