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ABSTRACT

INFORMATION-THEORETICAL AND COMBINATORIAL METHODS IN

DATA-MINING

December 2003

Szymon Jaroszewicz,
M.Sc., Technical University of Szczecin

Ph.D., University of Massachusetts Boston

Directed by Professor Dan A. Simovici

Various applications of information theoretical and combinatorial methods in data

mining are presented.

An axiomatization has been introduced for a family of entropies including both

Shannon entropy and the Gini index as special cases. These entropies, and dis-

tances based on them, were then applied to decision tree construction. It has been

shown experimentally that trees using distances based on generalized entropies as

splitting criteria are smaller than those constructed using other criteria without

significant loss in accuracy.

One of the major problems in association rule mining is the huge number of

rules produced. This work contains contributions to two principal methods of

addressing the problem: sorting rules based on some interestingness measure, and

rule pruning. A new measure of rule interestingness is introduced generalizing three

well-known measures: chi-squared, entropy gain and Gini gain, which moreover

gives a whole family of intermediate measures with interesting properties. Also,
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a method of pruning association rules using the Maximum Entropy Principle has

been introduced. The usefulness of both methods is shown experimentally. It is

worth mentioning that Maximum Entropy pruning gives a high reduction in the

number of rules while retaining most of the interesting ones.

An idea has been suggested by H. Mannila to use supports of itemsets dis-

covered with a data mining algorithm to obtain the size of arbitrary database

queries. Here a solution to the problem is presented using a variation of the so

called Bonferroni inequalities.

Modifications of Bonferroni inequalities have been developed which allow for

obtaining bounds on sizes of arbitrary database queries based on supports of fre-

quent itemsets. Special cases like estimating support of an unknown itemset, or

of an itemset with negated attributes are also considered. Experiments show that

useful bounds can be obtained from the inequalities in many significant cases.
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CHAPTER 1

INTRODUCTION

1.1 The Need for Data Mining

In recent years business and scientific research has seen an explosion in the amount

of data collected. Supermarket chains routinely collect terabytes of data on pur-

chases their customers make. Several scientific fields like astronomy or particle

physics now have to deal with databases in the range of petabytes.

This data is useless unless it can be analyzed which, due to its huge size, is a very

difficult task. It has been noted [FRB02] that as processor speed doubles every

18 month (according to Moore’s law), the amount of data stored by companies

doubles every year, so increase in computing power will not provide a solution and

a new methodology is required.

This resulted in the creation of the data mining field. Early efforts in data

mining concentrated on modifying Machine Learning algorithms to scale up better

with the size of the datasets.

The first major algorithm developed specifically for large datasets came with the

introduction in 1993 by Rakesh Agrawal et al. [AIS93] of the association rule mining

problem. In [AIS93] the Apriori algorithm has been presented which is capable of

finding all association rules satisfying certain criteria even in very large datasets.

The paper has been followed by hundreds of publications further improving the
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algorithm, and applying it in other areas such as clustering.

1.2 Basic Notation

We first introduce database related notation used throughout the dissertation. A

database table is a triple τ = (T, H, ρ), where T is the name of the table, H is its

heading, and ρ is its content. Elements of ρ will be called tuples or records of the

table. Database tables will sometimes be called datasets.

Elements of H, the attributes of the table, will be denoted by uppercase letters

A, B, C, . . . from the beginning of the alphabet, and occasionally with letters X

and Y . Each attribute has associated with it a set Dom(A) called its domain. Sets

of attributes {A1, A2, . . . , Ak} will often be written as A1A2 . . . Ak according to

standard notation used in database literature. Subsets of H (attribute sets), will

be denoted using uppercase Roman letters I, J, K, L, . . .. The union of attribute

sets I, J will usually be written as IJ . The domain of a set of attributes A1A2 . . . Ak

is defined as

Dom(A1A2 . . . Ak) = Dom(A1)×Dom(A2)× . . .×Dom(Ak). (1.1)

The content of the table is a subset of the domain of its header: ρ ⊆ Dom(H).

See [ST95] for more details on the terminology.

It is assumed that the tuples of table τ = (T,H, ρ) are samples taken from

some probability distribution over Dom(H).

Following datamining terminology we will occasionally refer to binary attributes

as items and to sets of items as itemsets.
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1.3 Typical Data Mining Tasks

Typical data mining tasks relevant to this work will now be briefly characterized

(see [WF00] for a thorough introduction).

1.3.1 Classification, Decision Trees

An important data mining task is classification, that is predicting the value of an

attribute Y based on values of some other attributes X1, X2, . . . , Xn. The task is

achieved by first building a model for Y based on a dataset for which its values

are known, the so called training set.

There are many known methods for classification, the most widely used in

datamining are decision trees [Qui93]. In a decision tree each non-leaf node is

labeled with a test, each branch with a possible test outcome, and leaf nodes are

labeled with predicted outcomes.

A series of algorithms for building decision trees has been proposed by Quin-

lan [Qui93], the most important ones being ID3 and its successor C4.5. The main

idea behind those algorithms is to recursively split the dataset based on an outcome

of a newly chosen test. This is better described by the pseudocode in figure 1.1.

The algorithm is usually followed by a pruning stage which is beyond the scope

of this introduction.

The two key details of the algorithm are on lines 2 (the stopping criterion) and

4 (the splitting criterion). More relevant from the point of view of this work is the

splitting criterion. Typically splits are done based on a single attribute, and the

attribute maximizing some information theoretical criterion is chosen. In [Qui93]
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1. BuildTree(database τ):

2. If in τ, Y is almost always equal to some y0 ∈ Dom(Y )

3. return a leaf labeled with y0.

4. Choose a test C

5. Split τ into τ1, τ2, . . . , τk based on the outcome of C.

6. For every τi, let Ti = BuildTree(τi)

7. Return a node labeled with C, with T1, . . . , Tk as subtrees.

Figure 1.1: Pseudocode of a general decision tree construction algorithm

the so called information gain is used:

gain(Y,X) = H(Y )−H(Y |X),

where H denotes the Shannon entropy. Intuitively we select an attribute which

gives us the most information about the predicted attribute Y (see further chapters

or [Qui93] for details). To prevent attributes with a large number of values from

being favored over those with small domains, a modification called gain ratio is

often used:

gainratio(Y,X) =
gain(Y, X)

H(X)
.

1.3.2 Association rules

Another important data mining task relevant to this work is association rule min-

ing. The method was originally designed to help analyze supermarket purchase

data. Each item sold by the supermarket has a binary attribute assigned to it.
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Each row in a table represents a transaction, with items purchased in the trans-

action having their corresponding attributes set to 1. We are then interested in

finding facts like ‘people who buy beer are also likely to buy diapers’. The method-

ology can of course be applied to other domains, and has been followed by hundreds

of research papers extending it in various directions. Some more formal definitions

are given below, full details can be found in [AIS93].

Let τ = (T, H, ρ) be a table whose heading H consists entirely of binary at-

tributes. Each such attribute is called an item, subsets of H are called itemsets.

The support of an itemset I is defined as

supp(I) = |{t ∈ ρ | tI = 1, 1, . . . , 1}|,

where tI denotes the projection of t onto attribute set I. An itemset with support

greater than some user specified threshold minsupp is called frequent.

An association rule is a pair of itemsets (I, J), usually denoted as I → J . I is

called the rule’s antecedent and J its consequent. There are two important measures

associated with association rules: support and confidence defined respectively as:

supp(I → J) = supp(I ∪ J),

and

conf(I → J) =
supp(I ∪ J)

supp(I)
.

The association rule mining problem is to find in a given table all association rules

with support and confidence greater than some user specified thresholds minsupp

and minconf.

A solution to the problem presented in [AIS93] consists of two stages:

1. Find all frequent itemsets (using minsupp as the minimum support)
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2. Discover association rules with minimum confidence using frequent itemsets

discovered in step 1.

Step 1 of the above procedure is much more difficult, and consequently has

attracted much more attention in the literature. Given below is a sketch of the

Apriori algorithm, one of the first solutions to the problem. See [AIS93] for a full

description.

1. C1 = {{A} | A ∈ H}

2. k = 1

3. Find frequent itemsets in Ck and place them in Fk.

4. Ck+1 = {I ⊆ H | |I| = k+1, all subsets of size k of I are in Fk}

5. k = k + 1

6. goto 3

The main idea here is to search for frequent itemsets of increasing sizes, and

pruning the infrequent itemsets using the fact that an itemset cannot be frequent

unless all its subsets are frequent. The algorithm does at most kmax passes over

the database, where kmax is the size of the largest frequent itemset.

1.4 Overview of the Dissertation

This work is concerned with information theoretical and combinatorial concepts

applied to datamining. Contributions of this work are summarized below.
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1.4.1 Generalized Entropy Distances with Application to Decision Tree

Construction

In Chapter 2 we introduce an axiomatization of a family of entropies which includes

both Shannon entropy and the Gini index as special cases. These entropies are

then applied to decision tree construction.

As shown above, one of the criteria for splitting attribute selection in deci-

sion tree construction is Shannon entropy gain or the corresponding gain ratio.

In [LGR93] it has been shown that the expression

H(Y |X) + H(X|Y ), (1.2)

where H is the Shannon Entropy is a distance between attribute sets. It has also

been shown that using this distance as a splitting criterion during decision tree

construction often leads to much smaller trees with almost no loss in accuracy.

In this work it is shown that formula (1.2) remains a distance if Shannon entropy

is replaced with any of the generalized entropies. It is shown experimentally that

generalized entropies are useful as a splitting criterion for building decision trees

as well. Generalized entropies produced in many cases even smaller decision trees

without significant loss in accuracy.

1.4.2 Association rule pruning and interestingness

One of the major problems in association rule mining is the huge number of

rules produced, creating a secondary data mining problem. Indeed, even a toy

contact-lenses database, consisting of 5 attributes and 24 rows, produces hun-

dreds of association rules, most of them between independent attributes. There

are two methods of dealing with this problem:
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1. Sorting rules according to some interestingness measure. Of course, choosing

the right interestingness measure is crucial for this method.

2. Pruning rules so that only those most interesting from the users’ perspective

are retained.

This work contains contributions in both directions. A new interestingness measure

is given generalizing three important known measures: chi-squared, entropy gain

and Gini gain. Second, a method of pruning association rules using the Maximum

Entropy Principle is presented. Usefulness of both methods is shown experimen-

tally. It is worth noting that Maximum Entropy pruning gives a high reduction in

the number of rules while retaining most of the interesting ones.

1.4.3 Bonferroni inequalities

A series of seminal papers by H. Mannila et al. [MT96, Man01, PMS01] introduced

the idea of using supports of itemsets discovered with a data mining algorithm to

obtain the size of arbitrary database queries.

In this work a solution to the problem is presented using a variation of the

so called Bonferroni inequalities [GS96]. Let A1, A2, . . . , An be events in some

probability space. Bonferroni inequalities have the form

2m+1∑
t=0

(−1)tSt ≤ P (¬A1 ∧ ¬A2 ∧ . . . ∧ ¬An) ≤
2m∑
t=0

(−1)tSt,

for every m ≥ 0, where

Sk =
∑

P (Ai1 ∧ Ai2 ∧ . . . ∧ Aik),

where summation is over all 1 ≤ i1 < i2 < . . . < ik ≤ n, see [GS96] for details and

applications.
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Here variants of Bonferroni inequalities have been developed which allow for

estimating bounds of arbitrary database queries based on supports of frequent

itemsets. Special cases like estimating support of an itemset with an unknown

support or of an itemset with negated attributes are also considered. Experiments

show that useful bounds can be obtained from the inequalities in many important

cases.
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CHAPTER 2

AXIOMATIZATION OF GENERALIZED

ENTROPY OF PARTITIONS WITH

APPLICATION TO DECISION TREE

INDUCTION

2.1 Introduction and Basic Notations

The notion of partition of a finite set is naturally linked to the notion of probability

distribution. Namely, if A is a finite set and π = {B1, . . . , Bn} is a partition of

A, then the probability distribution attached to π is (p1, . . . , pn), where pi = |Bi|
|A|

for 1 ≤ i ≤ n. Thus, it is natural to consider the notion of entropy of a partition

via the entropy of the corresponding probability distribution. Axiomatizations

for entropy and entropy-like characteristics of probability distributions represent

a problem with a rich history in information theory. Previous relevant work in-

clude the results of A.I. Khinchin [Khi57], D.K. Faddeev [Fad56], R.S. Ingarden

and K. Urbanik [IU62] who investigated various axiomatizations of entropy, and

Z. Daróczy who presented in [Dar70] an unified treatment of entropy-like char-

acteristics of probability distributions using the notion of information function.

An overview of axiomatizations of entropies of random variables can be found

in [MR75].
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The work is also related to [SR93, JS99], where we introduced an axiomatiza-

tion for the notion of functional entropy. This numerical characteristic of func-

tions is related to the complexity of circuits that realize the functions (cf.[CA90])

and serves as an estimate for power dissipation of a circuit realizing a func-

tion (cf.[HW97]). Information measures, especially conditional entropy of a logic

function and its variables, have been used for minimization of logic functions

(See [LGR93] and [CSS98]). It is also naturally related to the notion of entropy

of partitions since every function f : A −→ B defines a partition on its definition

domain A whose blocks are {f−1(b) | b ∈ Ran(f)}.

In a different direction, starting from the notion of impurity of a set relative

to a partition, a common generalization of Shannon entropy and of Gini index has

been used in [D 00] for clustering of non-categorial data. P. A. Devijer used the

Gini index in pattern recognition in [Dev74].

Partitions play a central role in classifications. Indeed, if a set of tuples T is

described by attributes a1, . . . , an, then each set of attributes K defines a partition

π(K) of T , where two tuples belong to the same block of π(K) if they have equal

projections on K. Note that if H ⊆ K, then π(K) ≤ π(H) for any attribute sets

H and K.

More on application of partitions to classification is presented in later sections

of this chapter. First we discuss the notion of entropy of partitions.

All sets considered in this chapter are nonempty and finite unless stated ex-

plicitly otherwise. The sets R, R≥0, Q, N, N1 denote the set of reals, the set of non-

negative reals, the set of rational numbers, the set of natural numbers, and the set

{n ∈ N | n ≥ 1}, respectively. The domain and range of a function f are denoted

by Dom(f) and Ran(f) respectively.
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Definition 2.1.1 Let A be a set. A collection of nonempty, pairwise disjoint sets

{B1, B2, . . . , Bm} such that
m⋃

i=1

Bi = A

is called a partition of A.

Denote by PART(A) the set of partitions of the set A. The class of all partitions

of finite sets is denoted by PART. The one-block partition of A is denoted by ωA.

The partition {{a} | a ∈ A} is denoted by ιA.

If π, π′ ∈ PART(A), then π ≤ π′ if every block of π is included in a block of π′.

Clearly, for every π ∈ PART(A) we have ιA ≤ π ≤ ωA.

The partially ordered set (PART(A),≤) is a lattice (see, for example a very

lucid study of this lattice in [Ler81]). If σ, σ′ ∈ PART(A), then σ′ covers σ if

σ ≤ σ′ and, there is no partition σ1 ∈ PART(A) such that σ < σ1 < σ′. This is

denoted by σ ≺ σ′. It is easy to see that σ ≺ σ′ if and only if σ′ can be obtained

from σ by fusing two of its blocks into a block of σ′.

If A, B are two disjoint sets, π ∈ PART(A), σ ∈ PART(B), where π =

{A1, . . . , Am}, σ = {B1, . . . , Bn}, then the partition π +σ is the partition of A∪B

given by

π + σ = {A1, . . . , Am, B1, . . . , Bn}.

Whenever the “+” operation is defined it is easily seen to be associative. In other

words, if A, B, C are pairwise disjoint sets, and π ∈ PART(A), σ ∈ PART(B),

τ ∈ PART(C), then π + (σ + τ) = (π + σ) + τ .

Observe that if A and B are disjoint, then ιA + ιB = ιA∪B. Also, ωA + ωB is

the partition {A, B} of the set A ∪B.

12



If π = {A1, . . . , Am}, σ = {B1, . . . , Bn} are partitions of two arbitrary sets,

then we denote the partition {Ai×Bj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} of A×B by π×σ.

Note that ιA × ιB = ιA×B and ωA × ωB = ωA×B.

Traditionally, the notion of Shannon entropy is introduced for a discrete random

variable’s distribution

X :

x1 · · · xn

p1 · · · pn


as H(X) = −

∑n
i=1 pi log2 pi.

We define the Shannon entropy of π = {B1, . . . , Bm} ∈ PART(A) as the Shan-

non entropy of the probability distribution ( |B1|
|A| , . . . ,

|Bm

|A| ) induced by π.

Here we present an axiomatization leading to the above formula, as well as many

of its generalizations, based solely on partitions. It was first presented in [SJ02],

where we introduced an axiomatization of a general notion of entropy for partitions

of finite sets. Our system of axioms shows the common nature of Shannon entropy

and of other measures of distribution concentration such as the Gini index.

2.2 An Axiomatization of Generalized Entropy

We introduce below a system of four axioms satisfied by several types of entropy-

like characteristics of probability distributions.

Definition 2.2.1 Let β ∈ R, β > 0, and let Φ : R2
≥0 −→ R≥0 be a continuous

function such that Φ(x, y) = Φ(y, x), Φ(x, 0) = x for x, y ∈ R.

A (Φ, β)-system of axioms for a partition entropy H : PART −→ R≥0 consists

of the following axioms:

(P1) If π, π′ ∈ PART(A) are such that π ≤ π′, then 0 ≤ H(π′) ≤ H(π).

13



(P2) If A, B are two finite sets such that |A| ≤ |B|, then H(ιA) ≤ H(ιB).

(P3) For all disjoint sets A, B and partitions π ∈ PART(A), and σ ∈ PART(B)

we have:

H(π + σ)

=

(
|A|

|A|+ |B|

)β

H(π) +

(
|B|

|A|+ |B|

)β

H(σ)

+H({A, B}).

(P4) If π ∈ PART(A) and σ ∈ PART(B), then

H(π × σ) = Φ(H(π), H(σ)).

Lemma 2.2.2 For every (Φ, β)-entropy H and set A we have H(ωA) = 0.

Proof. Let A, B be two disjoint sets that have the same cardinality, |A| = |B|.

Since ωA + ωB is the partition {A, B} of the set A ∪B, by Axiom (P3) we have

H(ωA + ωB) =

(
1

2

)β

(H(ωA) + H(ωB)) + H({A, B}),

which implies H(ωA) + H(ωB) = 0. Since H(ωA) ≥ 0 and H(ωB)) ≥ 0 (Ax-

iom (P1)) it follows that H(ωA) = H(ωB) = 0.

Lemma 2.2.3 Let A, B be two disjoint sets and let π, π′ ∈ PART(A∪B) be defined

by π = σ + ιB and π′ = σ + ωB, where σ ∈ PART(A). Then,

H(π) = H(π′) +

(
|B|

|A|+ |B|

)β

H(ιB).
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Proof. By Axiom (P3) we can write:

H(π) =

(
|A|

|A|+ |B|

)β

H(σ)

+

(
|B|

|A|+ |B|

)β

H(ιB) + H({A, B}),

and

H(π′) =

(
|A|

|A|+ |B|

)β

H(σ)

+

(
|B|

|A|+ |B|

)β

H(ωB) + H({A, B})

=

(
|A|

|A|+ |B|

)β

H(σ) + H({A, B})

(by Lemma 2.2.2).

The above equalities imply immediately the equality of the lemma.

