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ABSTRACT
Uplift modeling is a subfield of machine learning which aims
at predicting differences between class probabilities in treat-
ment and control groups. This setting is frequently encoun-
tered in medical trials which are thus a natural application
domain for the technique. Unfortunately, clinical trials usu-
ally involve survival data with censoring and most machine
learning methods, including uplift modeling methods, do
not directly allow for the use of such data. In this paper
we demonstrate that, under reasonable assumptions, uplift
modeling can be easily applied to survival data, while main-
taining the correctness of decisions made by the model. This
is in contrast to standard classification, where the use of cen-
sored training examples is more difficult. We test our ap-
proach on a publicly available clinical trial dataset and show
that using an uplift model it is possible to obtain significant
improvements in survival rates.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence-
Learning

Keywords
uplift modeling, personalized medicine, machine learning,
survival data, censoring

1. INTRODUCTION
Uplift modeling is a machine learning technique which

aims at predicting the differences in class probabilities be-
tween two groups: the treatment group, subjected to some
action, and the control group not subjected to the action
(or subjected to an alternative action). This paper de-
scribes how to apply uplift modeling to survival data used in
medicine and shows that a specific property of uplift model-
ing makes it applicable to survival data also in the presence
of censoring.
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Clinical trials are a key tool of evidence based medicine.
A group of patients (the treatment group) is subjected to
a therapy and another group (the control group) is given
placebo or an alternative treatment. Statistical tests are
then used to decide whether the treatment under considera-
tion brings real benefits. Personalized medicine requires an
analysis at a finer level: the effectiveness of the treatment
is assessed based on the characteristics of a specific patient.
Uplift modeling is directly applicable in this case because it
provides medical practitioners with models which are able
to predict the impact of a therapy for a given individual.

Clinical trials typically produce survival data. The key
target variable is the survival time of each patient. Another
important feature of such data is censoring: survival time of
some patients (for example those who haven’t been in the
study for a sufficiently long period of time) is not known ex-
actly, all that is known is that it is longer than the observed
value.

In contrast, classification data used in machine learning
contains a single, discrete class variable taking a finite num-
ber of values. Censoring is typically not allowed. Since ma-
chine learning methods have been extremely successful in
predicting discrete outcomes, there has been significant in-
terest in applying them to medical problems. To use those
methods with survival data one typically picks a threshold θ
and treats all patients who survived at least that amount of
time as successes and the remaining ones as failures of the
therapy. A binary classification model is then constructed
and used to predict for which patients the therapy will be
effective.

There are, however, two problems with this approach: the
first is that class probabilities, predicted by classification
models, are not necessarily the quantities of interest in clin-
ical trials, the second is the presence of censoring.

The first problem stems from the fact that classification
models do not take the control group into account. A med-
ical treatment is worthwhile only if, for a given patient it
works better than placebo. For example, if the patient recov-
ered after the treatment but would have recovered regardless
of it, then we have subjected her to unnecessary risk of side
effects and incurred unnecessary costs. We believe that up-
lift modeling, which explicitly models the difference between
class probabilities in the treatment and control groups is the
solution to this problem.

In this paper we will show that, additionally, uplift model-
ing is, to a large degree, immune to the second problem, and
can be applied directly even in the presence of censoring.



2. RELATED WORK
We will begin by describing the literature on applying

machine learning methods to survival data. Afterwards, we
will give a brief overview of uplift modeling and related tech-
niques.

Most machine learning methods (and to the best of our
knowledge all current uplift modeling methods) do not di-
rectly allow for the use of censored data. Exceptions are
survival trees [1] or regularized Cox regression [19]. Another
set of approaches is based on transforming survival data into
standard classification tasks to which unmodified classifiers
can be applied. The problem here is that the true class
is unknown for censored cases and needs to be estimated.
An overview of early approaches, such as the removal of all
censored cases, can be found in [13], where their deficien-
cies, such as introduction of additional bias, are discussed.
A newer approach, which weighs the likelihood of censored
data points with an estimate of survival probability can be
found in [21]. None of those transformations are perfect as
they require, for example, good estimates of all censored
survival times.

