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ARITHMETIC OPERATIONS ON INDEPENDENT RANDOM
VARIABLES: A NUMERICAL APPROACH∗

SZYMON JAROSZEWICZ† AND MARCIN KORZEŃ‡

Abstract. Dealing with imprecise quantities is an important problem in scientific computation.
Model parameters are known only approximately, typically in the form of probability density func-
tions. Unfortunately there are currently no methods of taking uncertain parameters into account
which would at the same time be easy to apply and highly accurate. An important special case is
operations on independent random variables which occur frequently in obtaining confidence intervals
for physical measurements and statistical estimators. In this paper we investigate the possibility of
implementing arithmetic operations on independent random variables numerically. Equivalently, the
problem can be viewed as propagating approximated probability density functions through arith-
metic operations. We introduce a very broad family of distributions which is closed under the four
arithmetic operations and taking powers. Furthermore we show that the densities of the distributions
in the family can be effectively approximated using Chebyshev polynomials. A practical implementa-
tion is also provided, demonstrating the feasibility and usefulness of the approach. Several examples
show applications in physical measurements, statistics, and probability theory, demonstrating very
high numerical accuracy. These include an interesting problem related to combining independent
measurements of a physical quantity, distributions of sample statistics of the Hill’s estimator for
tail exponents, generalized χ2 distribution, and others. The results are usually extremely accurate,
in some cases more accurate than specialized solutions available in statistical packages, and can be
achieved with very little effort.
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1. Introduction. Arithmetic operations on independent random variables
(i.r.v.’s) occur frequently in scientific computation. For example, obtaining confi-
dence intervals for physical measurements often requires combining several imprecise
values in order to obtain the desired quantity. Applications also arise frequently
in probability theory and statistics, where most parametric tests are based on such
distributions. For example, distributions of means of independent and identically dis-
tributed (i.i.d.) samples are obtained by adding the population’s distribution several
times and dividing the result by a constant. The Student’s t-statistic is obtained by
dividing a normally distributed random variable (r.v.) by a χ2 distributed r.v. Such
distributions are sometimes easy to compute (typically for normal populations), but
in most cases the problem is intractable, and no closed form solutions exist.

The literature contains solutions for various special cases, but even if such solu-
tions exist for the problem at hand, they can be exceedingly hard to apply. Take, for
example, the noncentral t-distribution used to compute the power of the Student’s t-
test. Various formulas for its density are available in the literature but require infinite
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summations or evaluation of confluent hypergeometric functions, posing severe numer-
ical problems. Other applications include obtaining confidence intervals for physical
measurements, where various quantities with known (or assumed) error distributions
are combined using arithmetic operations to obtain the quantity of interest.

We propose a numerical solution to the problem: a software library called PaCAL

(ProbAbilistic CALculator), freely available for download at http://pacal.sf.net,
which allows for computing with probability distributions as one does with ordinary
variables. The distributions are represented using piecewise Chebyshev approxima-
tions. When arithmetic operations are performed, the approximation of the result is
automatically computed and can be used in subsequent operations. Section 4 contains
several illustrative examples which demonstrate the potential of the library.

We also analyze the theoretical aspects of such an implementation by addressing
the problem of whether the results of arithmetic operations on approximable distri-
butions remain approximable. More specifically, we present families which contain
practically all distributions used in practice and which are closed under the four
arithmetic operations and taking powers. Moreover, we show that distributions in
those families can be effectively approximated using piecewise polynomial represen-
tations. We demonstrate that arithmetic with r.v.’s following distributions outside of
our families can result in pathological densities which cannot be approximated; see
Example 1.1.

In order to represent probability distributions numerically, several problems need
to be addressed. The most important are infinite interpolation intervals and singu-
larities (consider, for example, the χ2 distribution with 1 degree of freedom). Our
families include distributions with infinite supports and a finite number of singulari-
ties; effective methods of their approximation are described.

High accuracy of the computations and supporting an as wide as possible class
of distributions have been the top priorities for us while developing PaCAL. The speed
has not been neglected, but, together with the independence assumption, limits the
application of the package to large scale problems. We demonstrate, however, a
number of nontrivial practical applications where PaCAL gives very accurate results in
a matter of seconds.

1.1. Related work. The most important work on arithmetic of r.v.’s is [19]. It
describes a general approach to obtaining the resulting distributions analytically by
means of Fourier and Mellin transforms. An algorithmic approach is also proposed
with distributions represented using H-functions, a generalization of hypergeometric
functions. Computing product and quotient distributions reduces to simple arithmetic
operations on the parameters of those functions. Unfortunately, the family is not
closed under addition. Another drawback is the difficulty in computing the values of
H-functions numerically. The method proposed for obtaining actual densities involves
series expansions based on moments, which is often not satisfactory. For example,
it will not work unless the distribution has several finite moments. In fact, any
reasonable family which includes only distributions with finite moments cannot be
closed under division (the quotient of two normally distributed i.r.v.’s is a Cauchy
r.v., which has no moments).