Theorem 2.2.4 For every (Φ, β)-entropy, and partition π = {A1, . . . , An} ∈

PART(A) we have:

H(π) = H(ιA)−
n∑

j=1

(
|Aj|
|A|

)β

H(ιAj
).

Proof. Starting from the partition π consider the following sequence of partitions

in PART(A):

π0 = ωA1 + ωA2 + ωA3 + · · ·+ ωAn

π1 = ιA1 + ωA2 + ωA3 + · · ·+ ωAn

π2 = ιA1 + ιA2 + ωA3 + · · ·+ ωAn

...

πn = ιA1 + ιA2 + ιA3 + · · ·+ ιAn .
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Let σj = ιA1 + · · · + ιAj
+ ωAj+2

+ · · · + ωAn . Then, πj = σj + ωAj+1
and

πj+1 = σj + ιAj+1
; therefore, by Lemma 2.2.3, we have

H(πj+1) = H(πj) +

(
|Aj+1|
|A|

)β

H(ιAj+1
)

for 0 ≤ j ≤ n− 1.

A repeated application of this equality yields:

H(πn) = H(π0) +
n−1∑
j=0

(
|Aj+1|
|A|

)β

H(ιAj+1
).

Observe that π0 = π and πn = ιA. Consequently,

H(π) = H(ιA)−
n∑

j=1

(
|Aj|
|A|

)β

H(ιAj
).

Note that if A, B are two sets such that |A| = |B| > 0, then, by Axiom (P2), we

have H(ιA) = H(ιB). Therefore, the value of H(ιA) depends only on the cardinality

of A, and there exists a function µ : N1 −→ R such that H(ιA) = µ(|A|) for every

nonempty set A. Axiom (P2) also implies that µ is an increasing function. We

will refer to µ as the core of the (Φ, β)-system of axioms.

Corollary 2.2.5 Let H be a (Φ, β)-entropy. For the function µ defined in Ax-

iom (P2) and every partition π = {A1, . . . , An} ∈ PART(A) we have:

H(π) = µ(|A|)−
n∑

j=1

(
|Aj|
|A|

)β

µ(|Aj|). (2.1)

Proof. The statement is an immediate consequence of Theorems 2.2.4.

Theorem 2.2.6 Let π = {B1, . . . , Bn} be a partition of the set A. Define the par-

tition π′ obtained by fusing the blocks B1 and B2 of π as π′ = {B1∪B2, B3, . . . , Bn}
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of the same set. Then

H(π) = H(π′) +

(
|B1 ∪B2|
|A|

)β

H({B1, B2}).

Proof. A double application of Corollary 2.2.5 yields:

H(π′) = µ(|A|)−
(
|B1 ∪B2|
|A|

)β

µ(|B1 ∪B2|)

−
n∑

i>2

(
|Bi|
|A|

)β

µ(|Bi|)

and

H({B1, B2}) = µ(|B1 ∪B2|)−
(

|B1|
|B1 ∪B2|

)β

µ(|B1|)

−
(

|B2|
|B1 ∪B2|

)β

µ(|B2|).

Substituting the above expressions in

H(π′) +

(
|B1 ∪B2|
|A|

)β

H({B1, B2})

we obtain H(π).

Theorem 2.2.6 allows us to extend Axiom (P3):

Corollary 2.2.7 Let A1, . . . , Am be nonempty, disjoint sets and let πi ∈ PART(Ai)

for every 1 ≤ i ≤ m. We have

H(π1 + · · ·+ πm) =
m∑

i=1

(
|Ai|
|A|

)β

H(πi)

+H({A1, . . . , Am}),

where A = A1 ∪ · · · ∪ Am.

Proof. The argument is by induction on m ≥ 2. The basis step, m = 2, is

Axiom (P3). Suppose that the statement holds for m and let A1, . . . , Am, Am+1
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be m + 1 disjoint sets. Further, suppose that π1, . . . , πm, πm+1 are partitions of

these sets, respectively. Then, πm + πm+1 is a partition of the set Am ∪Am+1. By

the inductive hypothesis we have

H(π1 + · · ·+ (πm + πm+1)) =
∑m−1

i=1

(
|Ai|
|A|

)β

H(πi)

+
(
|Am|+|Am+1|

|A|

)β

H(πm + πm+1)

+H({A1, . . . , (Am ∪ Am+1)}),

where A = A1 ∪ · · · ∪ Am ∪ Am+1.

Axiom (P3) implies:

H(π1 + · · ·+ (πm + πm+1)) =
∑m−1

i=1

(
|Ai|
|A|

)β

H(πi)

+
(
|Am|
|A|

)β

H(πm) +
(
|Am+1|
|A|

)β

H(πm+1)

+
(
|Am|+|Am+1|

|A|

)β

H{Am, Am+1}

+H({A1, . . . , (Am ∪ Am+1)}).

Finally, an application of Theorem 2.2.6 gives the desired equality.

Theorem 2.2.8 Let µ be the core of a (Φ, β)-system. If a, b ∈ N1, then

µ(ab)− µ(a)

bβ−1
= µ(b).

Proof. Let A = {x1, . . . , xa} and B = {y1, . . . , yb} be two nonempty sets. Note

that ωA× ιB consists of b blocks of size a: A×{y1}, . . . , A×{yb}. By Axiom (P4),

H(ωA × ιB) = Φ(H(ωA), H(ιB)) = Φ(0, H(ιB)) = H(ιB).

On the other hand,

H(ωA × ιB) = H(ιA×B)−
b∑

i=1

(
1

b

)β

H(ιA×{yi})

= µ(ab)− 1

bβ
b · µ(a),
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which gives the needed equality.

An entropy is said to be non-Shannon if it defined by a (Φ, β)-system of axioms

such that β 6= 1; otherwise, that is if β = 1, the entropy will be referred to as a

Shannon entropy.

2.3 Axiomatization of non-Shannon Entropies

In this section we use axiomatization of generalized entropy to obtain an axioma-

tization for non-Shannon entropy.

Theorem 2.3.1 Let H be a non-Shannon entropy defined by a (Φ, β)-system of

axioms and let µ be the core of this system of axioms.

There is a constant c ∈ R such that c · (β − 1) ≥ 0 and

µ(a) = c ·
(

1− 1

aβ−1

)
for a ∈ N1.

Proof. Theorem 2.2.8 implies that

µ(ab) =
µ(a)

bβ−1
+ µ(b) =

µ(b)

aβ−1
+ µ(a),

for every a, b ∈ N1. Consequently,

µ(a)

1− 1
aβ−1

=
µ(b)

1− 1
bβ−1

,

for all a, b ∈ N1, which gives the desired equality.

Note that for β 6= 1 we have:

c =


lima→∞ µ(a) if β > 1

lima→0 µ(a) if β < 1.

(2.2)
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Corollary 2.3.2 If H is a non-Shannon entropy defined by a (Φ, β)-system of

axioms, then there exists a constant c ∈ R such that for all π ∈ PART(A), where

π = {A1, . . . , An} the following equality holds

H(π) = c ·

(
1−

n∑
j=1

(
|Aj|
|A|

)β
)

. (2.3)

Proof. By Corollary 2.2.5 and by Theorem 2.3.1 we have

H(π)

= µ(|A|)−
n∑

j=1

(
|Aj|
|A|

)β

µ(|Aj|)

= c ·
(

1− 1

|A|β−1

)
− c ·

n∑
j=1

(
|Aj|
|A|

)β

·
(

1− 1

|Aj|β−1

)

= c ·
(

1− 1

|A|β−1

)
− c ·

n∑
j=1

(
|Aj|
|A|

)β

+ c ·
n∑

j=1

|Aj|
|A|β

= c ·

(
1−

n∑
j=1

(
|Aj|
|A|

)β
)

.

Theorem 2.3.3 Let H be the non-Shannon entropy defined by a (Φ, β)-system

and let c be as defined by Equality (2.2), where µ is the core of the (Φ, β)-system of

axioms. The function Φ introduced by Axiom (P4) is given by Φ(x, y) = x+y− 1
c
xy

for x, y ∈ [0, c] when β > 1 and for x, y ∈ [0,∞) when β < 1.

Proof. Let π = {A1, . . . , An} ∈ PART(A) and σ = {B1, . . . , Bm} ∈ PART(B) be

two partitions. Since

n∑
j=1

(
|Aj|
|A|

)β

= 1− 1

c
H(π)

m∑
k=1

(
|Bk|
|B|

)β

= 1− 1

c
H(σ)
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we can write:

H(π × σ) = c

(
1−

n∑
j=1

m∑
k=1

(
|Aj||Bk|
|A||B|

)β
)

= c

(
1−

(
1− 1

c
H(π)

)(
1− 1

c
H(σ)

))
= H(π) + H(σ)− 1

c
H(π)H(σ).

Let us now show that the set of values of entropies is dense in the required

intervals. For a given n take rational n-dimensional vectors s = (1, 0, . . . , 0)

and t = ( 1
n
, . . . , 1

n
). Let α ∈ Q, 0 ≤ α ≤ 1. Denote rα = (1 − α)s + αt =(

1− α + α
n
, α

n
, . . . , α

n

)
. Consider a function

f(α) = c

[
1−

n∑
i=0

rβ
α,i

]
= c

[
1−

(
1− α +

α

n

)β

− n− 1

nβ

]
,

where rα,i is the i-th coordinate of rα. It is easy to see that it is a continuous

function of α, and its range is [0, c(1− nβ−1)]. Since the set of rational numbers is

dense and f(α) is continuous in α, values of entropies are dense in [0, c(1−n1−β)].

Since n can be chosen arbitrarily large, the values of entropies are dense in the

interval [0, c) when β > 1 and in the interval [0,∞) when β < 1. The density of

the set of values of entropies and the continuity of Φ implies the desired form of Φ

on the required intervals.

Choosing c = 1
β−1

in the equality (2.3) we obtain the Havrda-Charvát entropy

(see [KK92]):

Hβ(π) =
1

β − 1
·

(
1−

n∑
j=1

(
|Aj|
|A|

)β
)

.

The limit case, limβ→1 Hβ(π) yields the Shannon entropy. The case β = 1 is

considered independently in the next section.

21



If β = 2 we obtain the Gini index,

H2(π) = 1−
n∑

j=1

(
|Aj|
|A|

)2

,

which is widely used in machine learning and data mining.

Theorem 2.3.4 If c(β − 1) ≥ 0, then for all β 6= 1, the expression (2.3) satisfies

the Axioms (P1), (P2), (P3), (P4).

Proof. Let us first prove that for two partitions π and π′, π ≤ π′ implies H(π′) ≤

H(π). It suffices to show the result for π ≺ π′. Without loss of generality assume

that π = {A1, A2, . . . , Ak}, π′ = {A1, A2, . . . , Ak−1 ∪ Ak}. We have

H(π)−H(π′) = c

[(
|Ak−1|+ |Ak|

|A|

)β

−
(
|Ak−1|
|A|

)β

−
(
|Ak|
|A|

)β
]

= c

(
|Ak−1|+ |Ak|

|A|

)β
[(

|Ak−1|+ |Ak|
|Ak−1|+ |Ak|

)β

−
(

|Ak−1|
|Ak−1|+ |Ak|

)β

−
(

|Ak|
|Ak−1|+ |Ak|

)β
]
.

The non-negativity of the above expression follows from concavity of cxβ when

c(β − 1) ≥ 0. It is easy to see that H(ωA) = 0 which implies non-negativity of H

and proves that expression (2.3) satisfies (P1).

The case of (P2) follows from the fact that H(ιA) = c(1 − |A|1−β) is an in-

creasing function of |A| when c(β − 1) ≥ 0, β 6= 1.

(P3) can easily be verified using elementary algebraical transformations, and

(P4) follows from the equality H(π × σ) = H(π) + H(σ) − 1
c
H(π)H(σ) proved

earlier.
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2.4 Axiomatization of Shannon Entropy

When β = 1, by Theorem 2.2.8, we have

µ(ab) = µ(a) + µ(b)

for a, b ∈ N1. If η : N1 −→ R is the function defined by η(a) = aµ(a) for a ∈ N1,

then η is clearly an increasing function and we have

η(ab) = abµ(ab) = bη(a) + aη(b)

for a, b ∈ N1. By Theorem A.6 from [SR93], there exists a constant c ∈ R such that

η(a) = ca log2 a for a ∈ N1, so µ(a) = c log2(a). Then, equation (2.1) implies:

H(π) = c ·
n∑

i=1

ai

a
log2

ai

a
,

for every partition π = {A1, . . . , An} of a set A, where |Ai| = ai for 1 ≤ i ≤ n, and

|A| = a. Taking c = −1 gives exactly the expression for Shannon’s entropy.

The continuous function Φ is determined, as in the previous case. If π =

{A1, . . . , An} ∈ PART(A) and σ = {B1, . . . , Bm} ∈ PART(B), then we must have

H(π × σ) = H(π) +H(σ) = Φ(H(π),H(σ)).

An argument similar to the proof of Theorem 2.3.3 shows that the set of values

of Shannon entropies is dense in the interval [0,∞), which combined with the

continuity of Φ implies Φ(x, y) = x + y.

2.5 Conditional Entropy

The entropies previously introduced generate corresponding conditional entropies.

23



Let π ∈ PART(A) and let C ⊆ A. Denote by πC the “trace” of π on C given

by

πC = {B ∩ C|B ∈ π such that B ∩ C 6= ∅}

Clearly, πC ∈ PART(C); also, if C is a block of π, then πC = ωC .

Definition 2.5.1 The conditional entropy defined by the (Φ, β)-entropy H is the

function C : PART2 −→ R≥0 given by:

C(π, σ) =
n∑

j=1

|Cj|
|A|

·H(πCj
),

where π, σ ∈ PART(A), π = {B1, . . . , Bm} and σ = {C1, . . . , Cn}.

We denote the value of C(π, σ) by H(π|σ). Note that H(π|ωA) = H(π).

The partition π ∧ σ whose blocks consist of the nonempty intersections of the

blocks of π and σ can be written as

π ∧ σ = πC1 + · · ·+ πCn = σB1 + · · ·+ σBm .

Notice that π∧σ is the infimum of partitions π and σ in the lattice (PART(A),≤).

Therefore, by Corollary 2.2.7, we have:

H(π ∧ σ) =
n∑

j=1

(
|Cj|
|A|

)β

H(πCj
) + H(σ).

For those entropies with β > 1 we have

H(π ∧ σ) ≤ H(π|σ) + H(σ), (2.4)

while for those having β < 1, the reverse inequality holds. In the case of Shannon

entropy, β = 1 and

H(π ∧ σ) = H(π|σ) + H(σ) (2.5)

= H(σ|π) + H(π). (2.6)
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If H is a (Φ, β)-entropy, π, σ ∈ PART(A) are such that π = {B1, . . . , Bm} and

σ = {C1, . . . , Cn}, then the conditional entropy H(π|σ) is given by:

H(π|σ) =
n∑

j=1

|Cj|
|A|

µ(|Cj|)

−
n∑

j=1

m∑
i=1

|Bi ∩ Cj|β

|A| · |Cj|β−1
µ(|Bi ∩ Cj|).

This equality follows immediately from Corollary 2.2.5.

In the case of Shannon entropy, taking β = 1 and µ(n) = log2 n we obtain the

well-known expression of conditional entropy:

H(π|σ) = −
m∑

i=1

n∑
j=1

|Bi ∩ Cj|
|A|

log2

|Bi ∩ Cj|
|Cj|

.

In the case of the Gini index we have β = 2 and µ(a) = c
(
1− 1

a

)
for a ∈ N1.

Consequently, after some elementary transformations, the conditional Gini index

is:

H(π|σ) = 1−
n∑

j=1

m∑
i=1

|Bi ∩ Cj|2

|A| · |Cj|
.

2.6 Metrics on Partitions Induced by Generalized Entropies

Using the axioms above and choosing c = 1
β−1

we obtain a family of entropies

Hβ(π) =
1

β − 1

(
1−

n∑
j=1

(
|Aj|
|A|

)β
)

,

for β 6= 1, and Shannon entropy for β = 1 (limiting case). In this section we prove

that the family can be used to introduce a metric on the partitions of a set.

A direct consequence of the Axioms is that H(ωA) = 0 for any set A (Lemma

2.2.2). The following reciprocal result also holds:
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Lemma 2.6.1 Let A be a finite set and let π ∈ PART(A) such that Hβ(π) = 0.

Then, π = ωA.

Proof. Suppose that Hβ(π) = 0 but π < ωA. Then, there exists a block C of

π such that ∅ ⊂ C ⊂ A. If θ = {C, A − C}, then clearly we have π ≤ θ, so

0 ≤ Hβ(θ) ≤ Hβ(π), which implies Hβ(θ) = 0. If β > 1, then

Hβ(θ) = c

(
1−

(
|C|
|A|

)β

−
(
|A− C|
|A|

)β
)

= 0.

The concavity of the function f(x) = xβ + (1− x)β on [0, 1] (when β > 1) implies

either C = A or C = ∅, which is a contradiction. Thus, π = ωA. A similar

argument works for the other cases.

Theorem 2.6.2 Let A be a finite set and let π, σ ∈ PART(A). We have Hβ(π|σ) =

0 if and only if σ ≤ π.

Proof. Suppose that σ = {C1, . . . , Cn}. If σ ≤ π, then πCj
= ωCj

for 1 ≤ j ≤ n,

so Hβ(π|σ) = 0. Conversely, suppose that

Hβ(π|σ) =
n∑

j=1

|Cj|
|A|

·Hβ(πCj
) = 0.

This implies Hβ(πCj
) = 0 for 1 ≤ j ≤ n, so πCj

= ωCj
for 1 ≤ j ≤ n by

Lemma 2.6.1. This means that every block Cj of σ is included in a block of π,

which implies σ ≤ π.

Lemma 2.6.3 Let a, b ∈ [0, 1] such that a + b = 1. Then, for β ≥ 1 we have:

n∑
i=1

(axi + byi)
β ≤ a

n∑
i=1

xβ
i + b

n∑
i=1

yβ
i ,

for every x1, . . . , xn, y1, . . . , yn ∈ [0, 1]. For β ≤ 1, the reverse inequality holds.
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Proof. The statement follows immediately from concavity of the function f(x) =

xβ for β > 1 on the interval [0, 1].

Theorems 2.6.4 and 2.6.7 extend well-known monotonicity properties of Shan-

non entropy.

Theorem 2.6.4 If π, σ, σ′ are partitions of the finite set A such that σ ≤ σ′, then

Hβ(π|σ) ≤ Hβ(π|σ′) for β > 0.

Proof. To prove this statement it suffices to consider only the case when σ ≺ σ′.

Suppose initially that β > 1.

Let σ, σ′ ∈ PART(A) such that σ ≺ σ′. Suppose that D, E are blocks of σ such

that C = D ∪ E, where C is a block of σ′; the partition π is {B1, . . . , Bn}.

Define xi = |Bi∩D|
|D| and yi = |Bi∩E|

|E| for 1 ≤ i ≤ n. If we choose a = |D|
|C| and

b = |E|
|C| , then

|C|
n∑

i=1

|Bi ∩ C|β

|C|β
≤ |D|

n∑
i=1

|Bi ∩D|β

|D|β
+ |E|

n∑
i=1

|Bi ∩ E|β

|E|β
,

by Lemma 2.6.3. Consequently, we can write:

Hβ(π|σ) = · · ·+ |D|
|A|

Hβ(πD) +
|E|
|A|

Hβ(πE) + · · ·

= · · ·+ |D|
|A|

(
1−

n∑
i=1

|Bi ∩D|β

|D|β

)
+
|E|
|A|

(
1−

n∑
i=1

|Bi ∩ E|β

|E|β

)
+ · · ·

≤ · · ·+ |C|
|A|

(
1−

n∑
i=1

|Bi ∩ C|β

|C|β

)
+ · · · = Hβ(π|σ′).