As mentioned above, even if such transformations were
successful, classification models do not take into account
the control group which makes them unsuitable for most
medical problems, uplift modeling being more appropriate.
Moreover, we will show in the next section that transforma-
tions of censored data are not necessary when this technique
is applied.

We will now briefly describe uplift modeling algorithms
and related techniques available in the literature.

The simplest uplift model consists of two classifiers, one
built on the treatment training set, another on the control.
The probabilities predicted by the control classifier are then
subtracted from the probabilities predicted by the treatment
classifier to give an estimate of the real effect of the treat-
ment. The double classifier model, while intuitive, has the
drawback that both models may focus on predicting the class
variable instead of modeling the (usually weaker) difference
between class distributions in the two groups. An illustra-
tive example can be found in [11].

To alleviate this problem, several learning algorithms de-
signed specifically for uplift modeling have been proposed.
Many of them build decision trees using splitting criteria
designed to select tests which maximize differences between
class probabilities in the treatment and control groups.
In [11] the authors present decision trees based on statisti-
cal significance of differences between treatment and control
success probabilities. Uplift decision trees which are based
on information theoretical splitting criteria and include a
tree pruning step have been proposed in [16, 17].

A generalization of the nearest neighbor method to uplift
modeling has been presented by Larsen in [9]. The method
proved highly successful in our experiments, and will be dis-
cussed in more detail in Section 4. Linear uplift models have
been presented in [6] and [23]. The first paper proposes a
class variable transformation which allows for application of
an arbitrary probabilistic classifier (logistic regression was
used in the paper) to the uplift modeling problem. The sec-
ond paper adapts linear Support Vector Machines to take
into account the presence of a control group.

More detailed overviews of uplift modeling approaches can
be found in [11], [18] or [17].

In the medical and statistical literature regression meth-

ods have been developed, under various names such as nested
mean models, to address similar problems [3, 22]. Simi-
lar techniques have been considered in the context of G-
estimation [14, 15]. Most of those methods, however are
variants of the double classifier approach (when interactions
of the treatment indicator with all variables are included
in the model) or assume that the difference in class proba-
bilities is independent of patient’s characteristics (the treat-
ment indicator is simply included as an additional regression
variable). Uplift models, in contrast, provide a method to
directly predict the difference between the treatment and
control success probabilities on the level of individuals using
a single model.

One of the contributions of this paper is to show that uplift
modeling is a viable option for selecting the right treatment
based on the characteristics of an individual patient.

3. APPLYING UPLIFT MODELING TO
SURVIVAL DATA

We will now present the main result of the paper, which
shows how uplift models can be applied to survival data
commonly occurring in medicine. First, let us introduce
some notation.

3.1 Notation
Each object (e.g. patient) is described by a feature vector

x which comes from some sample space X . Each object has
an associated binary outcome y ∈ {0, 1}. The event y = 1
is assumed to be the successful outcome, such as recovery
from a disease or survival for a specified amount of time. A
classification model M is a function

M : X → [0, 1]

whose value, M(x), is interpreted as the probability that x
belongs to the positive class. When firm decisions need to
be made, some threshold η is chosen, for example 1

2
, and

cases for which M(x) ≥ η are classified as positive.
In a randomized trial, each patient is assigned at random

to one of two groups: the treatment group, subject to the
therapy under consideration, or to the control group admin-
istered placebo or an alternative treatment. Let P t denote
the probabilities in the treatment group and P c the proba-
bilities in the control group. An uplift model is a function

M : X → [−1, 1]

whose value, M(x), is interpreted as the difference between
success probabilities in the treatment and control groups
P t(y = 1|x)−P c(y = 1|x). If M(x) > 0 than the model pre-
dicts the treatment to be beneficial for a patient described
by feature vector x.

Note that uplift modeling requires two training datasets,
Dt andDc containing cases, respectively, from the treatment
and control groups. The problem which makes uplift mod-
eling difficult, known as the fundamental problem of causal
inference [5] is that, for each training case we know only
the outcome after treatment or after placebo, never both.
Therefore we cannot determine whether the treatment was
really successful for a given individual.

We now briefly discuss survival data and censoring. More
thorough discussion can be found e.g. in [10]. Let T ∗ denote
a random variable representing the survival time for indi-
viduals in a given population, that is the time until some



event takes place, such as patient death or disease recur-
rence. Sometimes the survival time is longer than the time
the patient has been under observation and is thus unknown.
All we know is that it is later than the last time the patient
was seen. Such a situation is called censoring (right censor-
ing to be precise). There are various reasons for censoring,
the patient might have entered late in the study or dropped
out early [10].

Survival data usually involves two attributes: the ob-
served survival time T and a binary censoring status variable
δ ∈ {0, 1} indicating whether the event has been observed
(typically indicated by δ = 1). If the event has not been ob-
served (δ = 0) the true survival time T ∗ has been censored,
i.e., we only know that T ∗ > T where T is the last observed
time.

Let C be the right censoring time, i.e. the last time the
patient has been observed in the study. The observed sur-
vival time is the minimum of the true survival time and the
censoring time

T = min(T ∗, C). (1)

In the most general case, both T ∗ and C jointly depend
on x. Usually, however, stronger assumptions need to be
made. Below we describe how, under an appropriate censor-
ing model, uplift modeling is directly applicable to survival
data.

3.2 Survival data and uplift modeling
We now present the proposed transformation of survival

data into classification data and show that it is indeed ap-
propriate for uplift modeling.

We are going to build a model which will predict how the
treatment influences the probability that a given individual,
described by a feature vector x, survives at least θ, where θ
is some threshold of interest to clinicians. Note that we are
interested in the event T ∗ ≥ θ, but the true survival time is
not available to us due to censoring. Let us introduce the
following class variable:

Y =

{
1, if T ≥ θ,
0, otherwise.

(2)

Note, that Y is based on the observed time given in Equa-
tion 1, not the inaccessible survival time T ∗. We will now
demonstrate that, under reasonable assumptions, an uplift
model trained on the class variable given in Equation 2 does
in fact make correct predictions about the impact of the
treatment on the true survival time T ∗ for an individual
described by a feature vector x. Let us begin with an as-
sumption about censoring.

Assumption 1. The survival time T ∗ and the censoring
time C are conditionally independent given x.

This assumption is frequently made in survival analysis [10].
We now have

1−P (Y = 1|x) = P (T < θ|x) = P (T ∗ < θ ∨ C < θ|x)

= P (T ∗ < θ|x) + P (T ∗ ≥ θ ∧ C < θ|x)

which, using Assumption 1

= P (T ∗ < θ|x) + P (T ∗ ≥ θ|x)P (C < θ|x)

= P (T ∗ < θ|x) + (1− P (T ∗ < θ|x))P (C < θ|x)

= P (T ∗ < θ|x)− P (T ∗ < θ|x)P (C < θ|x) + P (C < θ|x)

= P (T ∗ < θ|x)[1− P (C < θ|x)] + P (C < θ|x). (3)

We have thus expressed the conditional probability of the
class variable Y in terms of survival and censoring probabil-
ities for a given individual.

Note, however, that estimating P (Y = 1|x) does not allow
us to draw conclusions about P (T ∗ ≥ θ|x) since the term
P (C < θ|x) may vary between individuals. Unfortunately,
estimation of P (C < θ|x) is not necessarily easy. We will
now introduce an additional assumption which will make the
use of uplift models possible, without the need to estimate
the censoring time distribution.

Assumption 2. The censoring times C are independent
of the treatment group assignment.