For β < 1 we have

|C|
n∑

i=1

|Bi ∩ C|β

|C|β
≥ |D|

n∑
i=1

|Bi ∩D|β

|D|β
+ |E|

n∑
i=1

|Bi ∩ E|β

|E|β
,
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by the second part of Lemma 2.6.3. Thus,

Hβ(π|σ) = · · ·+ |D|
|A|

Hβ(πD) +
|E|
|A|

Hβ(πE) + · · ·

= · · ·+ |D|
|A|

(
n∑

i=1

|Bi ∩D|β

|D|β
− 1

)
+
|E|
|A|

(
n∑

i=1

|Bi ∩ E|β

|E|β
− 1

)
+ · · ·

≤ · · ·+ |C|
|A|

(
n∑

i=1

|Bi ∩ C|β

|C|β
− 1

)
+ · · · = Hβ(π|σ′).

For β = 1 the inequality is a well-known property of Shannon entropy.

Corollary 2.6.5 For every π, σ ∈ PART(A) and β > 0, we have Hβ(π|σ) ≤

Hβ(π).

Proof. Since σ ≤ ωA, by Theorem 2.6.4 we have Hβ(π|σ) ≤ Hβ(π|ωA) = Hβ(π).

Corollary 2.6.6 Let A be a finite set. For β ≥ 1 we have Hβ(π ∧ σ) ≤ Hβ(π) +

Hβ(σ) for every π, σ ∈ PART(A).

Proof. By Inequality (2.4) and by Corollary 2.6.5 we have

Hβ(π ∧ σ) ≤ Hβ(π|σ) + Hβ(σ) ≤ Hβ(π) + Hβ(σ).

Theorem 2.6.7 If π, π′, σ are partitions of the finite set A such that π ≤ π′, then

Hβ(π|σ) ≥ Hβ(π′|σ).

Proof. Suppose that σ = {C1, . . . , Cn}. Then, it is clear that πCj
≤ π′Cj

for 1 ≤

j ≤ n. Therefore, Hβ(πCj
) ≥ Hβ(π′Cj

) by Axiom (P1), which implies immediately

the desired inequality.
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Lemma 2.6.8 Let A be a nonempty set and let {A′, A′′} be a two-block partition

of A. If π ∈ PART(A), σ′ ∈ PART(A′), and σ′′ ∈ PART(A′′), then

Hβ(π|σ′ + σ′′) =
|A′|
|A|

Hβ(π′|σ′) +
|A′′|
|A|

Hβ(π′′|σ′′),

where π′ = πA′ and π′′ = πA′′.

Proof. Note that σ′+σ′′ is a partition of A. The lemma follows immediately from

the definition of conditional entropy.

Theorem 2.6.9 Let A be a nonempty set and let {A1, . . . , A`} be a partition of

A. If π ∈ PART(A), σk ∈ PART(Ak) for 1 ≤ k ≤ `, then

Hβ(π|σ1 + · · ·+ σ`) =
∑̀
k=1

|Ak|
|A|

Hβ(πk|σk)

where πk = πAk
for 1 ≤ k ≤ `.

Proof. The result follows immediately from Lemma 2.6.8 due to the associativity

of the partial operation “+”.

Theorem 2.6.10 If β > 1, then for every three partitions π, σ, τ of a finite set A

we have

Hβ(π|σ ∧ τ) + Hβ(σ|τ) ≥ Hβ(π ∧ σ|τ).

If β < 1 we have the reverse inequality, and for β = 1 we have the equality

Hβ(π|σ ∧ τ) + Hβ(σ|τ) = Hβ(π ∧ σ|τ).

Proof. Suppose that π = {B1, . . . , Bm}, σ = {C1, . . . , Cn}, and τ = {D1, . . . , D`}.

We noted already that σ ∧ τ = σD1 + · · · + σD`
= τC1 + · · · + τCn . Consequently,

29



by Theorem 2.6.9 we have Hβ(σ ∧ π) =
∑`

k=1
|Dk|
|A| Hβ(πDk

|σDk
). Also, we have

Hβ(σ|τ) =
∑`

k=1
|Dk|
|A| Hβ(σDk

).

If β > 1 we saw that Hβ(πDk
∧ σDk

) ≤ Hβ(πDk
|σDk

) + Hβ(σDk
), for every k,

1 ≤ k ≤ `, which implies

Hβ(σ ∧ π) + Hβ(σ|τ) ≥
∑̀
k=1

|Dk|
|A|

Hβ(πDk
∧ σDk

)

=
∑̀
k=1

|Dk|
|A|

Hβ((π ∧ σ)Dk
)

= Hβ(π ∧ σ|τ).

Using a similar argument we obtain the second inequality of the theorem. The

equality for the Shannon case was obtained in [Man91].

Corollary 2.6.11 Let A be a finite set. For β ≥ 1 and for π, σ, τ ∈ PART(A) we

have the inequality: Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ).

Proof. Note that by Theorem 2.6.4 we have: Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|σ ∧

τ) + Hβ(σ|τ). Therefore, for β ≥ 1, by Theorems 2.6.10 and 2.6.7 we obtain

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π ∧ σ|τ) ≥ Hβ(π|τ).

Definition 2.6.12 Let β > 1. The mapping dβ : PART(A)2 −→ R≥0 is defined by

dβ(π, σ) = Hβ(π|σ) + Hβ(σ|π) for π, σ ∈ PART(A).

The following result generalizes a result of López de Mántaras ([Man91]):

Corollary 2.6.13 dβ is a metric on PART(A).

Proof. If dβ(π, σ) = 0, then Hβ(π|σ) = Hβ(σ|π) = 0. Therefore, by Theo-

rem 2.6.2 we have σ ≤ π and π ≤ σ, so π = σ. The symmetry of dβ is immediate.

The triangular property is a direct consequence of Corollary 2.6.11.

30



In [Man91] it is shown that the mapping e1 : PART(A)2 −→ R≥0 that corre-

sponds to Shannon entropy, defined by

e1(π, σ) =
d1(π, σ)

H1(π ∧ σ)

for π, σ ∈ PART(A) is also a metric on PART(A). This result is extended next.

Theorem 2.6.14 Let A be a finite, non-empty set. For β ≥ 1, the mapping

eβ : PART(A)2 −→ R≥0 defined by

eβ(π, σ) =
2dβ(π, σ)

dβ(π, σ) + Hβ(π) + Hβ(σ)

for π, σ ∈ PART(A) is a metric on PART(A) such that 0 ≤ eβ(π, σ) ≤ 1.

Proof. It easy to see that 0 ≤ eβ(π, σ) ≤ 1 since, by Corollary 2.6.5, Hβ(π) +

Hβ(σ) ≥ Hβ(π|σ)+Hβ(σ|π) = dβ(π, σ). We need to show only that the triangular

inequality is satisfied by eβ for β > 1. We can write:

eβ(π, σ) + eβ(σ, τ) =

2 · Hβ(π|σ)+Hβ(σ|π)

Hβ(π|σ)+Hβ(σ|π)+Hβ(π)+Hβ(σ)
+ 2 · Hβ(σ|τ)+Hβ(τ |σ)

Hβ(σ|τ)+Hβ(τ |σ)+Hβ(σ)+Hβ(τ)
.

Note that

Hβ(π|σ) + Hβ(σ|π) + Hβ(π) + Hβ(σ) ≤

Hβ(π|σ) + Hβ(σ|π) + Hβ(σ|τ) + Hβ(τ |σ) + Hβ(π) + Hβ(τ)

because Hβ(σ) ≤ Hβ(σ|τ)+Hβ(τ) by Inequality (2.4) and Axiom (P1). Similarly,

Hβ(σ|τ) + Hβ(τ |σ) + Hβ(σ) + Hβ(τ) ≤

Hβ(π|σ) + Hβ(σ|π) + Hβ(σ|τ) + Hβ(τ |σ) + Hβ(π) + Hβ(τ)
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because Hβ(σ) ≤ Hβ(σ|π) + Hβ(π). This yields the inequality:

eβ(π, σ) + eβ(σ, τ) ≥

2 · Hβ(π|σ)+Hβ(σ|π)+Hβ(σ|τ)+Hβ(τ |σ)

Hβ(π|σ)+Hβ(σ|π)+Hβ(σ|τ)+Hβ(τ |σ)+Hβ(π)+Hβ(τ)
=

2 · 1

1+
Hβ(π)+Hβ(τ)

Hβ(π|σ)+Hβ(σ|π)+Hβ(σ|τ)+Hβ(τ |σ)

≥

2 · 1

1+
Hβ(π)+Hβ(τ)

Hβ(π|τ)+Hβ(τ |π)

= eβ(π, τ).

,

For β = 1, e1(π, σ) = d1(π,σ)
H1(π∧σ)

, due to equality (2.5), which coincides with the

expression obtained in [Man91] for the normalized distance.

2.7 Generalized Gain as a Selection Criterion for Splitting

Attributes in Decision Trees

The standard selection criterion for splitting attributes is the information gain

used by Quinlan [Qui93] in the classical C4.5 algorithm.

In [Weh96] generalized entropies have been mentioned in the context of splitting

attribute selection, however only special cases of Shannon entropy and Gini index

have been discussed and used in experiments.

In [Man91] it has been showed that using an entropy based distance d instead

of the entropy gain as a splitting criterion gives smaller decision trees with little

impact on accuracy. We generalized this work to distances based on generalized

entropies.

We show that choosing the splitting attribute A based on the least value of

dβ(π(A), π), where π is the partition of the training set that corresponds to the

target attribute of the classification generates smaller trees with comparable de-
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grees of accuracy, and that in many cases best results are obtained for β different

from 1 (Shannon entropy) or 2 (Gini index) thus proving the usefulness of gener-

alized entropies.

Let π, σ ∈ PART(A). The β-gain of σ relative to π is the expression Gβ(π, σ) =

Hβ(π) − Hβ(π|σ). The gain ratio is given by Rβ(π, σ) =
Gβ(π,σ)

Hβ(σ)
. For β = 1 we

obtain Quinlan’s gain defined through Shannon’s entropy.

The next theorem establishes a monotonicity property of the distance dβ.

Theorem 2.7.1 Let A be a finite sets and let π, π′, σ ∈ PART(A) be three par-

titions such that π′ is covered by π. In other words, π = {B1, . . . , Bm} and

π′ = {B1, . . . , B
′
m, B′′

m}, where Bm = B′
m ∪ B′′

m. Suppose also that there exists

a block C of σ such that Bm ⊆ C. Then, if β ≥ 1, we have dβ(π, σ) ≤ dβ(π′, σ)

and eβ(π, σ) ≤ eβ(π′, σ).

Proof. For the case of Shannon’s entropy, β = 1, the inequalities were proven

in [Man91]. Therefore, we can assume that β > 1.

We claim that under the hypothesis of the theorem we have Hβ(σ|π) = H(σ|π′).

Note that σBm = ωBm , σB′
m

= ωB′
m
, and σB′′

m
= ωB′′

m
, since B′

m, B′′
m ⊆ Bm ⊆ C.

Therefore, H(σBm) = H(σB′
m
) = H(σB′′

m
) = 0, hence

Hβ(σ|π) =
m∑

i=1

|Bi|
|A|

Hβ(σBi
) =

m−1∑
i=1

|Bi|
|A|

Hβ(σBi
) = Hβ(σ|π′).

Theorem 2.6.7 implies Hβ(π|σ) ≤ Hβ(π′|σ), which gives the first inequality.

Note that the second equality of the theorem:

eβ(π|σ) = 2 · Hβ(π|σ) + Hβ(σ|π)

Hβ(π|σ) + Hβ(σ|π) + Hβ(π) + Hβ(σ)

≤ 2 · Hβ(π′|σ) + Hβ(σ|π′)
Hβ(π′|σ) + Hβ(σ|π′) + Hβ(π′) + Hβ(σ)

= eβ(π′, σ)
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is equivalent to

Hβ(σ) + Hβ(π)

Hβ(π|σ) + Hβ(σ|π)
≥ Hβ(σ) + Hβ(π′)

Hβ(π′|σ) + Hβ(σ|π′)
. (2.7)

Applying the definition of conditional entropy we can write:

Hβ(π|σ)−Hβ(π′|σ) =
|C|
|A|

[
|B′

m|β

|C|β
+
|B′′

m|β

|C|β
− |Bm|β

|C|β

]
and

Hβ(π)−Hβ(π′) =
|B′

m|β + |B′′
m|β − |Bm|β

|A|β
,

which implies

Hβ(π|σ)−Hβ(π′|σ) =

(
|A|
|C|

)β−1

[Hβ(π)−Hβ(π′)] . (2.8)

Thus, we obtain:

Hβ(π′|σ)−Hβ(π|σ) ≥ Hβ(π′)−Hβ(π). (2.9)

By denoting a = Hβ(σ) and b = Hβ(σ|π) = Hβ(σ|π′), the Inequality (2.7) can

be written as:
a + Hβ(π)

Hβ(π|σ) + b
≥ a + Hβ(π′)

Hβ(π′|σ) + b
,

Elementary transformations yield: Hβ(π′|σ) − Hβ(π|σ) ≥ b+Hβ(π|σ)

a+Hβ(π)
(Hβ(π′) −

Hβ(π)), which is implied by Inequality (2.9) because
b+Hβ(π|σ)

a+Hβ(π)
≤ 1. This proves

the second inequality of the theorem.

2.8 Experimental Results

The experiments have been conducted on 33 datasets from the UCI Machine Learn-

ing Repository. The J48 tree builder from the Weka package [WF00] was used, in

its original form as well as modified to support generalized entropy distances for
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different values of the β parameter. Each experiment used 5-fold crossvalidation,

average has been taken of the outcomes of the 5 runs and was performed with the

tree pruning unchanged from the original version.

The tree size and the number of leaves diminish for 20 of the 33 databases

analysed and grow for the remaining 13. The best reduction in size was achieved

for the primary-tumor database, where the size of the tree was reduced to 37%

for β = 2.5 and the number of leaves was reduced to 38.8% compared to the

standard J48 algorithm that makes use of the gain ratio. On another hand, the

largest increase in size and number of leaves was recorded for the pima-diabetes

database, where for β = 1, we has an increase to 260% in size and to 256% in the

number of leaves, though such an increase occurs rarely among the 13 databases

where increases occur.

In Figure 2.1 we show the comparative performance of the distance dβ approach

compared to the standard gain ratio for the databases which yielded the best results

(audiology, hepatitis, and primary-tumor), in the case of the prunned trees.

The 100% level refers in each case to the gain-ratio algorithm. It is interesting to

observe that the accurracy diminishes slightly (by % for audiology database) or

improves slightly, as shown in table 2.1, thus confirming previous results [Man91,

BFO98, Min89] that accuracy is not affected substantially by the method used for

tree construction.
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Figure 2.1: Comparative Experimental Results

Database J48 β = 1 β = 1.5 β = 2 β = 2.5

audiology 78.76% 73.42% 73.86% 73.86% 71.64%

hepatitis 78.06% 83.22% 83.22% 83.87% 83.87%

primary-tumor 40.99% 43.34% 41.87% 43.34% 43.05%

Table 2.1: Accuracy Results
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CHAPTER 3

ASSOCIATION RULE PRUNING AND

INTERESTINGNESS

3.1 Introduction

Many data mining algorithms produce huge sets of rules, practically impossible to

analyze manually. Our goal is to identify a reasonably small, nonredundant set

of interesting association rules describing well the most important relationships

within the data.

The two main methods of achieving this goal known in the literature are sorting

the rules according to some interestingness measure and rule pruning. In the first

approach the (supposedly) most interesting rules, from users point of view, will be

placed near the top of the sorted list. Of course choosing the right interestingness

measure is crucial for effectiveness of this method.

Another approach is to remove or prune rules which are not interesting. Typ-

ically, rule sets are highly redundant and, so, it is usually possible to remove

redundancies and leave a small nonredundant set of rules which describes well the

key relationships between attributes and is small enough to be easily analyzed by

the user.

This chapter contains contributions to both those methods. First, a new in-
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terestingness measure generalizing many other important measures is introduced

[JS01]; later, a method of association rule pruning using the Maximum Entropy

Principle is described [JS02].

3.2 Basic notations

Now we introduce notation used throughout this chapter. See the Introduction for

the description of database related notation used.

Values from domains of sets of attributes will be denoted by corresponding

boldface lowercase letters, e.g. i ∈ Dom(I). For h ∈ Dom(H) and I ⊆ H, we

denote the projection of h on I by hI . Sums
∑

i∈Dom(I) will be abbreviated as
∑

i.

Probability distributions will be denoted using letters P and Q. For a probabil-

ity distribution P on Dom(H), and for I ⊆ H, let PI be the marginal probability

distribution on Dom(I) obtained by marginalizing the distribution P . In other

words, we have

PI(i) =
∑

{P (h) : hI = i}

for i ∈ Dom(I). The joint distribution of H estimated from the data will be

denoted by P̂ .

A uniform distribution over the domain of an attribute set I will be denoted

by UI .

Let I, I ′ be attribute sets, and Q and Q′ distributions over Dom(I) and Dom(I ′)

respectively. The product of the distributions Q,Q′ is the distribution Q×Q′ over

K = I ∪ I ′ such that

(Q×Q′)(k) = Q(kI) ·Q′(kJ),

for all k ∈ Dom(K). The attribute sets I, J are independent in a distribution P if
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PIJ = PI × PJ , where IJ is an abbreviation for I ∪ J .

Take an attribute set I and a distribution PI over Dom(I). In order to simplify

the formulas, and to make them more similar to standard textbook version, let us

denote pi = PI(i). The Shannon entropy of I (or equivalently PI) is defined as:

H(I) = H(PI) = −
∑

i

pi log pi.

The Gini index of I (or PI) is defined as

gini(I) = gini(PI) = 1−
∑

i

p2
i .

Both of them are special cases of the Havrda-Charvát α-entropy of I (see [KK92])

defined as:

Hα(I) =
1

1− α

(∑
i

pα
i − 1

)
.

The limit case, when α tends towards 1 yields the Shannon entropy (with natural

logarithm base), and for α = 2 we obtain the Gini index.

If I, J are two sets of attributes. Let us denote pi = PI(i), qj = PJ(j), and

pij =
∑
{PIJ(k) | k ∈ Dom(IJ),kI = i,kJ = j}. Notice that pij is the probability

of i and j occurring simultaneously.

The conditional Shannon entropy of I conditioned upon J is given by

H(I|J) = −
∑

i

∑
j

pij log
pij

qj

,

Similarly, the Gini conditional index of these distributions is:

gini(I|J) = 1−
∑

i

∑
j

p2
ij

qj

.

These definitions allow us to introduce the Shannon gain (called entropy gain in
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literature [Qui93]) and the Gini gain defined as:

gaingini(I, J) = gini(I)− gini(I|J),

gainshannon(I, J) = H(I)−H(I|J)

= H(I) +H(J)−H(I ∪ J), (3.1)

respectively.

Notice that the Shannon gain is identical to the mutual information between

attribute sets I and J [McE77]. For the Gini gain we can write:

gaingini(I, J) =
∑

i

∑
j

p2
ij

qj

−
∑

i

p2
i (3.2)

The notion of distribution divergence is central to the rest of the chapter.

Definition 3.2.1 Let DI be a class of distributions over Dom(I). A distribution

divergence is a function D : DI ×DI −→ R such that:

1. D(P, Q) ≥ 0 and D(P, Q) = 0 if and only if P = Q for every P, Q ∈ DI .

2. When Q is fixed, D(P, Q) is a convex function of P ; in other words, if

P = a1P1 + · · ·+ akPk, where a1 + . . . + ak = 1, then

D(P, Q) ≥
k∑

i=1

aiD(Pi, Q).

Intuitively, the divergence represents how much distribution P differs from Q.

Two most commonly used divergencies are the Kullback-Leibler divergence (also

known as crossentropy) and the chi-squared divergence [KK92] defined for distri-

butions P, Q over the domain of an attribute set I as:

DKL(P : Q) =
∑

i

P (i) log
P (i)

Q(i)
,
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Dχ2(P : Q) =
∑

i

(P (i)−Q(i))2

Q(i)
=
∑

i

P (i)2

Q(i)
− 1,

respectively. Note that |ρ|Dχ2 equals the χ2 dependency measure, well known from

statistics [BA99].

An important, general class of distribution divergences was obtained by Cziszar

in [Czi72] as:

Dφ(P, Q) =
∑

i

Q(i)φ

(
P (i)

Q(i)

)
,

where P and Q are two distributions over Dom(I) and φ : R −→ R is a twice

differentiable convex function such that φ(1) = 0. We will also make an additional

assumption that 0 ·φ(0
0
) = 0 to handle the case when for some i both P (i) and Q(i)

are zero. If for some i, P (i) > 0, and Q(i) = 0 the value of Dφ(P, Q) is undefined.

The Cziszar divergence satisfies properties (1) and (2) given above (see [KK92]).

Both the Kullback-Leibler and the chi-squared divergencies are special cases

of Cziszar divergence obtained by choosing φ(x) = x log x and φ(x) = x2 − x

respectively.

An important subclass of Cziszar divergencies is the so called Havrda-Charvát

divergence DHα generated by φ(x) = xα−x
α−1

[KK92]. DKL and Dχ2 are special cases

of DHα for α → 1 and α = 2 respectively.

The following result shows the invariance of Cziszar divergence with respect to

distribution product:

Theorem 3.2.2 For any two distributions P, P ′ over Dom(I), any distribution Q

over Dom(J) and any Cziszar divergence measure Dφ we have Dφ(Q×P, Q×P ′) =

Dφ(P, P ′).
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Proof. The definition of Cziszar divergence implies

Dφ(Q× P, Q× P ′) =
∑

j

∑
i

P ′(i)Q(j)φ

(
P (i)Q(j)

P ′(i)Q(j)

)
,

=
∑

j

Q(j)
∑

i

P ′(i)φ

(
P (i)

P ′(i)

)
,

= Dφ(P, P ′),

which is the desired equality.

Definition 3.2.3 A rule is a pair of attribute sets (I, J), if I, J ⊆ H.

If (I, J) is a rule, then we refer to I as the antecedent and to J as the consequent

of the rule. A rule (I, J) will be denoted, following the prevalent convention in the

literature, by I → J .

3.3 Interestingness of Rules

Determining the interestingness of rules is an important data mining problem.

Many such measures have been proposed, and used in literature (see [BA99] for

a survey). Another survey and a method of selecting the right measure based on

experts opppinions has been presented in [TKS02]. In this chapter I concentrate

on measures that assess how much knowledge we gain on the joint distribution of a

set of attributes Q from the knowing the joint distribution of some set of attributes

P .

Examples of such measures are entropy gain, mutual information, Gini gain,

χ2 [McE77, Mit97, SBM98, BA99, Mor98, MFM98]. The rules considered here

are thus different from association rules studied in data mining, since we consider

full joint distributions of both antecedent and consequent, while association rules

consider only the probability of all attributes having some specified value. This
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approach has the advantage of natural applicability to multivalued (not binary)

attributes.

In this chapter it is demonstrated that all the above mentioned measures are

special cases of a more general parametric measure of interestingness, and by choos-

ing two numerical parameters a continuum of measures can be obtained containing

several well-known interesting measures as special cases.

3.4 A General Measure of Rule Interestingness

Let r = I → J be a rule. Let P be a probability distribution over H. We will refer

to P (and to its marginalizations) as the observed distribution (possibly equal to

the distribution P̂ estimated from data but derivations below make sense for any

P no matter how it was obtained).

To construct an interestingness measure we will use a Bayesian approach, in

that we will consider an assumed apriori distribution Θ of the consequent set of

attributes J . This could be an apriori distribution of J , the observed distribu-

tion PJ , or some combination of these distributions. To define an interestingness

measure of r we will be guided by two main considerations:

• The more the observed joint distribution of IJ diverges from the product

distribution of I and the assumed distribution Θ of J the more interesting

the rule is. Note that PIJ = PI ×Θ corresponds to the situation when I and

J are independent and the observed distribution of J follows the assumed

apriori distribution.

• The rule is not interesting if I, J are independent. Therefore, we need to

consider a correcting term in the definition of an interestingness measure that
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will decrease its value when PJ is different from the assumed distribution.

The choice of the distribution Θ of the consequent J of rules of the form I → J

can be made starting either from the observed distribution, that is, adopting PJ

for Θ, or from some exterior information. For example, if J is the sex attribute

for a table that contains data concerning some experiment subjects, we can adopt

as the assumed distribution either

Psex =

 ’F’ ’M’

0.45 0.55

 ,

assuming that 45% of the individuals involved are female, or the distribution

Pgen pop =

 ’F’ ’M’

0.51 0.49

 ,

consistent with the general distribution of the sexes in the general population.

Moreover, we can contemplate a convex combination of distributions of the form

Θa = aPJ + (1− a)Θ0,

where PJ is the observed distribution of J and Θ0 is a distribution that is based

on some prior knowledge. The number a reflects the degree of confidence in the

observed distribution; the closer this number is to 1, the higher the confidence,

and the more preponderant PJ is in the assumed true distribution.

Definition 3.4.1 Let r : I → J be a rule, D be some measure of divergence

between distributions, and let Θ be a distribution over Dom(J).

The Υ measure of interestingness generated by D and Θ is defined by

ΥD,Θ(r) = D(PIJ , PI ×Θ)−D(PJ , Θ).
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In the above definition Θ represents the assumed distribution of J while PJ is the

observed distribution of J . The term D(PJ , Θ) measures the degree to which PJ

diverges from the prior distribution Θ, and D(PIJ , PI ×Θ) measures how far PIJ

diverges from the joint distribution of I and J in case they were independent, and

J was distributed according to Θ.

The justification for the correcting term D(PJ , Θ) is given in the following

theorem:

Theorem 3.4.2 If I and J are independent, and D is a Cziszar measure of di-

vergence then ΥD,Θ(I → J) = 0.

Proof. In this case PIJ = PI×PJ , and by Theorem 3.2.2 we have ΥD,Θ(I → J) =

D(PI × PJ , PI ×Θ)−D(PJ , Θ) = D(PJ , Θ)−D(PJ , Θ) = 0.

Note that if D is a Cziszar divergence D = Dφ, then the invariance of these

divergences implies:

ΥDφ,Θ(I → J) = Dφ(PIJ , PI ×Θ)−Dφ(PI × PJ , PI ×Θ).

3.5 Properties of the General Measure of Interestingness

Initially, we discuss several basic properties of the proposed measure.

Theorem 3.5.1 If D is a Cziszar divergence, then

ΥD,PJ
(I → J) = ΥD,PI

(J → I)

Proof. We have ΥD,PJ
(I → J) = D(PIJ , PI × PJ), ΥD,PI

(J → I) = D(PJI , PJ ×

PI), and the proof follows from the permutational symmetry of Cziszar’s divergence

[KK92].
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The above property means that when the assumed distribution of the conse-

quent is kept equal to the distribution observed from data, then the measure is

symmetric with respect to the direction of the rule, i.e. exchanging the antecedent

and consequent does not change the interestingness.

Theorem 3.5.2 Let D be a Cziszar divergence. If K is a set of attributes inde-

pendent of I, and jointly of IJ , then, for any Θ

ΥD,Θ(KI → J) = ΥD,Θ(I → J).

If K is a set of attributes independent of J , and jointly of IJ , then

ΥD,PKJ
(I → KJ) = ΥD,PJ

(I → J).

Proof.

ΥD,Θ(KI → J) = D(PKIJ , PKI ×Θ)−D(PJ , Θ)

= D(PK × PIJ , PK × PI ×Θ)−D(PJ , Θ)

= D(PIJ , PI ×Θ)−D(PJ , Θ) = ΥD,Θ(I → J)

(by Theorem 3.2.2)

For the second part, it follows from theorem 3.5.1 and from the first part of this

theorem that

ΥD,PKJ
(I → KJ) = ΥD,PI

(KJ → I) = ΥD,PI
(J → I)

= ΥD,PJ
(I → J).

The previous result gives a desirable property of ΥD,Θ since adding independent

attributes should not affect rules interestingness.
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Note that if Θ = PJ , that is, when Θ equals the observed distribution of the

consequent, then Υ becomes symmetric and is not affected by adding independent

attributes to either the antecedent or the consequent.

Next, we consider several important special cases of the interestingness mea-

sure.

If the divergence D and the assumed distribution used in the definition of

the interestingness measure are chosen appropriately, then the interestingness

ΥD,Θ(I → J) is proportional to a gain of the set of attributes of the consequent

J of the rule relative to the antecedent I. Both the Gini gain, gaingini(J, I), and

the entropy gain, gainshannon(J, I), can be obtained by appropriate choice of D.

Moreover a measure proportional to the χ2 statistic can be obtained in that way.

Let I, J be two sets of attributes; denote pi = PI(i), qj = PJ(j), and pij =∑
{PIJ(k) | k ∈ Dom(IJ),kI = i,kJ = j}.

Theorem 3.5.3 Let I −→ J be a rule. If D = DKL then

ΥD,Θ(I → J) = gainshannon(J, I),

regardless of the choice of Θ.

Proof. The definition of the Kullback-Leibler divergence allows us to write:

ΥDKL,Θ(I → J) = DKL (PIJ , PI ×Θ)−DKL (PJ , Θ)

=
∑

i

∑
j

pij log
pij

piθj

−
∑

j

qj log
qj

θj

=
∑

i

∑
j

pij log pij −
∑

i

∑
j

pij log pi

−
∑

i

∑
j

pij log θj −
∑

j

qj log qj +
∑

j

qj log θj

= H(I) +H(J)−H(IJ) = gainshannon(J, I),

(by Equality (3.1))

47



which completes the proof.

The above theorem means that for the case DKL the family of measures gen-

erated by Θ reduces to a single measure: the Shannon gain (mutual information).

This is not the case for other divergences.

Theorem 3.5.4 Let I −→ J be a rule. If D = Dχ2 and Θ = UJ , n = |Dom(J)|,

then

ΥD,Θ(I → J) = n · gaingini(J, I).

Proof. We have

Υχ2,UJ
(I → J) = Dχ2 (PIJ , PI × UJ)−Dχ2 (PJ ,UJ)

=
∑

i

∑
j

p2
ij

pi

n

−
∑

j

q2
j

1
n

= n

(∑
i

∑
j

p2
ij

pi

−
∑

j

q2
j

)
= n · gaingini(J, I),

(by Equality (3.2))

which is the desired equality.

Theorem 3.5.5 We have ΥDχ2 ,PJ
(I −→ J) is proportional to χ2(I, J), the chi-

squared statistics [BA99] for attribute sets I, J .

Proof.

ΥDχ2 ,PJ
(I −→ J) = Dχ2 (PIJ , PI × PJ)−Dχ2 (PJ , PJ)

= Dχ2 (PIJ , PI × PJ)

=
χ2(I, J)

|ρ|
,
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where |ρ| is the number of rows in the database table from which the observed

distribution is estimated.

Note that above we treat attribute sets, for example I = {A1, . . . , Ar} and

J = {B1, . . . , Bs}, as single attributes with the domains given by (1.1). This is

appropriate, since we are interested in how one set of attributes I influences the

joint distribution of another set of attributes J . Another way, used in [SBM98], is

to compute χ2(A1, . . . , Ar, B1, . . . , Bs); however this is not what we want.

The case D = Dχ2 is of practical interest since it includes two widely used

measures (χ2 and gaingini) as special cases, and allows for obtaining a continuum

of measures “in between” the two.

Theorem 3.5.6 proven below shows that the generalized measure interestingness

ΥD,Θ(I → J) is minimal when I and J are independent and thus, it justifies our

definition of this measure through variational considerations. We begin with a

technical result.

Theorem 3.5.6 Let ΥD,Θ be the measure of interestingness generated by the as-

sumed distribution Θ and the Kullback-Leibler divergence, or the χ2-divergence and

let I → J be a rule. For any fixed distribution P over H and a fixed distribution

Θ, the value of ΥD,Θ(I → J) is minimal (and equal to 0) if only if PIJ = PI ×PJ ,

i.e., when I and J are independent.

Proof. It is clear that if I and J are independent, then we have in both cases

ΥD,Θ(I → J) = 0.

When D = DKL the result follows from the properties of Shannon gain/mutual

information [McE77].

We need to prove the result for D = Dχ2 . It has been noted in Section 3.2 that

Dχ2 is a special case of Cziszar divergence for φ(x) = x2 − x. From the conditions
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on φ it follows that for all Cziszar’s divergences the respective functions φ have the

property that the inverses of their first derivatives are monotonic functions and

therefore can be inverted. Indeed, in the case of Dχ2 we have φ(x) = x2 − x, and

(φ′)−1(x) = x/2 + 1/2.

We will use Lagrange multipliers method to find the minimum of Dχ2(PIJ , PI×

Θ) subject to the following set of constraints:∑
i

∑
j

pij = 1 (3.3)∑
j

pij = pi (3.4)∑
i

pij = qj (3.5)

The Lagrangian is

L =
∑

i

∑
j

piθjφ

(
pij

piθj

)
+ λ

(∑
i

∑
j

pij − 1

)

+
∑

i

λi

(∑
j

pij − pi

)
+
∑

j

µj

(∑
i

pij − qj

)
,

and
∂L

∂pij

= φ′
(

pij

piθj

)
+ λ + λi + µj. (3.6)

By equating (3.6) to zero we get:

φ′
(

pij

piθj

)
= −(λ + λi + µj).

In the case of the Dχ2 measure of divergence we have (φ′)−1(x) = x
2
+ 1

2
. Therefore,

pij can be written as

pij = piθj

[
−λ− λi − µj

2
+

1

2

]
=

1

2
piθj(1− λ− λi − µj).

Substituting into (3.4) we get
∑

j pij = 1
2

∑
j piθj(1− λ− λi − µj) = pi, and∑

j

θj(1− λ− λi − µj) = 2.
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After splitting the sum we get 1− λ− λi −
∑

j θjµj = 2, and

λi = −λ−
∑

j

θjµj − 1 = cα.

Similarly, substituting into (3.5) we get
∑

i pij = 1
2

∑
i piθj(1 − λ − λi − µj) = qj,

and ∑
i

pi(1− λ− λi − µj) = 2
qj

θj

.

After splitting the sum we get 1− λ− µj −
∑

i piλi = 2
qj
θj

, and

µj = 1− λ−
∑

i

piλi − 2
qj

θj

= cβ − 2
qj

θj

.

Thus,

pij =
1

2
piθj(1− λ− cα − cβ + 2

qj

θj

) =
1

2
piθj(cγ + 2

qj

θj

),

for some constant cγ. By using 3.3 we get cγ = 0, and pij = pi · pj.

We proved that gainshannon and gaingini are equivalent to ΥDKL,UJ
and ΥDχ2 ,UJ

,

respectively. It is thus natural to define a notion of gain for any divergence D as

gainD(I → J) = ΥD,UJ
(I → J).

Let PJ |i denote the probability distribution of J conditioned on I = i. For any

Cziszar measure Dφ we have:

gainDφ
(I → J) = Dφ(PIJ , PI × UJ)−Dφ(PJ ,UJ)

=
∑

i

pi

∑
j

1

n
φ

(
pij

pi · 1
n

)
−Dφ(PJ ,UJ)

= −

[
Dφ(PJ ,UJ)−

∑
i

piDφ(PJ |i,UJ)

]
.

As special cases we have gaingini ≡ gainχ2 , and gainshannon ≡ gainKL.

A parameterized version of Υ that takes into account the degree of confidence

in the distribution of the consequent as it results from the data is introduced next.
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Let us define the probability distribution Θa, a ∈ [0, 1] by

Θa = aPJ + (1− a)UJ .

The value of a expresses the amount of confidence we have in PJ estimated from the

data, assuming a uniform prior distribution, so Θa is the a posteriori distribution

for J .

We can now define

ΥD,a = ΥD,Θa .

Note that when D = Dχ2 , we have (up to a constant factor) both χ2(I → J) and

ginigain(I → J) as special cases of ΥDχ2 ,a. Moreover by taking different values of

parameter a we can obtain a continuum of measures in between the two.

As noted before, both Dχ2 and DKL divergence measures are special cases of

Havrda-Charvát divergence DHα for α → 1, and α = 2 respectively. We can thus

introduce Υα,a = ΥDHα ,Θa , which allows us to obtain a family of interestingness

measures, including (up to a constant factor) all three measures given in Section 3.5

as special cases, by simply changing two real valued parameters α and a.

Also note that for a = 0, we obtain a family of gains (as defined in chapter 3.5)

for all the Havrda-Charvát divergences.

3.6 Experimental results

We evaluated the new measure on a simple synthetic dataset and on data from the

UCI machine learning repository [BM98]. We concentrated on the case D = Dχ2 ,

as potentially the most useful in practice, and found interestingness of rules for

different values of parameter a (see chapter 3.5)
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3.6.1 Synthetic data

To ensure measures throughout the family handle obvious cases correctly, and to

make it easy to observe properties of the measure for different values of parameter

a we first evaluated the rules on a synthetic dataset with 3 attributes A, B, C and

with known probabilistic dependencies between them.

Values of attributes A and B have been generated from known probability

distributions:

PA =

 0 1 2

0.1 0.5 0.4

 , PB =

 0 1

0.2 0.8

 .

Attribute C depends on attribute A. Denote PC |i the distribution of C conditioned

upon A = i. We used

PC |0 =

 0 1

0.2 0.8

 , PC |1 =

 0 1

0.5 0.5

 , PC |2 =

 0 1

0.7 0.3

 ,

One million data points have been generated according to this distribution, for

a few values of a we sorted all possible rules based on their ΥDχ2 ,a interestingness

values. Results are given in Table 3.1.

Discussion

1. Attribute B is totally independent of both A and C, so any rule containing

only B as the antecedent or consequent should have interestingness 0. The

experiments confirm this, for all values of parameter a such rules have in-

terestingness close to zero, significantly lower than the interestingness of any

other rules.

2. For a = 0 (the first quarter of the table) Υ becomes the Gini gain, a measure

that is strongly asymmetric (and could thus suggest the direction of the
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dependence) and strongly affected by adding extra independent attributes

to the consequent (which is undesirable).

3. For a = 1 (the last quarter of the table) Υ becomes (up to a constant

factor) the χ2 measure of dependence. This measure is totally symmetric

and not affected by presence of independent attributes in either antecedent

or consequent. Indeed, it can be seen that all rules involving A and C have

the same interestingness regardless of the presence of B in the antecedent or

consequent.