That is, the censoring time distributions are identical in the
treatment and control groups: P t(C < θ|x) = P c(C <
θ|x) = P (C < θ|x). To see how this assumption becomes
useful in the context of uplift modeling note that the dif-
ference in conditional probabilities of the class variable Y
given in Equation 2 is

P t(Y = 1|x)− P c(Y = 1|x)

= P c(T ∗ < θ|x)[1− P c(C < θ|x)] + P c(C < θ|x)

−P t(T ∗ < θ|x)[1− P t(C < θ|x)]− P t(C < θ|x)

= P c(T ∗ < θ|x)[1− P (C < θ|x)] + P (C < θ|x)

−P t(T ∗ < θ|x)[1− P (C < θ|x)]− P (C < θ|x)

= [P t(T ∗ ≥ θ|x)− P c(T ∗ ≥ θ|x)]P (C ≥ θ|x).

Now, the treatment is beneficial (with respect to surviving
at least θ) if P t(T ∗ ≥ θ|x)−P c(T ∗ ≥ θ|x) > 0. Notice that,
since P (C ≥ θ|x) is non-negative, the sign of this expression
is identical to the sign of P t(Y = 1|x) − P c(Y = 1|x), i.e.,
the difference in probabilities of the class variable Y .

Thus, under Assumptions 1 and 2, an uplift model is ca-
pable of making correct recommendations even though the
predicted value of the difference in probabilities may be in-
correct. Note, that the dependence of the censoring time C
on the features x is allowed.

Assumption 2 may seem restrictive; it may be violated
e.g. when one of the therapies imposes more burden on the
patient, who is then more likely to quit. However, the as-
sumption remains valid in many important cases. One ex-
ample is the intention to treat analysis, provided that all
patients are followed even if they stop receiving the treat-
ment. Note, that for this type of analysis not following some
patients leads to biased results [8], so care is usually taken to
follow all participants. Of course, the assumption remains
true if the burden of both treatments is similar. Specifically,
the assumption is true in the frequently occurring case when
the only source of censoring is the date of entry into the
study, known as type III censoring [10].

Notice that the class transformation given in Equation 2
will not work in the case of classification. Suppose we pick
some thresholds θ and η > 0, and want to classify points
with P (T ∗ ≥ θ|x) ≥ η as positive. It is then easy to see



from (3) that

P (T ∗ ≥ θ|x) ≥ η ⇔ P (Y = 1|x)

P (C ≥ θ|x)
≥ η,

so deciding whether the probability of interest is greater or
equal to η requires an estimate of P (C ≥ θ|x).

4. EXPERIMENTAL EVALUATION
In this section we are going to apply the transformation of

survival data for uplift modeling described in the previous
section to a real clinical trial dataset. We begin by describing
the dataset used in the experiments and the uplift models we
used, then discuss the methods of evaluating uplift models,
and finally present the results of our experiments.

4.1 The colon dataset
The colon dataset available in the survival package of

the R system comes from the clinical trial of an adjuvant
chemotherapy for colon cancer. There are two types of
treatment: levamisole, a low-toxicity compound, and lev-
amisole combined with 5-FU (Fluorouracil), a moderately
toxic chemotherapy agent. A control group is also included,
which received no treatment and was subject to observation
only. For each patient, two types of events are recorded:
recurrence of the disease and death, giving us two possible
modeling targets. We thus built separate uplift models for
lack of recurrence and patient survival.

Since most uplift models allow for only one type of treat-
ment we created separate datasets for treatment with lev-
amisole only and levamisole combined with 5-FU. The com-
bined therapy was more effective overall and uplift models
did not produce any improvement over administering the
combined treatment to all patients. In the remaining part
of the paper we thus consider only the levamisole and obser-
vation arms of the study.

Another issue is how to select the threshold θ in the con-
version described in Equation 2. We began by using the
median of observed (censored) times of disease recurrence
and patient survival in order to obtain a balanced class dis-
tribution. To test with a larger number of censored cases
we then repeated the experiments with thresholds set to the
third quartile of the observed times.

To build uplift models we used 10 predictor variables: pa-
tient’s sex and age, obstruction of the colon by tumor, per-
foration of the colon, adherence to nearby organs, number of
lymph nodes with detectable cancer, three levels of differen-
tiation of the tumor, the extent of local spread (submucosa,
muscle, serosa, contiguous structures), time from surgery to
registration, and an indicator of more than 4 positive lymph
nodes.

4.2 Methods of evaluating uplift classifiers
In this paper we use two ways of evaluating uplift models,

one based on so called uplift curves, the other based on
computing simulated survival curves. We describe them in
turn.

Similarly to two training datasets, uplift modeling requires
two test sets, one containing treatment, the other control
cases. The main problem of evaluating uplift classifiers is,
that for each test case we only know one of the responses,
either after the action was taken, or when no action was
taken, never both. Methods of evaluating uplift classifiers

are thus based on an assumption that cases which are simi-
larly scored by a model do indeed behave similarly. In other
words, we assume that the k percent of the treatment test
set which the uplift model scored highest is comparable to
the k percent of highest scoring cases in the control test set;
gains on the top k percent of cases in both datasets can
thus be subtracted from each other to obtain a meaningful
estimate of the difference in success probabilities.

In practice it is easier to visualize the performance us-
ing an uplift curve. The curve is obtained by repeating the
above procedure for several values of k and plotting the ob-
tained values on a chart. In medical context, the interpre-
tation of an uplift curve is as follows: on the x axis we pick
the percentage of the population, selected according to the
model, which should receive the treatment. The correspond-
ing value on the y axis then gives an estimate of the gain in
success rate achieved due to the treatment with respect to
the case when no patients receive the treatment. The gain
is expressed as percentage of the total population. Example
uplift curves will be shown in Section 4, more details on test-
ing uplift models and on uplift curves can be found in [12,
16, 4].

To summarize the curve using a single numerical value we
compute Areas Under the Uplift Curves (AUUC). Notice
that, uplift curves can achieve negative values (the results
of an action can be worse than doing nothing), and the area
under an uplift curve can also be negative.

Uplift curves are a useful diagnostic tool, but they do
not take into account survival times and censoring. More-
over, performing statistical tests on such curves is not easy.
To bring our experiments closer to medical methodology we
used a cross-validation based approach to survival analy-
sis described in [20]. Of course, since in the uplift setting
we have two training sets, cross-validation is performed on
both of them in parallel. For each train-test split, an uplift
model is build on the two training sets and used to predict
which cases in the treatment and control test sets should be
subjected to the therapy. Cases in the treatment test set
selected for treatment by the model as well as cases in the
control test set not selected by the model (i.e. cases where
model recommendation agrees with the true action taken)
are then combined over all cross-validation folds. The re-
sulting data is used to draw a survival curve which can be
viewed as a simulated application of an uplift model to de-
cide whether the treatment should have been administered
to each patient. More details can be found in [20].

4.3 Uplift models used
We have tested several uplift models: a double logistic

regression model, a single logistic model with class vari-
able transformation described in [6], uplift decision trees
from [17]. Finally, the best model turned out to be the uplift
k nearest neighbor method proposed in [9]. The method is
based on selecting, for the point x for which prediction is
made, k nearest neighbors from both treatment and control
training datasets. The improvement in success rate with re-
spect to the control is then estimated based on those points.
The influence of each selected point on the final decision is
weighted by the inverse of its distance from x. The best
results were obtained for k = 1, so that value is used in all
subsequent experiments.
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Figure 1: Averaged uplift curves of five fold cross-validated uplift models, built at the median of observed
times for each patient. The left panel shows an uplift curve for lack of recurrence of the disease, the right
panel for patient survival.