4. As a varies from 0 to 1 the intermediate measures can be seen to become

more and more symmetric. Measures for a being close to but less than 1

could be of practical interest since they seem to ‘combine the best of the two

worlds’, that is, are still asymmetric and pretty insensitive to presence of

independent attributes in the consequent. E.g. for a = 0.9 all rules having

A in the antecedent and C in the consequent have interestingness close to

0.09, while rules having C in the antecedent and A in the consequent have

all interestingness close to 0.082 regardless of the presence or absence of B in

the consequents. So for a = 0.9 the intermediate measure correctly ranked

the rules indicating the true direction of the relationship.

3.6.2 The mushroom database

We repeated the above experiment on data from the UCI machine learning repos-

itory [BM98]. Here we present results for the agaricus-lepiota database contain-

ing data on North American Mushrooms. To make the ruleset size manageable

we restrict ourselves to rules involving the class attribute indicating whether the

mushroom is edible or poisonous.
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rule ΥDχ2 ,0 rule ΥDχ2 ,0.5

A→BC 0.122061 A→BC 0.0989161

C→AB 0.0896776 AB→C 0.0898611

AB→C 0.0896287 A→C 0.089861

A→C 0.0896287 C→AB 0.0769886

BC→A 0.065851 BC→A 0.0683164

C→A 0.0658484 C→A 0.0683142

B→AC 3.16585e-06 B→AC 2.50502e-06

B→A 2.7369e-06 B→A 2.35091e-06

AC→B 1.37659e-06 AC→B 1.51849e-06

A→B 1.32828e-06 A→B 1.46355e-06

B→C 1.70346e-07 B→C 1.72781e-07

C→B 1.10069e-07 C→B 1.22814e-07

rule ΥDχ2 ,0.9 rule ΥDχ2 ,1

A→BC 0.0908769 BC→A 0.0905673

AB→C 0.0903859 A→BC 0.0905673

A→C 0.0903859 C→AB 0.0905654

C→AB 0.0834734 AB→C 0.0905654

BC→A 0.082009 A→C 0.0905653

C→A 0.082007 C→A 0.0905653

B→AC 2.19739e-06 AC→B 2.15872e-06

B→A 2.12646e-06 B→AC 2.15872e-06

AC→B 1.95101e-06 A→B 2.08117e-06

A→B 1.87986e-06 B→A 2.08017e-06

B→C 1.73782e-07 C→B 1.74126e-07

C→B 1.57306e-07 B→C 1.74126e-07

Table 3.1: Rules on synthetic data ordered by ΥDχ2 ,a for different values of a.
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rule ΥDχ2 ,0

class→odor ring-type 9.84024
class→odor spore-print-color 9.16709
class→odor veil-color 8.22064
class→odor gill-attachment 8.2026
class→gill-color spore-print-color 7.82161
class→ring-type spore-print-color 7.62564
class→odor stalk-root 7.60198
class→gill-color ring-type 7.28972
class→odor stalk-color-above-ring 7.19584
class→odor stalk-color-below-ring 7.14197

rule ΥDχ2 ,0.9

odor→class stalk-root 3.61877
class stalk-root→odor 3.2782

odor→class cap-color 2.59777
odor→class ring-type 2.54896
odor→class spore-print-color 2.54864

stalk-color-above-ring→class stalk-color-below-ring 2.47669
class cap-color→odor 2.46105

odor→class gill-color 2.45027
stalk-color-below-ring→class stalk-color-above-ring 2.38593
class spore-print-color→odor 2.35384

rule ΥDχ2 ,1

class stalk-root→odor 4.11701
class stalk-color-below-ring→stalk-color-above-ring 3.38287

stalk-color-below-ring→class stalk-color-above-ring 3.37968
class ring-type→odor 2.98764
class cap-color→odor 2.85308

odor→class gill-color 2.82423
odor→class spore-print-color 2.56331
odor→class stalk-color-below-ring 2.44004

class stalk-color-above-ring→odor 2.42725
class gill-color→spore-print-color 2.42224

Table 3.2: Rules on mushroom dataset ordered by ΥDχ2 ,a for different values of a.

56



In the experiment we enumerated all rules involving up to 3 attributes and

ranked them by interestingness for different values of parameter a. Top ten rules

for each value of a are shown in Table 3.2. For a = 1 the symmetric rules were

removed.

We noticed that for any value of a most of the rules involve the odor attribute.

Indeed the inspection of data revealed that knowing the mushroom’s odor allows

for identifying its class with 98.5% accuracy, far better than for any other attribute.

We note also that similar rules are ranked close to the top for all values of a,

which proves that measures thoughout the family identify dependencies correctly.

From data omitted in the tables it can be observed that, as in the case of synthetic

data, when a approaches 1 the measures become more and more symmetric and

unaffected by independent attributes in the consequent.

3.7 Pruning Redundant Association Rules Using Maximum

Entropy Principle

We begin by presenting a method of association rule pruning using Maximum

Entropy approach. A subrule of an association rule I → J is a rule K → J , such

that K ⊂ I (see [AIS93] or further sections for a detailed discussion of association

rules). In [LHM99, AL99] a rule is considered not interesting if its confidence

is close to that of one of its subrules. A similar approach (although in a slightly

generalized setting) is used in [PT00] to prune the discovered rules. Also, in [PT00]

a rule is considered interesting with respect to some set of beliefs if it contradicts

at least one of the rules in the beliefs under the so-called monotonicity assumption.

A detailed statistical analysis of interestingness of a rule with respect to a single

subrule, and algorithms for finding rules interesting in this setting can be found
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in [Suz97, SK98].

The current work on evaluation of interestingness considers the influence of

each subrule separately, while in our approach we take into account the combined

influence of all the subrules of a rule. Examples illustrating the advantages (in our

opinion) of our approach are given in Section 3.9.

In [LHM99], apart from pruning, the authors also find so called direction set-

ting rules which summarize the dataset. This procedure takes into account many

subrules of a rule and is thus similar to our approach. However, our approach has

the advantage of giving a more precise, probabilistic quantification of the influence

of subrules on the interestingness of a rule.

Another approach to pruning discovered rules is based on selecting a minimal

set of rules covering the dataset [TKR95, BVW00]. Again, those methods do not

take into consideration probabilistic interactions between rules in the cover. Also,

they may prune many interesting rules if they cover instances already covered by

other rules.

A general study of measures of rule interestingness can be found in [BA99,

JS01, HH99].

An overview of the interestingness of a rule with respect to a set of constraints

can be found in [GHK94]. In [GHK94] the authors propose the method of random

worlds and prove that in many important cases it is equivalent to the principle of

maximum entropy.

Maximum entropy principle and other probability models have been also used

in datamining in query selectivity estimation [PMS01]. There has also been work

in applying MaxENT in speech processing [Rat96]

When Dom(A) = {0, 1} we say that A is a binary attribute. In this, and
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the following sections of this chapter we use tables whose headings have the form

H = {A1, A2, . . . , Am} and consist of binary attributes.

Since attributes of H are assumed to be binary, subsets of H will be referred

to as itemsets, according to standard datamining terminology [AIS93].

Since the choice of divergence is immaterial for the rest of the discussion we

will simply denote the divergence by D meaning that either Kullback-Leibler or

chi-squared divergence can be used.

A constraint C on the set of attributes H is a pair C = (I, p) where I ⊆ H, p ∈

[0, 1]. A probability distribution P satisfies a constraint C = (I, p) if PI(1I) = p,

where 1I = (1, 1, . . . , 1) ∈ Dom(I). Usually, the attribute set will be clear from

context, so we will just write 1 instead of 1I .

To remove redundancies in the rule set we need to define how interesting a rule

is with respect to a set of constraints introduced by other rules.

Definition 3.7.1 A set of constraints C is consistent if there exists a joint proba-

bility distribution over H which satisfies all the constraints in C. Otherwise, C is

inconsistent.

Here we will only be concerned with consistent sets of constraints. Dealing

with inconsistent sets of constraints is an interesting topic of future research.

While determining interestingness of rules with respect to a consistent set of

constraints C we will associate with C some joint probability distribution P C over

H.

Note that a set of constraints does not have to determine the joint probability

distribution uniquely, and we have to choose one of the conforming distributions.

The three main approaches to this problem are the maximum entropy principle
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(MaxENT), the minimum interdependence principle, and the maximum likelihood

(see [KK92, Adw97]). We use MaxENT, but it can be shown [KK92, Adw97], that

in most cases all three approaches are equivalent. Philosophical justifications of

the principles can be found in [KK92, GHK94].

Definition 3.7.2 Let C be a consistent set of constraints. A probability distribu-

tion P C over H is induced by C if it satisfies the following conditions:

1. P C satisfies all the constraints in C.

2. Of all probability distributions over H satisfying C, P C has the largest en-

tropy.

It can be shown [Adw97] that P C is unique.

3.8 Interestingness of A Rule with Respect to A Set of

Constraints

We are now ready to define the interestingness of an association rule with respect

to some set of constraints C. For the definition of association rules see [AIS93].

The support of an itemset I is supp(I) = P̂I(1). Rules with empty antecedents

are allowed and the support and confidence of such rules are defined to be equal

to the support of their consequents.

The set of constraints generated by an association rule I → J is defined as

C(I → J) = {(I, supp(I)), (I ∪ J, supp(I ∪ J))}.
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We introduce two interestingness measures for association rules: the active and

passive interestingness. The active interestingness reflects the impact of adding to

the current set of constraints the set of constraints generated by the rule itself.

The passive interestingness is determined by the difference between the confidence

estimated from the data and the confidence estimated starting from the probability

distribution induced by the constraints.

Definition 3.8.1 Let C be a consistent set of constraints, I → J be a rule and D

some measure of distribution divergence. Denote by QK the probability distribu-

tion over I ∪ J induced by the set of constraints K.

The active interestingness of I → J with respect to C is defined as:

Iact(C, I → J) = D(QC∪C(I→J), QC).

The passive interestingness of I → J with respect to C is defined as:

Ipass(C, I → J) =

∣∣∣∣ conf(I → J)− QC(1)

QC
I (1)

∣∣∣∣ ,
where conf(I → J) denotes the confidence of rule I → J .

Whenever we state facts that hold for either of these measures we simply talk

about rule interestingness I.

3.9 The pruning algorithm

Definition 3.9.1 Let R be a set of association rules. Consider an association

rule I → J , where I, J ⊆ H. The rule I → J is I-nonredundant with respect to

R, if I = ∅ or I(CI,J(R), I → J) is significantly greater than 0, where CI,J(R) =

{C(K → J) : K → J ∈ R, K ⊂ I}.
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Note that we do not specify precisely what ‘significantly greater’ means. This

may mean ‘greater than some threshold’ or ‘statistically significant at some confi-

dence level’ or some combination of both.

A feature of our definition of redundancy is that it is not influenced by rules

involving attributes not in I ∪ J . For example, suppose that the joint distribution

of attributes ABC is fully explained by rules A → B and B → C. The rule A → C

may still be considered I-nonredundant, even though it does not introduce any new

information.

We believe this is the correct behavior. In general, if we have a long chain

of rules A → B → C → . . . → Y → Z, the rule A → Z might not be easy to

see and thus be interesting. Furthermore, the discovered rules do not necessarily

correspond to true causality relations, and it might be better, at least until the

user develops a better understanding of the dataset, to present him/her also rules

indirectly implied by some other rules.

Another important advantage of our method is that single rules usually involve

very few attributes, and thus local interestingness can be efficiently determined,

even by direct application of the Generalized Iterative Scaling algorithm, as we

show later.

An algorithm for producing a set of I-nonredundant rules with a single attribute

in the consequent is given in Figure 3.1.

Examples below show how our method compares with other work in certain

situations. Passive interestingness measure Ipass is used, but it is easy to see that

the statements remain valid also for the active interestingness measure Iact. See dis-

cussion later in this section for details on how the maximum entropy distributions

can be computed.
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Input: A set S of association rules.

Output: Set R of I-nonredundant association rules of S.

1. For each Ai ∈ H

2. Ri = {∅ → Ai}

3. k = 1

4. For each rule I → Ai ∈ S, |I| = k do

5. If I → Ai is I-nonredundant with respect to Ri then

6. Let Ri = Ri ∪ {I → Ai}

7. k = k + 1

8. Goto 4

9. R =
⋃

Ai∈H Ri

Figure 3.1: An lgorithm for finding I-nonredundant association rules.
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Example 3.9.2 Let A, B, C be binary attributes, PA(1) = PB(1) = 0.5. The

attribute C depends on A, B according to the following association rules:

assoc. rule confidence

∅ → C 0.5

A → C 0.3

B → C 0.7

AB → C 0.3

Using the approach from [PT00, LHM99, AL99, SLR99] rules ∅ → C, A → C

and B → C are interesting but AB → C is not, since it is explained by the rule

A → C. We claim however that the rule AB → C is interesting, since it tells us

that when both A and B are ‘present’ it is A that influences C stronger.

Consider rules ∅ → C, A → C, and B → C. The set of constraints corre-

sponding to them is C = {(A, 0.5), (B, 0.5), (C, 0.5), (AC, 0.15), (BC, 0.35)}. The

MaxENT distribution in this case is

P C =

 000 001 010 011 100 101 110 111

0.105 0.105 0.045 0.245 0.245 0.045 0.105 0.105

 ,

and P C
ABC(1)/P C

AB(1) = 0.5, different from conf(AB → C) = 0.3, making the rule

AB → C interesting.

Example 3.9.3 Assume now that the confidences of the rules in the example

above are

assoc. rule confidence

∅ → C 0.5

A → C 0.3

B → C 0.7

AB → C 0.5
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Using methods given in [LHM99, AL99] the rule AB → C is interesting, since

its confidence differs from conf(A → C) and conf(B → C).

However, as seen above, the maximum entropy distribution induced by rules

∅ → C, A → C and B → C gives P C
ABC(1)/P C

AB(1) = 0.5, and the rule AB → C

is considered uninteresting. In other words, knowing the joint influence of AB on

C does not give us any more information over what we have already know from

other rules, since A and B are conditionally independent given C. The above

result is intuitive since when both A and B influence C we would expect their

joint influence to be an ‘average’ between the influences of A and B alone.

Example 3.9.4 Suppose that attribute A is independent of B, C, and jointly

of BC. Then, P C
ABC(1)/P C

AB(1) = P C
BC(1)/P C

B(1) = conf(B → C), and the rule

AB → C is considered not interesting using our approach, but also using methods

from [PT00, LHM99, SLR99, AL99] which explains their good behavior in prac-

tice. However as the examples above show, those methods can filter out certain

interesting rules, and include some uninteresting ones.

To compute the maximum entropy distribution we can use the Generalized

Iterative Scaling (GIS) Algorithm [Adw97, Bad95, DR72, Csi89].

Let C = {C1, C2, . . . , Cn} be a set of constraints, where Ck = (Ik, pk). GIS

proceeds by assigning some initial values to each probability in P C, and iteratively

updating them until all the constraints are satisfied. Let P C(i) denote the distri-

bution after i iterations. Updating in each iteration is performed according to the

formula

P C(i+1)(h) = P C(i)(h)
∏

hIk
=1

[
pk

P
C(i)
Ik

(hIk
)

] 1
c

,

for every h ∈ Dom(H), assuming that 0
0

= 0. The algorithm is guaranteed to
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converge if
∑n

k=1 fk(h) = c is a constant independent of h. In practice, this

condition can always be satisfied by adding an additional constraint. See [Adw97,

DR72, Csi89] for details and proof of convergence. The version of the algorithm

presented in [Csi89] has the advantage of being able to cope with distributions

with zero probabilities, and this is the one we use in our implementation.

The disadvantage of the GIS algorithm is its high computational cost caused

by the necessity of computing the marginal probabilities, and in some cases by the

large number of iterations required.

One of the main techniques for speeding up MaxENT computations is decom-

position [Bad95, And74, DLS80]. However, in our case, we will only use maximum

entropy distributions in few variables, and our experiments showed that decompo-

sition does not give real improvement in efficiency. We noticed however that the

number of rules considered interesting is small and thus constraints are usually

simple. Closed form solutions are used for a few common cases; in every other

situation we use the GIS algorithm.

We describe below the closed form solutions. For attribute set I denote NI =

|{x ∈ Dom(H) : xI = 1}|.

Theorem 3.9.5 Let C = {(J, P̂J(1)), (K, P̂K(1)), (K∪J, P̂K∪J(1))}, where J, K ⊂

H, K ∩ J = ∅ be a set of constraints. The MaxENT distribution induced by C is

P C(x) =



P̂K∪J (1)
NK∪J

, if xJ = 1 ∧ xK = 1

P̂J (1)−P̂K∪J (1)
NJ−NK∪J

, if xJ = 1 ∧ xK 6= 1

P̂K(1)−P̂K∪J (1)
NK−NK∪J

, if xJ 6= 1 ∧ xK = 1

1−P̂K(1)−P̂J (1)+P̂K∪J (1)
|Dom(H)|−NK−NJ+NK∪J

, if xJ 6= 1 ∧ xK 6= 1,

for x ∈ Dom(H).

66



Proof. For every R ⊆ {K, J} denote XR the set of all x ∈ Dom(H) such that

xI = 1 if I ∈ R and xI 6= 1 otherwise, for all I ∈ {J, K}. Note that |X{K,J}| =

NK∪J , |X{J}| = NJ − NK∪J , |X{K}| = NK − NK∪J , and |X∅| = |Dom(H)| −

NK − NJ + NK∪J . Also denote P ∗
R =

∑
x∈XR

P̂ (x) for all R ⊆ {K, J}. Note

that P ∗
{K,J} = P̂K∪J(1), P ∗

{J} = P̂J(1) − P̂K∪J(1), P ∗
{K} = P̂K(1) − P̂K∪J(1), and

P ∗
∅ = 1− P̂K(1)− P̂J(1) + P̂K∪J(1).

For a probability distribution P on H that satisfies the the set of constraints

C we have:

H(P ) = −
∑

R⊆{K,J}

∑
x∈XR

P (x) log P (x)

= −
∑

R⊆{K,J}

P ∗
R

∑
x∈XR

P (x)

P ∗
R

log
P (x)

P ∗
R

−
∑

R⊆{K,J}

P ∗
R log P ∗

R.

It suffices to maximize the first term. Notice that for every R ⊆ {K, J}, we have∑
x∈XR

P (x)
P ∗

R
= 1, and thus P/P ∗

R is a probability distribution over XR, and its

entropy −
∑

x∈XR

P (x)
P ∗

R
log P (x)

P ∗
R

is maximized when P (x)
P ∗

R
= 1/|XR| for every x ∈ XR.

This gives P (x) = P ∗
R/|XR| for every x ∈ XR and completes the proof since every

x ∈ Dom(H) belongs to exactly one of the XR’s.

Notice that when J = K, the above result reduces to

P C(x) =


P̂J (1)
NJ

, if xJ = 1

1−P̂J (1)
|Dom(H)|−NJ

, if xJ 6= 1,
(3.7)

for x ∈ Dom(H).

Frequently, the only subrules of a rule I → J are ∅ → J , and K → J , where

K ⊂ I. In this case the MaxENT distribution induced by the subrules can be

found by application of Theorem 3.9.5. If the only subrule is ∅ → J , then we

can use Equality (3.7). Our experiments revealed that using the above theorem
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reduces pruning time up to a factor of 10. See [Bad95, PMS01] for a more detailed

discussion of methods of speeding up MaxENT computations.

3.10 Experimental Evaluation of the Pruning Algorithm

In this section we present an experimental evaluation of our pruning algorithm.

We used passive interestingness Ipass, and considered a rule Ipass-nonredundant if

its passive interestingness was greater than some threshold. Our experiments have

shown that the passive measure of interestingness performed better than the active

one Iact, which often pruned interesting rules with small support. The reason is

that rules with small support usually have many attributes in the antecedent, and

thus adding them as constraints affects only very few values in the joint probability

distribution, while active interestingness depends on the whole distribution. Also,

we did not use any minimum confidence threshold, because pruning provided a

sufficient reduction in the number of rules, and setting a minimum confidence

threshold occasionally pruned some of the interesting rules.

We first present the result of running the algorithm on the lenses database

from the UCI machine learning archive [BM98]. The database has the advantage

of being very small thus allowing manual selection of rules. Table 3.3 shows the

rules having the lenses attribute as consequent, selected manually by the authors,

providing a complete description of the dataset. Table 3.4 shows rules involving

lenses attribute as consequent generated by the Apriori algorithm with minimum

support 1 (1 record), no minimum confidence, post-processed with our pruning

algorithm using passive interestingness with interestingness threshold 0.3. Negative

values of interestingness mean that the presence of the antecedent decreases the

probability of presence of the consequent.
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antecedent→lenses conf. supp.

[%] [%]

∅→soft 20.8 20.8

∅→hard 16.6 16.6

∅→none 62.5 62.5

tears=reduced→none 100 50

astigmatism=no,tears=normal→soft 83.3 20.8

astigmatism=yes,tears=normal→hard 66.6 16.6

age=pre-presbyopic,prescription=hypermetrope,astigmatism=yes→none 100 8.3

age=presbyopic,prescription=myope,astigmatism=no→none 100 8.3

age=presbyopic,prescription=hypermetrope,astigmatism=yes→none 100 8.3

Table 3.3: Rules manually selected from the lenses database

Rules have been sorted based on the product of support and interestingness,

with an extra condition, that a rule cannot be printed until all its subrules have

been printed. Also, note that the lenses dataset contains multivalued attributes.

Since our method only handles boolean attributes we encode each original attribute

with a number of boolean attributes, one for each possible value of the original

attribute.

The Apriori algorithm produced 113 rules having lenses attribute as the conse-

quent. After pruning, 16 nonredundant rules were left with a nonempty antecedent.

This is a significant reduction.

When rules with all possible consequents are considered, our method outputs

40 rules out of 890 produced by Apriori. Also, note that all rules selected manually

are also considered interesting by our pruning algorithm, and the top three rules

are indeed identical in both cases, which suggests that really interesting rules are

indeed retained by our algorithm.
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antecedent→lenses IP conf. supp.

[%] [%] [%]

∅→soft 0 20.8 20.8

∅→hard 0 16.6 16.6

∅→none 0 62.5 62.5

tears=reduced→none 37.5 100 50

astigmatism=no,tears=normal→soft 62.5 83.3 20.8

astigmatism=yes,tears=normal→hard 50 66.6 16.6

tears=normal→none -37.5 25 12.5

prescription=myope,astigmatism=yes→hard 33.3 50 12.5

prescription=myope,tears=normal→hard 33.3 50 12.5

prescription=hypermetrope,astigmatism=yes,tears=normal→none 41.4 66.6 8.3

age=pre-presbyopic,prescription=hypermetrope,astigmatism=yes→none 37.5 100 8.3

age=presbyopic,prescription=myope,astigmatism=no→none 37.5 100 8.3

age=presbyopic,prescription=hypermetrope,astigmatism=yes→none 37.5 100 8.3

age=young,astigmatism=yes→hard 33.3 50 8.3

age=young,tears=normal→hard 33.3 50 8.3

age=presbyopic,astigmatism=no,tears=normal→soft -32.9 50 4.1

age=presbyopic,prescription=hypermetrope,astigmatism=no,tears=normal→soft 49.3 100 4.1

prescription=hypermetrope,astigmatism=yes,tears=normal→hard -32.9 33.3 4.1

age=young,prescription=hypermetrope,astigmatism=yes,tears=normal→hard 39.3 100 4.1

Table 3.4: Rules selected from the lenses database

We also applied our method to a dataset of census data of elderly people ob-

tained from The University of Massachusetts at Boston Gerontology Center. The

dataset contains about 330 thousand records, 11 attributes with up to five values,

and is available at http://www.cs.umb.edu/ ∼sj /datasets /census.arff.gz.

We used 1% minimum support and no minimum confidence. The Apriori algorithm

produced 247476 rules practically impossible to analyze by hand. After pruning

with 10% interestingness threshold only 2056 were considered nonredundant, and

after further restricting this set to rules with a given consequent attribute we were

able to obtain easily manageable sets of interesting association rules. Some of

them, concerning the urban (whether a person lives in a city or not) attribute are

given in Table 3.5. Although the pruning time was quite long (over 4 hours on

a 100MHz Pentium machine), it was still much easier to use our method than to

handle hundreds of thousands of rules manually. See Table 3.6 for further details.
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antecedent→consequent IP conf. supp.

[%] [%] [%]

∅→urban=no 0 22.4 22.4

∅→urban=yes 0 77.5 77.5

immigr=no,region=south→urban=yes -11.8 65.7 26.2

race=white→urban=yes -10.6 66.8 22.5

region=west→urban=yes 12.8 90.3 16.9

race=hisp→urban=yes 12.4 89.9 15.4

region=south,race=black→urban=yes -10.6 66.8 17.8

immigr=no,region=south→urban=no 11.8 34.2 13.7

alone=yes,region=south→urban=yes -10.5 66.9 15

immigr=before75→urban=yes 15.9 93.4 9.7

region=neast,race=black→urban=yes 19.7 97.2 6.7

region=midw,race=black→urban=yes 18.9 96.5 6.9

age=below75,region=neast→urban=yes 10.5 88 11.3

race=white→urban=no 10.6 33.1 11.1

Table 3.5: Top 12 rules involving urban attribute generated from the elderly people

census data
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min. interestingness number of rules pruning

dataset support threshold Apriori after pruning time [s]

lenses 1(4%) 0.3 890 40 1.3

mushroom* 500(16%) 0.2 164125 5141 418

breast-cancer 30(10%) 0.15 2128 74 2.8

primary-tumor* 30(9%) 0.3 43561 67 21.8

primary-tumor* 30(9%) 0.2 43561 432 24

car 10(0.5%) 0.3 20669 293 11.1

car 10(0.5%) 0.15 20669 580 30.2

splice* 300(9%) 0.5 4847 24 3.0

splice* 300(9%) 0.3 4847 95 5.6

splice* 300(9%) 0.15 4847 290 7.2

splice* 200(6%) 0.3 35705 463 33.8

census(elderly people) 3000(1%) 0.3 247476 194 4801

census(elderly people) 3000(1%) 0.2 247476 621 5683

census(elderly people) 3000(1%) 0.1 247476 2056 15480

* itemsets with up to 4 attributes

Table 3.6: Numbers of rules and computation times for various datasets

Table 3.6 shows the number of rules generated by Apriori compared with the

number of rules considered interesting by our algorithm, as well as pruning time,

for various datasets from the UCI Machine Learning Archive [BM98]. All datasets

have been mined with 0 minimum confidence. The interestingness thresholds and

minimum supports have been chosen manually by trial and error such that the

unpruned rules provide a lot of interesting information while keeping their number

reasonably small. For some datasets values for a few different thresholds are given

for comparison. All experiments have been performed on a 100MHz Pentium

machine with 64MB of memory.
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CHAPTER 4

MEASURES ON BOOLEAN POLYNOMIALS

AND THEIR APPLICATIONS IN DATA

MINING

4.1 Introduction

The focus of this chapter is a study of measures on free Boolean algebras with a

finite number of generators (abbreviated as MFBAs). As we shall see, these mea-

sures play an important role in query optimization in relational databases, and also,

in the study of frequent sets in data mining. We obtain general Bonferroni-type

inequalities for sizes of arbitrary Boolean queries. The origin of our investigation

resides in a series of seminal papers by H. Mannila et al. ([MT96, Man01, PMS01])

in which the idea of using supports of attribute sets discovered with a data mining

algorithm to obtain the size of a database query was introduced.

The same problem has been investigated in parallel in [CG02] using different

methodology. The authors managed to obtain tight bounds for support of an item-

set for an important case when supports of all its subsets are known, and proved

that width of the bounds decrease exponentially with itemsets size. Tightness of

their bound is an important advantage over our results, which are however more

general. It is possible for example to directly obtain bounds for support of an

73



itemset when all its subsets of a given size are known (not necessarily all of its

subsets). The method from [CG02] requires recursion in such a case which can be

computationally expensive.

Similar problems have been addressed in the area of statistical data protection,

where it is important to assure that inferences about individual cases cannot be

made from marginal totals (see [Dob01, BG99] for an overview). Those methods

concentrate on obtaining the most accurate bounds possible (in order to rule out

information disclosure), computational efficiency being a secondary concern. Al-

gorithms usually involve repeated iterations over full contingency tables [BG99],

branch and bound search [Dob01] or numerous applications of linear programming.

Let B = (B,0,1, ¯ ,∨,∧) be a Boolean algebra, where 0,1 ∈ B are two distin-

guished elements of B, ¯ is a unary operation, and ∨,∧ are two binary associative,

commutative, and idempotent operations that satisfy the usual axioms of Boolean

algebras (see, for example [Rud74]). Here 0 and 1 are the least and the largest

element of the algebra, respectively.

We define xb = x if b = 1 and xb = x̄ if b = 0, for x ∈ B and b ∈ {0, 1}.

It is a well-known fact that a Boolean algebra B = (B,0,1, ¯ ,∨,∧) defines a

Boolean ring structure, B = (B,0,1,∧,⊕), where ∧ plays the role of the multipli-

cation, and ⊕ the role of addition, where

x⊕ y = (x ∧ ȳ) ∨ (x̄ ∧ y)

for x, y ∈ B. This ring is unitary, commutative, and has characteristic 2 (since

x⊕ x = 0 for every x). Also, 1⊕ x = x̄.

Let A = {a1, . . . , an} be a set of n variables. The set pol(A) of Boolean poly-

nomials of the n variables in A is defined inductively by:

1. 0, 1, and each ai belong to pol(A) for 1 ≤ i ≤ n;
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2. if p, q belong to pol(A), then p̄, (p ∨ q), and (p ∧ q) belong to pol(A).

If p, q ∈ pol(A), then we denote by (p ⊕ q) the polynomial ((p ∧ q̄) ∨ (p̄ ∧ q)).

A Boolean polynomial (· · · ((p1ωp2)ωp3)ω · · ·ωpn) is denoted by (p1ωp2ω · · ·ωpn),

where ω ∈ {∨,∧,⊕}.

Let B = (B,0,1, ¯ ,∨,∧) be a Boolean algebra and let A = {a1, . . . , an} be a

set of n variables. The n-ary function fp : Bn −→ B generated by a polynomial

p ∈ pol(A) is defined in the usual way. We write p = q for p, q ∈ pol(A) if fp = fq.

Let ~b = (b1, . . . , bn) be a sequence of elements of the set {0, 1}. An A-minterm

is a Boolean polynomial

p~b = ab1
1 ∧ · · · ∧ abn

n ,

The set of A-minterms is denoted by mint(A). Any Boolean polynomial in pol(A)

can be uniquely written as a disjunction of some subset of A-minterms (up to the

order of the disjuncts). This observation implies that the Boolean algebra pol(A)

is isomorphic to the Boolean algebra of collections of subsets of the set A; thus,

pol(A) has 22n
elements.

For a set of polynomials M = {p1, . . . , pn} and J = {j1, . . . , jm} ⊆ {1, . . . , n}

we denote by pJ the conjunction pj1 ∧ · · · ∧ pjm . For the special case, when J = ∅

we write pJ = 1.

A measure on a Boolean algebra B = (B,0,1, ¯ ,∨,∧) is a non-negative, real-

valued function µ : B −→ R such that µ(x ∨ y) = µ(x) + µ(y) for every x, y ∈ B

such that x ∧ y = 0.
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4.2 A Representation Result for MFBAs

In this context, we find it convenient to use the relational database terminology.

We modify slightly the database related notation of previous chapters to better fit

in the Boolean algebra setting.

A = {a1, . . . , an} be a set of variables. Members of A as attributes. We attach

a set Dom(ai) to each attribute ai such that |Dom(ai)| ≥ 2. The set Dom(ai) is

the domain of ai.

A table is a triple τ = (T, A, ρ), where T is the name of the table, A =

{a1, . . . , an} is the heading of the table and ρ = {t1, . . . , tm} is a finite set of

functions of the form ti : A −→
⋃

a∈A Dom(a) such that ti(a) ∈ Dom(a) for

every a ∈ A. Following the relational database terminology we shall refer to these

functions as A-tuples, or simply as tuples. If Dom(ai) = {0, 1} for 1 ≤ i ≤ n, then

τ is a binary table.

Let τ = (T,A, ρ) be a binary table. A query on the table τ is a Boolean

polynomial in pol(A). This definition of queries is a formalization of the usual

notion of queries in databases.

Example 4.2.1 To retrieve in SQL all tuples t of τ such that at least two of

t(a1), t(a2) and t(a3) equal 1 we write the query as

select * from T where (a1 = 1 and a2 = 1) or (a2 = 1 and a3 = 1)

or (a1 = 1 and a3 = 1)

The condition specified in this select corresponds to the polynomial (a1 ∧ a2) ∨

(a2 ∧ a3) ∨ (a1 ∧ a3).

A query p defines a table (Tp, A, ρp), where ρp is defined inductively as follows:
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1. ρ0 = ∅ and ρ1 = ρ;

2. if p = ai, then ρp = {t ∈ ρ|t(ai) = 1};

3. if p = q̄, then ρp = ρ− ρq;

4. if p = (q1 ∨ q2), then ρp = ρp1 ∪ ρp2 and,

5. if p = (q1 ∧ q2), then ρp = ρp1 ∩ ρp2 .

It is easy to see that for a conjunction

p = ab1
i1
∧ · · · ∧ abm

im
,

where bi ∈ {0, 1} for 1 ≤ i ≤ m, the set ρp consists of those tuples t such that

t(ai`) = b` for 1 ≤ ` ≤ m.

Theorem 4.2.2 A function µ : pol(A) −→ N is a measure if and only if there

exists a binary table τ = (T, A, ρ) such that µ(p) = |ρp| for all p ∈ pol(A).

Proof. Suppose that τ = (T,A, ρ) is a table. Define the mapping µτ : pol(A) −→

R by µ(p) = |ρp| for every p ∈ pol(A). Let p, q be two polynomials such that

(p ∧ q) = 0. Then, µτ (p ∨ q) = |ρp∨q| = |ρp ∪ ρq|. Since p ∧ q = 0 we have

ρp ∩ ρq = ∅, so µτ (p ∨ q) = µτ (p) + µτ (q). Thus, µτ is a measure on pol(A).

Conversely, let µ be a measure on pol(A), where A = {a1, . . . , an}. If ~b =

(b1, . . . , bn) ∈ {0, 1}n, p~b = ab1
1 ∧ · · ·∧abn

n is a minterm and µ(p~b) = k consider a set

σp~b
of k tuples t1~b , . . . , t

k
~b
, where tj~b(ai) = bi for every i, j, 1 ≤ j ≤ k, and 1 ≤ i ≤ n.

Define the table τµ = (T,A, ρ), where ρ =
⋃
{σp~b

|p~b ∈ mint(A)}.

We claim that µ(p) = |ρp| for every polynomial p ∈ pol(A). Suppose that p can

be expressed as a disjunction of minterms p = p~b1
∨ · · · ∨ p~bk

, where ~b1, . . . ,~bk ∈
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{0,1}n. Then, µ(p) =
∑k

j=1 µ(p~bj
), because p~bl

∧ p~bh
= 0 when l 6= h. On the

other hand, |ρp| = |
⋃k

j=1 ρp~bj
| =

∑k
j=1 |ρp~bj

|, so µ(p) = |ρp|.

We shall refer to µτ as the measure induced by the table τ on pol(A).

Measures induced by tables are generated by pseudo-Boolean functions which

range over the set N (see [HR66]). Namely, let A = {a1, . . . , an} be a set of n

attributes. Define the pseudo-Boolean function f : {0, 1}n −→ N by f(b1, . . . , bn) =

µτ (pb1,...,pn). Then, it is easy to verify that for every polynomial p ∈ pol(A) we have

µτ (p) =
∑

{f(~b) | p~b ∈ mint(A) and p~b ≤ p}. (4.1)

Conversely, if f : {0, 1}n −→ N is an integer-valued, non-negative pseudo-Boolean

function, then the function µ defined as in Equality (4.1) is clearly a measure on

pol(A).

In the next section we regard the set of minterms mint(A) as a sample space

and each polynomial p ∈ pol(A) as an event on this sample space. The event

p occurs in p~b if p~b ≤ p. Thus, if µ is a measure on pol(A), then the mapping

Pµ : pol(A) −→ R given by Pµ(p) = µ(p)
µ(1)

is a probability on pol(A).

4.3 An Inclusion-Exclusion Principle for MFBAs

Let p be a polynomial in pol(A). It is known that p can be uniquely written as

p =
⊕∑

(i1,...,im)

c(i1,...,im) ∧ ai1 ∧ · · · ∧ aim ,

where the summation
⊕∑

involves the “exclusive or” operation ⊕ and is extended

to all subsets {i1, . . . , im} of {1, . . . , n}. The coefficients c(i1,...,im) belong to the set

{0,1}. Thus, for a measure µ on pol(A) it is interesting to evaluate µ(p1 ⊕ p2 ⊕

· · · ⊕ pm), where p1, . . . , pm are polynomials in pol(A).
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The indicator random variable of a polynomial p (see [GS96]) is the variable Ip

defined by

Ip(p~b) =


1 if p~b ≤ p

0 otherwise.

for p~b ∈ mint(A).

Note that the expected value E[Ip] of Ip equals Pµ(p).

If M = {p1, . . . , pn} and J = {j1, . . . , jm} ⊆ {1, . . . , n}, then pM,J = pj1 ∧ . . .∧

pjm , and IpM,J
= Ipj1

· · · Ipjm
.

For a set of polynomials M denote by Sµ
M,k the probability that exactly k events

in M hold:

Sµ
M,k =

∑
{Pµ(pM,K) | |K| = k}.

The number of k-subsets K of M such that pM,K holds is given by the random

variable
∑
{IpM,K

| |K| = k}. By the previous observation

Sµ
M,k =

∑
{E(IpM,K

) | |K| = k} = E
[∑

{IpM,K
| |K| = k}

]
.

Let νM be the random variable on mint(A) such that νM(p~b) = |{pi ∈ M | p~b ≤

pi}|. Note that νM gives the number of events in M that hold and, therefore, the

random variable
(

νM

k

)
gives the number of k-subsets Q of M such that pM,Q holds,

which means that
(

νM

k

)
=
∑
{IpM,K

| |K| = k}, and

Sµ
M,k = E

[(
νM

k

)]
. (4.2)

The equality (4.2) is the basis of the method of indicators, that is a method

of proving probabilistic identities by taking expectations of their non-probabilistic

counterparts, see [GS96] for details.
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Theorem 4.3.1 Let µ : pol(A) −→ R be a measure on the free Boolean algebra

pol(A), where A = {a1, . . . , an}. If M = {p1, . . . , pm} is a set of m polynomials of

pol(A), then

µ(p1 ⊕ · · · ⊕ pm) = µ(1) ·
m∑

k=1

(−2)k−1 · Sµ
M,k. (4.3)

Proof. Let a ∈ N, note that (−1)a =
∑a

k=0(−2)k
(

a
k

)
, which yields, after elemen-

tary transformations:

a∑
k=1

(−2)k−1

(
a

k

)
= (−1)a − 1 =


0 if a is even

1 if a is odd.