4.4 Results of experiments
We are now ready to present the actual experimental re-

sults. Figure 1 shows the uplift curves for lack of recurrence
and patient survival targets. The curves were obtained using
five fold cross-validation. The time threshold θ was picked to
be the median censored time of the respective event, i.e. 1052
days for recurrence and 1875 days for death. It can be seen
that by administering levamisole to only half of the patients
one can expect 6% more patients to remain recurrence free
at the selected time threshold with respect to no patient re-
ceiving levamisole. Note that the treatment is, overall, not
effective, so an almost identical gain can be obtained with
respect to administering levamisole to all patients. The diag-
onal line in the chart denotes random assignment of patients
to the treatment group. The corresponding improvement for
patient survival is even larger and amounts to about 8% of
the population.

The results presented in the figure are encouraging, but
they are expressed in terms of an artificial class variable,
not the true survival time, so any conclusions have to be
taken with caution. To obtain more credible evaluation we
use simulated survival curves obtained using the procedure
from [20] described above. The curves are shown in Figure 2.
Again, five fold cross-validation was used.

It can be seen that the curves for both levamisole treat-
ment and observation groups are almost identical, indicating
that the treatment is not effective overall. Using an uplift
model to select patients for the treatment one can, however,
obtain much better survival rates and lower recurrence. The
dashed vertical lines denote the cutoff thresholds θ. It can
be seen that even though the model was built to maximize
survival at that specific time point, the black curves, corre-
sponding the uplift models, dominate over the whole range
of survival times, with the difference in survival rates in-
creasing with time.

To obtain further verification of the fact that the uplift
model is indeed better than using either levamisole or no
treatment for all patients we performed statistical tests for
survival rates. Survival curves are typically compared using
the log-rank test [10], here however we are interested in a

specific time point on the curve: the one corresponding to
the threshold θ used to build the model.

An overview of statistical tests for comparing survival
curves at a specific time point θ can be found in [7]. A
‘naive’ test is based on the statistic

χ2
a =

(Ŝ1(θ)− Ŝ2(θ))2

Ŝ1(θ)2σ̂1(θ)2 − Ŝ2(θ)2σ̂2(θ)2
,

where Ŝi(θ) are the Kaplan-Meier estimators of the com-
pared survival functions at θ and σ̂i(θ) are the estimates of
the respective standard deviations obtained using the Green-
wood’s formula [10]. The statistic asymptotically follows the
chi-squared distribution with one degree of freedom. In [7],
the authors demonstrated that the test is overly optimistic
and suggested several alternatives based on transformations
of the survival curves. Following their results we have chosen
the log-transform which yields the test statistic

χ2
b =

(log Ŝ1(θ)− log Ŝ2(θ))2

σ̂1(θ)2 + σ̂2(θ)2
,

which asymptotically also follows the chi-squared distribu-
tion with one degree of freedom.

Since we want the treatment based on model’s selection
to be an improvement over both: treating all patients and
treating none of them, we performed separate tests to com-
pare the uplift model survival curve with the curves com-
puted on the treatment and control datasets. Table 1 shows
the test results for the curves presented in Figure 2. It can
be seen that the results are highly significant and using the
uplift model to select patients for treatment does indeed
bring improvement over indiscriminate administration of the
treatment or subjecting all patients to observation only.

It can be seen that the log-transform based test is indeed
more conservative, but the results remain significant.

The results presented so far are encouraging, but they do
not convincingly show that our method does indeed work in
the presence of censoring. The reason is that, respectively,
only 15 and 13 observations are censored (that is censor-
ing occurred before the threshold θ) for patient survival and
disease recurrence data. The total number of data records
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Figure 2: Survival curves for the observation group, the group treated with levamisole and a simulated
application of an uplift model to select patients for treatment. The dashed vertical line shows the time point
θ used to build the model, chosen to be the median of observed times for each patient. The left panel shows
curves for lack of recurrence of the disease, the right panel for patient survival.