This implies

νM∑
k=1

(−2)k−1

(
νM

k

)
=

|M |∑
k=1

(−2)k−1

(
νM

k

)
=


0 if νM is even

1 if νM is odd.

By taking expectations of both sides, and using equality (4.2) we get

E

 |M |∑
k=1

(−2)k−1

(
νM

k

) =

|M |∑
k=1

(−2)k−1Sµ
M,k = Pµ(νM is odd) = Pµ(p1 ⊕ . . .⊕ pm).

which yields the desired equality.

Corollary 4.3.2 Let µ, µ′ : pol(A) −→ R be two measures on the free Boolean

algebra pol(A), where A = {a1, . . . , an}. If µ(p) = µ′(p) for every conjunction p of

the form p = ai1 ∧ · · · ∧ aim, then µ = µ′.

Proof. The result follows immediately from Theorem 4.3.1.

Example 4.3.3 Consider the “majority polynomial” pmaj = (a1∧a2)∨ (a2∧a3)∨

(a1 ∧ a3). For fpmaj
we have fpmaj

(x1, x2, x3) = 1 if and only if at least two of its

arguments are equal to 1. Note that

pmaj = (a1 ∧ a2)⊕ (a2 ∧ a3)⊕ (a1 ∧ a3).
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Theorem 4.3.1 allows us to write

µ(pmaj) = µ(a1 ∧ a2) + µ(a2 ∧ a3) + µ(a1 ∧ a3)

−2µ((a1 ∧ a2) ∧ (a2 ∧ a3))− 2µ((a1 ∧ a2) ∧ (a1 ∧ a3))

−2µ((a2 ∧ a3) ∧ (a1 ∧ a3)) + 4µ((a1 ∧ a2) ∧ (a2 ∧ a3) ∧ (a1 ∧ a2))

= µ(a1 ∧ a2) + µ(a2 ∧ a3) + µ(a1 ∧ a3)− 2µ(a1 ∧ a2 ∧ a3).

Corollary 4.3.2 shows that the values of a measure on pol(A) are completely

determined by its values on positive conjunctions of the form aI for I ⊆ {1, . . . , n}.

Note that the contribution of every tuple of a table τ = (T,A, ρ) of the form

(b1, . . . , bn) to the value of µτ (I) equals 1 for every set I such that I ⊆ {i ∈

{1, . . . n} | bi = 1}.

Next, we obtain Bonferroni-type inequalities [GS96] that give bounds on the

value of µ(p1 ⊕ . . .⊕ pm). To this end we need the following technical result:

Define W a
b for a, b ∈ N and b ≤ a as W a

b =
∑a

k=b(−2)k−1
(

a
k

)
. Alternatively, W a

b

can be written as

W a
b = (−2)b−1

a∑
k=b

(−2)k−b

(
a

k

)
= (−2)b−1

a−b∑
`=0

(−2)`

(
a

b + `

)
.

Lemma 4.3.4 The signs of the members of the sequence (W a
b , W a

b+1, . . . ,W
a
a ) are

alternating.

Proof. Define

Ua
b =

a−b∑
`=0

(−2)`

(
a

b + `

)
for a, b ∈ N and b ≤ a. Since W a

b = (−2)b−1Ua
b it suffices to prove that the numbers

Ua
b are have all the same sign.
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Note that U b
b = 1 for b ∈ N. We can write:

Ua
b =

a−b∑
`=0

(−2)`

(
a

b + `

)
=

(
a− 1

b

)
+

(
a− 1

b− 1

)
− 2

(
a− 1

b + 1

)
− 2

(
a− 1

b

)
+22

(
a− 1

b + 2

)
+ 22

(
a− 1

b + 1

)
− 23

(
a− 1

b + 3

)
− 23

(
a− 1

b + 2

)
+ · · ·

...

+(−2)a−b−1

(
a− 1

a− 1

)
+ (−2)a−b−1

(
a− 1

a− 2

)
+ (−2)a−b

(
a− 1

a− 1

)
=

(
a− 1

b− 1

)
− Ua−1

b .

Thus, we obtain

Ua
b =

(
a− 1

b− 1

)
− Ua−1

b . (4.4)

We claim that 0 ≤ Ua
b ≤

(
a

b−1

)
for 0 ≤ b ≤ a. This can be shown by induction on

a ≥ b. The basis step a = b is immediate. Suppose that the double inequality holds

for a− 1, that is, 0 ≤ Ua−1
b ≤

(
a−1
b−1

)
. Then, it is clear that Ua

b ≥ 0. To show that

Ua
b ≤

(
a

b−1

)
we need to verify that

(
a−1
b−1

)
−Ua−1

b ≤
(

a
b−1

)
. Since

(
a

b−1

)
=
(

a−1
b−1

)
+
(

a−1
b−2

)
for b ≥ 2 the last inequality follows.

Theorem 4.3.5 For any r, s ∈ N we have:

µ(1) ·
2r∑

k=1

(−2)k−1Sµ
k ≤ µ(p1 ⊕ . . .⊕ pm) ≤ µ(1) ·

2s+1∑
k=1

(−2)k−1Sµ
k .

Proof. By equality (4.2) and Lemma 4.3.4 we get that for any r, s ∈ N

2r∑
k=1

(−2)k−1

(
a

k

)
≤

a∑
k=1

(−2)k−1

(
a

k

)
≤

2s+1∑
k=1

(−2)k−1

(
a

k

)
,

implying

2r∑
k=1

(−2)k−1

(
νM

k

)
≤

|M |∑
k=1

(−2)k−1

(
νM

k

)
≤

2s+1∑
k=1

(−2)k−1

(
νM

k

)
.
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By applying expectations and using equality (4.2) we get the desired result.

Example 4.3.6 Consider the table τ = (T, a1a2a3, ρ) given below, where µ(p) =

|ρp|:

T

a1 a2 a3

0 0 0

0 1 0

1 0 0

0 0 0

0 1 0

1 0 1

0 1 1

1 1 0

1 1 0

0 1 1

1 0 1

1 1 0

1 1 1

and the majority polynomial pmaj from Example 4.3.3. We have µ(a1 ∧ a2) = 4,

µ(a1 ∧ a3) = 3, µ(a2 ∧ a3) = 3, giving µ(pmaj) ≤ 10. Also µ((a1 ∧ a2)∧ (a1 ∧ a3)) =

µ((a1 ∧ a2)∧ (a2 ∧ a3)) = µ((a1 ∧ a3)∧ (a2 ∧ a3)) = 1 giving µ(pmaj) ≥ 4. The true

value of µ(pmaj) is 8.

4.4 Applications in Data Mining and Database Query Op-

timization

4.4.1 Accuracy of Inclusion-Exclusion Principle

In database query optimization and in data mining, it is often necessary to estimate

the number of rows in a database table satisfying a given query. Unfortunately,
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in most cases, the exact number of rows satisfying a query cannot be computed

exactly and has to be estimated (usually using the assumption of statistical inde-

pendence between attributes).

Let τ = (T, A, ρ) be a binary table and let K = {ak1 , . . . , akm} be a set of

attributes, K ⊆ A. The support of the set K relative to the table τ is the value of

the probability Pµtau(ak1 ∧ · · · ∧ akm):

suppτ (K) =
|{t ∈ ρ | t(a) = 1 for all a ∈ K}|

|ρ|
.

In other words, the support of an attribute set K in the table τ is defined by the

value of the measure induced by the table on the Boolean polynomial that describes

the attribute set. By extension, we can regard the number µτ (q)
µτ (1)

as the support

of the query q and we denote this number by suppτ (q). Indeed, if q ∈ pol(A) is a

query involving a table τ = (T,A, ρ) such that q can be written as

q = c⊕
⊕∑

I∈I

aI ,

where c ∈ {0,1} and I is a collection of subsets of {1, . . . , n}, then suppτ (q) can be

obtained from Theorem 4.3.1 using the numbers suppτ (aI). Methods that obtain

approximative estimations of query sizes been proposed [Man01], including the

use of Maximum Entropy Principle. An open problem raised was estimating the

quality of such an approximation.

The computation of the size of the query using Theorem 4.3.1 can be often

simplified if there is a known maximal number of 1 components in the tuples of

the table. For example, in a store that sells 1000 items (corresponding to 1000

attributes in a table that contains the records of purchases) it is often the case

that we can use an empirical limit of, say, 8 items per tuple. In this case, con-

junctions that contain more than 8 conjuncts can be discarded and the estimation
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is considerably simplified. Even, if such an upper bound cannot be imposed apri-

ori, it is often the case that we can discard large conjunctions (which have low

support). However, there are some risks when approximations of this nature are

performed due to the the large values of coefficients that multiply the supports for

large conjunctions.

Indeed, consider the tables τn
odd = (To, A, ρodd), τn

even = (Te, A, ρeven), where

ρodd = {t ∈ Dom(A) | n1(t) is odd} and ρeven = {t ∈ Dom(A) | n1(t) is even},

where n1(t) denotes the number of attributes equal to 1 in tuple t and |A| = n.

Note that for proper subset K of A, we have suppτodd
(K) = suppτeven

(K), while

suppτn
odd

(A) =


1 if n is odd

0 otherwise,

and suppτn
even

(A) =


1 if n is even

0 otherwise.

Thus, from the point of view of the supports of any proper subset of the attribute

set the tables τn
odd and τn

even are indiscernible. However, the support of certain

queries can be vastly different on these tables. For example, consider the polyno-

mial p = a1 ⊕ a2 ⊕ . . . ⊕ an. We have suppτn
odd

(p) = 1 and suppτn
even

(p) = 0. So,

ignoring the term that corresponds to the support for a single attribute set (note

that this is also the attribute set with the smallest possible support) has a huge

impact on µτ (p). Note that the result is consistent with Theorem (4.3.1) which

gives the set of attributes A a coefficient 2n−1. We stress however that the negative

result above does not rule out practical applicability of approximating the values

of µτ since the parity function query used above is by no means a typical database

query.
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4.4.2 Support in tables with missing values

Frequently, real world datasets contain missing values; this makes important to

adequately address this issue. Here we present a generalization of the notion of

support which takes missing values into account. The idea is related to the hot

deck imputation of missing values where each missing value is replaced by a value

randomly drawn from some distribution.

Suppose that τ = (T,A, ρ) is a table such that A = {a1, . . . , an} and Dom(ai) =

{0, u, 1} for 1 ≤ i ≤ n. The symbol u represents null values, that is, values that

are missing or undefined. With every attribute ai ∈ A we associate a real number

αi ∈ [0, 1]. Intuitively, this number corresponds to the probability of ai = 1,

and can be obtained using the non-missing values for the attribute or based on

background knowledge.

Let α be a non-negative number, and let b, c ∈ {0, 1}. Define

α〈b,c〉 =


α if b = 1 and c = 0

1− α if b = 0 and c = 0

1 if c = 1,

and b(c) =

b if c = 1

u if c = 0,

For a table τ = (T,A, ρ) let µu
τ : pol(A) −→ R be defined as follows. For a minterm

ab1
1 ∧ · · · ∧ abn

n let

µu
τ (a

b1
1 ∧ · · · ∧ abn

n )

=
∑

(c1,...,cn)∈{0,1}n

n∏
i=1

α
〈bi,ci〉
i · |{t ∈ ρ | t(ai) = b

(ci)
i for 1 ≤ i ≤ n}|
|ρ|

For an arbitrary boolean polynomial p define

µu
τ (p) =

∑
p~d
∈mintp

µu
τ (p~d)

where mintp is the set of minterm implicants of p.
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Theorem 4.4.1 For every table τ = (T,H, ρ), µu
τ is a measure on pol(A).

Proof. Since µu
τ is clearly non-negative, it remains to be shown that µu

τ (p1∨p2) =

µu
τ (p1) + µu

τ (p2) for every p1, p2 ∈ pol(A) such that p1 ∧ p2 = 0. Note that if

p1 ∧ p2 = 0 then mintp1 ∩mintp2 = ∅, and

µu
τ (p1 ∨ p2) =

∑
p~d
∈mintp1

µu
τ (p~d) +

∑
p~d
∈mintp2

µu
τ (p~d) = µu

τ (p1) + µu
τ (p2).

Example 4.4.2 Let n = 2, we have:

µu
τ (a1 ⊕ a2)

= µu
τ (ā1 ∧ a2) + µu

τ (a1 ∧ ā2)

= suppτ (a1 = 0 ∧ a2 = 1) + (1− α1)suppτ (a1 = u ∧ a2 = 1)

+α2suppτ (a1 = 0 ∧ a2 = u) + (1− α1)α2suppτ (a1 = a2 = u)

+suppτ (a1 = 1 ∧ a2 = 0) + α1suppτ (a1 = u ∧ a2 = 0)

+(1− α2)suppτ (a1 = 1 ∧ a2 = u) + α1(1− α2)suppτ (a1 = a2 = u).

The benefit of using arbitrary measures instead of probabilities or supports

in previous sections is that results on inclusion-exclusion principle automatically

apply to µu
τ . Also, the fact that µu

τ is a measure makes the proof of the following

theorem straightforward.

Theorem 4.4.3 For every table τ = (T, A, ρ) such that A = {a1, . . . , an} and

Dom(ai) = {0, u, 1} for 1 ≤ i ≤ n, and every collection of sets of attributes

A = {aI1 , . . . , aIm | Ij ⊆ {1, . . . , n}} there is a probability distribution P over A

such that for every aIr ∈ A, P{
∧

j∈Ir
(aj = 1)} = µu

τ (
∧

j∈Ir
(aj = 1))/|ρ|.
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Proof. We prove the theorem by showing that µu
τ/|ρ| is a probability distribution.

Since µu
τ is a measure, it suffices to show that µu

τ (1) = |ρ|. For any ai ∈ A we have:

µu
τ (1) = µu

τ (ai ∨ āi) = µu
τ (ai) + µu

τ (āi)

= suppτ (ai = 1) + αisuppτ (ai = u)

+suppτ (ai = 0) + (1− αi)suppτ (ai = u)

= suppτ (ai = 1) + suppτ (ai = 0) + suppτ (ai = u) = |ρ|.

The importance of the above theorem is that if we use some datamining al-

gorithm (e.g. Apriori) to find µu
τ for a collection of sets of attributes, then their

values of µu
τ are probabilistically consistent. Other approaches to mining frequent

itemsets in the presence of missing values can be found in [RC98, NC01]. However,

both these approaches can produce probabilistically inconsistent results. Specif-

ically, the technique used in [RC98] is to count the support of an itemset only

on the portion of the table where it is valid. For example, consider the table

τ = (T, a1a2, ρ), given by

T

a1 a2

1 1

1 u

0 u

0 u

Using the method from [RC98] the support of attribute a2 is counted only in the

first row, giving suppτ (a2) = 100%. Similarly suppτ (a1) = 50%, and suppτ (a1a2) =

100%, but this means suppτ (a1a2) > suppτ (a1), which is impossible. In the method

proposed in [NC01] the probability for each attribute is estimated from the part
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of the data where the attribute is defined. When computing how much support

does a row with a missing value contribute for an itemset, this probabilities are

summed for each attribute (see [NC01] for details). In the table above this will

give suppτ (a1) = 50%, suppτ (a2) = 100%, and suppτ (a1a2) = [(0.5 · 1 + 0.5 · 1) +

(0.5 · 1 + 0.5 · 1) + 2(0.5 · 0 + 0.5 · 1)]/4 = 75%, and suppτ (a1a2) > suppτ (a1).

Using our µu
τ measure with α2 = 1 gives consistent values of suppτ (a1) = 50%,

suppτ (a2) = 100%, and suppτ (a1a2) = 50%.

4.5 Approximating Supports of Itemsets Using Bonferroni-

type Inequalities

In this section we use Bonferroni inequalities to estimate supports of missing item-

sets. In their original form the inequalities require that we know supports of all

itemsets up to a given size. We address the problem by using the inequalities

recursively to estimate supports of missing itemsets. The advantage of Bonferroni

inequalities is that we can choose an arbitrary limit on the size of the marginals in-

volved, thus allowing for trading off accuracy for speed. Our experiments revealed

that it is possible to obtain good bounds even if only marginals of small size are

used.

Example 4.5.1 Consider a binary table τ whose heading is A = abc and assume

that the distribution of the values of the tuples in this table is given by:

a 0 0 0 0 1 1 1 1

b 0 0 1 1 0 0 1 1

c 0 1 0 1 0 1 0 1

Frequency 0 0 0.1 0.25 0.1 0.25 0.05 0.25
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A run of the Apriori algorithm ([AMS96]) on a dataset conforming to that distri-

bution, with the minimum support of 0.35 will yield the following itemsets:

Itemset a b c ac bc

Support 0.65 0.65 0.75 0.5 0.5

To estimate the unknown support of the itemset abc we can use Bonferroni in-

equalities of the form:

suppτ (abc) ≥ 1− suppτ (ā)− suppτ (b̄)− suppτ (c̄), (4.5)

suppτ (abc) ≤ 1− suppτ (ā)− suppτ (b̄)− suppτ (c̄) (4.6)

+suppτ (āb̄) + suppτ (āc̄) + suppτ (b̄c̄).

Note that since the support of ab is below the minimum support its value is not

returned by the Apriori algorithm and this creates a problem for this estimation.

All the itemset supports, except for suppτ (āb̄), in the previous expression can be

determined from known itemset supports using inclusion-exclusion principle. For

example, we have

suppτ (āc̄) = 1− suppτ (a)− suppτ (c) + suppτ (ac) = 0.1.

Since all needed probabilities are known exactly, the lower bound (4.5) is easy to

compute giving

suppτ (abc) ≥ 1− 0.35− 0.35− 0.25 = 0.05.

To compute the upper bound we proceed as follows.

Since suppτ (āb̄) is not known, we apply Bonferroni inequalities recursively to

get an upper bound for it. We have

suppτ (āb̄) = 1− suppτ (a)− suppτ (b) + suppτ (ab),
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and, since ab is not frequent, we know that its support is less than the 0.35 mini-

mum support, giving

suppτ (āb̄) < 1− suppτ (a)− suppτ (b) + minsupp = 0.05.

Substituting into (4.7) we get

suppτ (abc) < 1− suppτ (ā)− suppτ (b̄)− suppτ (c̄)

+0.05 + suppτ (āc̄) + suppτ (b̄c̄)

= 1− 0.35− 0.35− 0.25 + 0.05 + 0.1 + 0.1 = 0.3.

Note that both bounds are not trivial since the lower bound is greater than 0, and

the upper bound is less than the minimum support.

4.5.1 A Recursive Procedure for Computing Bonferroni Bounds from

Frequent Itemsets

Since the Apriori algorithm only discovers supports of itemsets (as opposed to

other types of queries), we need to express all inequalities in terms of supports of

itemsets.