Table 1: Test results for difference in survival rates
between uplift model’s selection and the treatment
and control groups at specific points in time. Low
amount of censoring.

uplift vs. treatment uplift vs. control
test type χ2 stat. p-value χ2 stat. p-value

recurrence free, θ = 1052 days

naive 14.486 1.412 · 10−4 8.602 3.357 · 10−3

log-trans 12.533 3.999 · 10−4 7.691 5.550 · 10−3

patient survival, θ = 1875 days

naive 8.184 4.226 · 10−3 8.257 4.059 · 10−3

log-trans 7.334 6.767 · 10−3 7.401 6.519 · 10−3

is 625. To increase the number of censored observations,
we moved the survival threshold θ to the third quartile of
observed times for all patients, i.e., 2324 days for patient
survival and 2227 days for disease recurrence. The number
of censored observations is, respectively, 149 (23.8%) and
123 (19.7%).

The resulting uplift curves are shown in Figure 3, the sur-
vival curves in Figure 4 and statistical tests results are given
in Table 2. It can be seen that the improvement for disease
recurrence data has become even more pronounced, despite
higher censoring. This is likely due to the fact that the ef-
fects of the therapy become stronger with time, making it
easier for the model to detect which patients respond to the
therapy. This effect seems to offset the higher amount of
cases lost due to censoring. Statistical tests confirm this
visual observation with p-values in the range of 10−6.

In case of patient survival, the results got somewhat worse,
probably due to increased censoring. The uplift model’s
survival still dominates both treatment and control survival
curves, but to a lesser degree. Tests comparing model’s se-
lection with the control still show significant improvement,
but tests comparing with levamisole treatment have lost sig-
nificance. Note, however, that this is likely due to the fact
that the threshold θ, chosen at the third quartile of censored
survival times, corresponds to a local bump in treatment ef-
fectiveness.

5. CONCLUSIONS AND FUTURE
RESEARCH

We have presented a method for converting survival data
obtained in clinical trials into classification data to which
uplift modeling can be applied. We have demonstrated that,
under reasonable assumptions, the predictions of an uplift
model trained on such data remain correct even though the
predicted probabilities need not be correct in the presence
of censoring. We have applied the approach to data from a
clinical trial of colon cancer treatment and shown that using
an uplift model to select patients for treatment does indeed
improve the outcome of the therapy in terms of both patient
survival and disease recurrence.

An important direction of future research is medical verifi-
cation of the results. The authors suspect that applying the
treatment only to some of the patients gives better results
due to side effects of levamisole which can be quite severe.
For example, up to 5 percent of patients develop agranu-
locytosis [2] which negatively affects their immune system.
Those conclusions, however, require further verification.

Another issue is choosing the right threshold θ. Of course,
the value may be determined a-priori based on medical con-
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Figure 3: Averaged uplift curves of five fold cross-validated uplift models, built at the third quartile of
observed times for each patient. The left panel shows an uplift curve for lack of recurrence of the disease,
the right panel for patient survival.

Table 2: Test results for difference in survival rates
between uplift model’s selection and treatment and
control groups at specific points in time. High
amount of censoring.

uplift vs. treatment uplift vs. control
test type χ2 stat. p-value χ2 stat. p-value

recurrence free, θ = 2227 days

naive 22.514 2.086 · 10−6 25.450 4.540 · 10−7

log-trans. 18.841 1.420 · 10−5 21.094 4.373 · 10−6

patient survival, θ = 2324 days

naive 1.605 2.051 · 10−1 8.421 3.709 · 10−3

log-trans. 1.527 2.166 · 10−1 7.504 6.156 · 10−3

cerns. It is however possible that individuals with high sur-
vival rate at time θ1 will also have high survival rate at
time θ2. In such a case, the threshold should be chosen
to maximize model performance. The therapeutic effect of-
ten increases with time (as can be seen in our experiments)
making modeling easier, but so does censoring, which in turn
makes it more difficult. Finding guidelines for picking the
threshold is important for practical applications.
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