Theorem 4.5.2 Let q1, . . . , qm be m queries in pol(A). The following inequalities

hold for any t ∈ N:

2t+1∑
k=0

(−1)k
∑

r<i1<...<ik≤m

suppτ (q1 ∧ . . . ∧ qr ∧ qi1 ∧ . . . ∧ qik)

≤ suppτ (q1 ∧ . . . ∧ qr ∧ q̄r+1 ∧ . . . ∧ q̄m) ≤
2t∑

k=0

(−1)k
∑

r<i1<...<ik≤m

suppτ (q1 ∧ . . . ∧ qr ∧ qi1 ∧ . . . ∧ qik).
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Proof. By Rényi’s Theorem [Ren58] it suffices to prove the claim for qi ∈ {1,0} for

all 1 ≤ i ≤ m. When qi = 0 for some 1 ≤ i ≤ r, then both sides of the inequalities

reduce to 0 and the result is immediate. For the case qi = 1 for all 1 ≤ i ≤ r we

have suppτ (q1 ∧ . . . ∧ qrq̄r+1 ∧ . . . ∧ q̄m) = suppτ (q̄r+1 . . . q̄m), and for all k and for

all r < i1 < . . . < ik ≤ m, suppτ (q1∧ . . .∧qr∧qi1 ∧ . . .∧qik) = suppτ (qi1 ∧ . . .∧qik).

The result now follows from Bonferroni inequalities.

Corollary 4.5.3 Let a1 ∧ a2 ∧ · · · ∧ ar ∧ ār+1 ∧ ār+2 ∧ · · · ∧ ām be a minterm. The

following inequalities hold for any natural number t:

2t+1∑
k=0

(−1)k
∑

r<i1<...<ik≤m

suppτ (a1 ∧ · · · ∧ ar ∧ ai1 ∧ · · · ∧ aik)

≤ suppτ (a1 ∧ · · · ∧ ar ∧ ār+1 ∧ · · · ∧ ām) ≤
2t∑

k=0

(−1)k
∑

r<i1<...<ik≤m

suppτ (a1 ∧ · · · ∧ ar ∧ ai1 ∧ · · · ∧ aik)

Proof. This statement follows immediately from Theorem 4.5.2.

Below we present results which form the basis of our algorithm for approxi-

mative computations of supports of itemsets. The binomial symbol
(

n
k

)
will allow

negative values of n, in which case its value is defined by the usual formula(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
.

Lemma 4.5.4 For m, k, h, s ∈ N we have:

s∑
k=0

(−1)s−k

(
m− k − 1

s− k

)(
h

k

)
=

(
h−m + s

s

)
.

Proof. We begin by showing that for every a, b, c, d ∈ N we have

a∑
k=0

(−1)k

(
a− k

b

)(
c

k − d

)
= (−1)a+b

(
c− b− 1

a− b− d

)
. (4.7)
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The proof is by induction on c. The basis step, c = 0, follows after elementary

algebraic transformations. Suppose that the equality holds for numbers less than

c. We have:

a∑
k=0

(−1)k

(
a− k

b

)(
c

k − d

)
=

a∑
k=0

(−1)k

(
a− k

b

)(
c− 1

k − d

)
+

a∑
k=0

(−1)k

(
a− k

b

)(
c− 1

k − d− 1

)
= (−1)a+b

(
c− b− 2

a− b− d

)
+ (−1)a+b

(
c− b− 2

a− b− d− 1

)
(by the inductive hypothesis)

= (−1)a+b

(
c− b− 1

a− b− d

)
.

By using the complimentary combinations and Lemma 4.5.4 we can write:

s∑
k=0

(−1)s−k

(
m− k − 1

s− k

)(
h

k

)
=

s∑
k=0

(−1)s+k

(
m− k − 1

m− s− 1

)(
h

k

)
=

(−1)s ·
s∑

k=0

(−1)k

(
m− k − 1

m− s− 1

)(
h

k

)
= (−1)s · (−1)2m−2−s

(
h−m + s

s

)
=

(
h−m + s

s

)
.

Note that if h = m, the previous lemma implies

s∑
k=0

(−1)s−k

(
m− k − 1

s− k

)(
m

k

)
= 1.

Our method of obtaining bounds is based on the following theorem

Theorem 4.5.5 Let τ = (T, A, ρ) be a table and let a1, . . . , am be attributes in A.
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The following inequalities hold for any natural number t:

suppτ (a1 ∧ a2 ∧ . . . ∧ am) ≤
2t∑

k=0

(−1)k

(
m− k − 1

2t− k

)
Sk (4.8)

suppτ (a1 ∧ a2 ∧ . . . ∧ am) ≥
2t+1∑
k=0

(−1)k+1

(
m− k − 1

2t + 1− k

)
Sk (4.9)

where

Sk =
∑

1≤i1<...<ik≤m

suppτ (ai1 ∧ . . . ∧ aik),

and S0 = 1.

Proof. We use the method of indicators previously discussed.

Let νm be a random variable equal to the number of events A1, . . . , Am that

actually occur. By Lemma 4.5.4 we have:

s∑
k=0

(−1)s−k

(
m− k − 1

s− k

)(
νm

k

)
=

(
νm −m + s

s

)

=


1 if νm = m

0 if νm < m and νm ≥ m− s(
νm−m+s

s

)
if νm < m− s.

By taking expectations of the above equation we get

s∑
k=0

(−1)s−k

(
m− k − 1

s− k

)
Sk = suppτ (νm = m)

+
∑{(

νm(ω)−m + s

s

)
suppτ (ω) : ω ∈ Ω, νm(ω) < m− s

}
,

where Ω denotes the space of elementary events. Note that when νm < m− s the

sign of
(

νm−m+s
s

)
is identical to that of (−1)s. Replacing s by 2t or 2t + 1 yields

the result.
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4.6 The Estimation Algorithm

The main problem in using Bonferroni-type inequalities on collections of frequent

itemsets is that some of the probabilities in the Sk sums are not known. We solved

this problem by estimating the missing probabilities using Theorem 4.5.5.

Given in Figure 4.1 is an algorithm that computes bounds on support of an

itemset based on a collection of itemsets with known supports. The algorithm con-

sists of two functions L and U returning the lower and upper bounds respectively.

Additional functions for the algorithm are given in Fugure 4.2.

Of course upper and lower bounds for itemsets are cached during computations

to avoid repeated evaluations for the same itemset. The parameter r controls the

maximum size of marginals (itemsets) used in the estimation.

The use of minsupp in step 5 of function U requires some comment. Including

the value of minsupp in the minimum is possible only if we can determine that the

estimated itemset I is not frequent. This can be done for example if F contains

all frequent itemsets, or when F contains all frequent itemsets up to a given size

k, and |I| ≤ k. If we don’t know whether I is frequent or not, we have to drop

minsupp from the minimum.

4.6.1 Experimental results

In this section we present experimental evaluation of the bounds. Our algorithm

works best on dense datasets, which are more difficult to mine for frequent itemsets

than sparse ones. However, the algorithm was tested on both dense and sparse

data (artificial market basket data was used). The rest of the chapter is focused

on experiments performed on dense databases.
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Input: Itemset I, natural number r, collection F of itemsets,

supports of itemsets in F

Output: Bounds L(I), U(I) on the support of I

Function L(I, F, r):

1. If I ∈ F

2. return suppτ (I)

3. else

4. return max−1≤2t+1≤r

∑2t+1
k=0 SL

(
(−1)k+1

(
m−k−1
2t+1−k

)
, k, I,F

)
Function U(I, F, r):

1. If I ∈ F

2. return suppτ (I)

3. else

4. U −→ min0≤2t≤r

∑2t
k=0 SU

(
(−1)k

(
m−k−1
2t−k

)
, I, k,F

)
5. U −→ min{U, minsupp, minJ⊂I U(J)}

6. return U

Figure 4.1: Itemset support estimation algorithm.
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Function SL(real coefficient c, itemset I = a1 . . . am, F, integer k)

1. If k = 0 return c

2. If c ≥ 0

3. return c ·
∑

i1<...<ik≤m L(ai1ai2 . . . aik , F, k − 1)

4. else

5. return c ·
∑

i1<...<ik≤m U(ai1ai2 . . . aik , F, k − 1)

Function SU(real coefficient c, itemset I = a1 . . . am, F, integer k)

1. If k = 0 return c

2. If c ≥ 0

3. return c ·
∑

i1<...<ik≤m U(ai1ai2 . . . aik , F, k − 1)

4. else

5. return c ·
∑

i1<...<ik≤m L(ai1ai2 . . . aik , F, k − 1)

Figure 4.2: Itemset support estimation algorithm, additional functions.
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As dense databases we used the mushroom database from the UCI Machine

Learning Archive [BM98], and a census data of elderly people from the University

of Massachusetts at Boston Gerontology Center available at

http://www.cs.umb.edu/~sj/datasets/census.arff.gz.

Since both datasets involve multivalued attributes, we replaced each attribute

(including binary ones) with a number of Boolean attributes, one for each possible

value of the original attribute.

Before we present a detailed experimental study of the quality of bounds, we

present the results of applying the bounds to a practical task. Suppose that we did

not have enough time or computational resources to run the Apriori (or similar)

algorithm completely, and we decided to stop the algorithm after finding frequent

itemsets of size less than or equal to 2. We then use lower bounds to find frequent

itemsets of size greater than 2. The experimental results for mushroom and census

databases are shown in Figures 4.3 and 4.4 respectively.

The figures show, for various values of minimum support, the true number of

frequent itemsets of sizes 3 and 4, the number of itemsets that we discovered to be

frequent by using our bounds, and the ratio of the two numbers.

For large values of minimum support we are more likely to classify an itemset

correctly than for smaller ones. The data shows that for itemsets with largest

support the chances of actually being determined to be frequent without consulting

the data can be as high as 80%.

We now present an experimental analysis of the bounds obtained. In what

follows, by trivial bounds for the support of an itemset I we mean 0 for the lower

bound, and for the upper bound: the minimum of the upper bounds of the supports

of all proper subsets of I and of the minimum support. As in the example above
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Itemset Min. support 18% 25% 30% 37% 43% 49% 55% 61% 73%

size

Frequent 1761 893 498 308 152 70 45 23 13

3 Est. Freq. 345 244 179 127 86 54 34 19 10

ratio (%) 19.6% 27.3% 35.9% 41.2% 56.6% 77.1% 75.6% 82.6% 76.9%

Frequent 4379 1769 795 368 147 48 29 16 6

4 Est. Freq. 298 202 131 85 53 31 18 10 2

ratio (%) 6.8% 11.4% 16.5% 23.1% 36.1% 64.6% 62.1% 62.5% 33.3%

Figure 4.3: Discovered vs. total frequent itemsets for the mushroom dataset

Itemset size Min. support 1% 2% 3% 5% 10% 15% 30% 50%

Frequent 1701 1377 1145 879 503 312 112 40

3 Est. Freq. 154 149 146 137 108 90 47 21

ratio (%) 9.1% 10.8% 12.8% 15.6% 21.4% 28.9% 42.0% 52.6%

Frequent 5050 3560 2728 1901 852 485 105 20

4 Est. Freq. 103 98 94 85 64 48 18 3

ratio (%) 2.0% 2.8% 3.5% 4.5% 7.5% 9.9% 17.1% 15.0%

Figure 4.4: Ratios of discovered to total frequent itemsets for the census data
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itemset size 3 4 5 6

average interval width 0.0482797 0.0313103 0.0228579 0.0196316

average upper bound 0.0568679 0.0319395 0.0228771 0.0196316

average lower bound 0.00858817 0.000629199 1.925e-05 0

itemsets with nontrivial bounds 7.04% 0.59% 0.04% 0.00%

itemsets with nontrivial lower 4.06% 0.39% 0.02% –

average lower improvement 0.211321 0.161151 0.0962518 –

itemsets with nontrivial upper 6.43% 0.47% 0.03% –

average upper improvement 0.0225656 0.00983444 0.00262454 –

time [ms/itemset] 0.2 0.3 1 7

(a) 1.8% minimum support, all itemsets

itemset size 3 4 5 6

average interval width 0.102848 0.105024 0.106997 0.110767

average upper bound 0.127438 0.109572 0.107491 0.110767

average lower bound 0.0245896 0.00454846 0.00049354 0

itemsets with nontrivial bounds 20.17% 4.25% 0.58% 0.02%

itemsets with nontrivial lower 11.64% 2.82% 0.46% –

average lower improvement 0.211321 0.161151 0.106164 –

itemsets with nontrivial upper 18.41% 3.43% 0.40% 0.02%

average upper improvement 0.0225656 0.00983444 0.00333985 0.00338427

(b) 1.8% minimum support, frequent itemsets only

itemset size 3 4 5 6

average interval width 0.171608 0.205194 0.222602 0.231362

average upper bound 0.235004 0.223174 0.225491 0.231362

average lower bound 0.0633963 0.0179804 0.00288882 0

itemsets with nontrivial bounds 48.55% 16.79% 3.40% 0.14%

itemsets with nontrivial lower 30.00% 11.16% 2.72% –

average lower improvement 0.211321 0.161151 0.106164 –

itemsets with nontrivial upper 44.00% 13.56% 2.33% 0.14%

average upper improvement 0.0238776 0.00983444 0.00333985 0.00338427

(c) 9% minimum support, frequent itemsets only

Table 4.1: Results for the census dataset

here too we mine frequent itemsets with at most two items, and compute bounds

for larger ones.

Table 4.1 (a) contains the results for the census dataset with minimum support

of 1.8%.

The parameter r in the estimation algorithm was chosen for each itemset I to

be |I| − 1 for maximum accuracy. This causes an increase in estimation time for

larger itemsets. Later in the section we present results showing that limiting the

value of r can give very fast estimates with a very small impact on the quality of
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the bounds. All experiments were run on a 100MHz Pentium machine with 64MB

of memory.

The bounds obtained are fairly accurate. The width of the interval between the

lower and upper bounds varied from 0.048 to 0.019 for itemsets of size 3. Note that

the estimates become more and more accurate for larger itemsets. The reason is

that the bulk of large itemsets will have subsets whose support is very small, thus

giving better average trivial bounds. Nontrivial upper bounds occur slightly more

frequently than nontrivial lower bounds; however, lower bounds give on average

much better improvement over the trivial bounds (this is due to the fact that our

trivial upper bounds are quite sophisticated, while the trivial lower bound is just

assumed to be 0).

The percentage of itemsets having nontrivial bounds is quite small. However

those itemsets who have high support (and thus are the most interesting) are more

likely to get interesting nontrivial bounds. This can be seen in Tables 4.1(b) and

4.1(c), where up to 48% of itemsets have nontrivial bounds proving the usefulness

of Theorem 4.5.5. Note that in this case the interval width increases with the size

of the itemsets. This is due to the fact that for high supports we don’t have large

number of itemsets with low supports that would create trivial upper bounds.

The conclusions were analogous for the mushroom database.

Table 4.2 shows how the choice of the argument r in the estimation algorithm

influences the computation speed and the quality of the bounds. The results when

r is set to the highest possible value (size of the estimated itemset minus one) is

given in Table 4.1(a).

The results show that limiting the value of r to 2 or 3 gives a large speedup at

a negligible decrease in accuracy. This is the approach we recommend. Also note
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Census Data with 1.8% Minimum Support

r = 2

itemset size 3 4 5 6

average interval width 0.0482797 0.0315442 0.022993 0.0196671

average upper bound 0.0568679 0.0321734 0.0230122 0.0196671

average lower bound 0.00858817 0.000629199 1.925e-05 0

itemsets with nontrivial bounds 7% 1% 0.10% 0%

time [ms/itemset] 0.18 0.24 0.34 0.46

r = 3

itemset size 3 4 5 6

average interval width 0.0482797 0.0313103 0.0228666 0.0196328

average upper bound 0.0568679 0.0319395 0.0228859 0.0196328

average lower bound 0.00858817 0.000629199 1.925e-05 0

itemsets with nontrivial bounds 7% 0.50% 0% 0%

time [ms/itemset] 0.18 0.3 0.53 0.92

Table 4.2: Influence of the order of inequalities on the bounds

Census Data with 1.8% Minimum Support

itemset size 3 4 5 6 7

avg interval width 0.040498 0.081989 0.0668155 0.0392651 0.0180174

average upper bound 0.171319 0.120666 0.0685168 0.0392925 0.0180174

average lower bound 0.130821 0.0386768 0.00170127 2.73405e-05 0

time [ms/itemset] 0.24 0.46 0.96 2.54 5.12

Table 4.3: Estimates for itemsets with negations

that the proportion of itemsets with nontrivial bounds is higher for lower values

of r. The same experiments repeated for frequent itemsets only yielded analogous

results, so we omitted the data here.

Our last experimental result concerns estimating support of conjunctions al-

lowing negated items using Corollary 4.5.3. Table 4.3 shows the results for the

census ataset, with supports of all frequent 1- and 2-itemsets known (1.8% min-

imum support). In each of the itemsets exactly two of the items were negated.

Again the inequalities gave fairly tight bounds.
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CHAPTER 5

CONCLUSIONS

This work presented various applications of information theoretical and combina-

torial methods in data mining. The most important contributions are summarized

below.

5.1 Generalized Entropy Distances with Applications to

Decision Tree Construction

In Section 2.2 an axiomatization has been introduced for a family of entropies

including both Shannon entropy and the Gini index as special cases. This entropies

were then applied to decision tree construction.

One of the most important criteria for splitting attribute selection in decision

tree construction is Shannon entropy gain or the Shannon entropy gain ratio.

In [LGR93] it has been shown that the expression H(Y |X) + H(X|Y ), where H

is the Shannon Entropy, is a distance between attribute sets, and that using this

distance as a splitting criterion during decision tree construction often leads to

much smaller trees with almost no loss in accuracy.

The results of [LGR93] have been extended in Section 2.6 to generalized en-

tropies axiomatized in Section 2.2

It is shown experimentally in Section 2.8 that generalized entropies are useful
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as a splitting criterion for building decision trees as well. Generalized entropies

produced in many cases even smaller decision trees without significant loss in

accuracy.

Future research will include evaluations of various other measures as splitting

criteria. We have obtained some promising results with expressions related to

Goodman-Kruskal association index well known in statistical literature.

5.2 Association rule pruning and interestingness

One of major problems in association rule mining is huge number of rules produced,

creating a secondary data mining problem. Indeed, even a toy contact-lenses

database produces hundreds of association rules, most of them between indepen-

dent attributes. There are two methods of dealing with this problem: sorting rules

based some interestingness measure and rule pruning.

Chapter 3 contains contributions to both methods. Section 3.4 presents a

new interestingness measure generalizing three well-known measures: chi-squared,

entropy gain and Gini gain.

Section 3.9 contains a method of pruning association rules using Maximum

Entropy Principle. Usefulness of both methods is shown experimentally. It is

worth mentioning that the Maximum Entropy pruning gives high reduction in the

number of rules while retaining most of the interesting ones.

Future research will concentrate on further improvements to rule pruning and

incorporating background knowledge in the rule selection and pruning process.

104



5.3 Bonferroni inequalities

A series of seminal papers by H. Mannila et al. [MT96, Man01, PMS01] introduced

the idea of using supports of itemsets discovered with a data mining algorithm to

obtain the size of arbitrary database queries.

In Chapter 4 this work a solution to the problem is presented using a variation

of the so called Bonferroni inequalities [GS96].

Modifications of Bonferroni inequalities have been developed which allow for

estimating bounds of arbitrary database queries based on supports of frequent

itemsets. Special cases like estimating support of an itemset with an unknown

support, or of an itemset with negated attributes are also considered. Experiments

show that useful bounds can be obtained from the inequalities in many significant

cases.

Future work will include finding Bonferroni inequalities for other types of

queries like for example monotonic functions, and examining approximation meth-

ods other than Bonferroni inequalities.
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