Newer work on arithmetic of r.v.’s can be found in [22], where approximations
using Laguerre polynomials are used. Formulas for sums and products of i.r.v.’s
in such a representation are given. However, as entire densities are approximated
with a single expansion, the method is unlikely to handle discontinuities well. No
theoretical results are provided on the closure properties of the representation. Later
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chapters of [22] (and works by other authors) use so-called envelopes, that is, upper
and lower bounds on the cumulative distribution functions (c.d.f.’s). Such methods
have the advantage of working with dependent variables, but they offer only rough
approximations of the distributions; the bounds become very loose after repeated
operations. Our goal is, instead, to provide as accurate as possible results for the
practically important case of independence.

In [12], the authors describe a library for arithmetic operations on i.r.v.’s based on
symbolic computations using Maple. The functionality of this approach is very similar
to that of PaCAL, but the methodology is very different. Symbolic computations are
capable of providing exact results, but it is not always possible to express the resulting
distributions symbolically.

Some work on arithmetic operations on r.v.’s can be found in the literature on
measuring physical quantities. Typically, if errors are relatively small, normality
assumption and the delta method are used; for larger errors Monte Carlo simulation
combined with histogramming is recommended; see, e.g., [14]. Simulation can handle
arbitrary arithmetic operations on (even dependent) r.v.’s, but the accuracy grows
only with the square root of the number of samples taken, which means that usually
only a few correct decimal digits can be obtained. The problem becomes much more
severe in the tails of distributions.

As far as we know, the closeness of our proposed families of distributions un-
der all arithmetic operations and its relation to approximability have not been pub-
lished before. Some of the theoretical results we introduce (such as tail behav-
ior) were already known for convolutions [9], but the distributions of products and
quotients of r.v.’s are much less popular in the literature, and, to the best of our
knowledge, most results presented here are either new or stronger than the previ-
ous ones. For example, [5] requires the distributions to have all finite moments,
while our results are valid even for distributions with no moments. As far as we
can tell, the general analysis of the behavior of singularities of probability density
functions (p.d.f.’s) is also new and, except for specific cases, has not been previously
discussed.

In this work we represent p.d.f.’s using piecewise Chebyshev interpolation with
variable transformations to allow for infinite intervals and singularities. Our repre-
sentation works for a very broad class of distributions including those for which no
moments exist. The advantages of the Chebyshev representation are the existence
of automatic approximation methods and excellent accuracy on well-behaved func-
tions. Below we discuss other possible representations and compare them with our
choice.

Probability density functions are frequently approximated using asymptotic ex-
pansions such as the Edgeworth series [16]. The series, however, is not guaranteed to
converge even for common distributions, and, like other methods based on moments
(or cumulants), the representation is not closed under division. Another approach
involves spectral representations such as characteristic functions and Mellin trans-
forms [9, 19], which have the property that arithmetic operations on i.r.v.’s reduce
to standard arithmetic on spectral representations. Those methods are not suitable
for a general purpose library, as spectral representations of even simple distributions
are hard to represent numerically. Take, for example, the uniform distribution on
[−1, 1], trivially expressible as a piecewise polynomial, whose characteristic function
is sin(x)/x, which, due to its infinite periodic pattern, is difficult to approximate
numerically.

One may also choose to represent c.d.f.’s, not p.d.f.’s. Using c.d.f.’s has some
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advantages, such as being able to automatically handle points with nonzero measure;
however, computing the results of arithmetic operations still requires p.d.f.’s which
would have to be obtained by differentiation. Differentiation of Chebyshev polynomi-
als (and other representations) is easy but reduces numerical accuracy.

Finally, we need to mention the main motivation for this work: the Chebfun pack-
age [1], which implements arithmetic on arbitrary functions by representing them as
piecewise Chebyshev polynomials. While PaCAL borrows the main ideas from Cheb-
fun, the contribution of this paper is still significant. By exploiting the specifics of
p.d.f.’s, we are able to obtain an implementation which is more efficient and handles
infinite intervals and singularities better than Chebfun. Moreover, we give theoretical
guarantees which are impossible in the case of arbitrary functions.

1.2. Preliminaries and notation. We consider continuous r.v.’s, by which we
mean real valued r.v.’s which possess p.d.f.’s. We do not deal with pathological cases
such as the Cantor distribution or other singular distributions.

Let f , g be p.d.f.’s of i.r.v.’s X , Y , respectively. We consider r.v.’s X + Y ,
X−Y , X ·Y , X/Y formed by arithmetic operations on X and Y . The corresponding
operations on their p.d.f.’s will be denoted, respectively, by f ⊕ g, f � g, f � g, f � g.
Note that, in the literature, the density of the sum is typically denoted using the
convolution symbol ∗. We do not use this notation to maintain uniformity over all
operations. The expressions f + g and f − g denote the pointwise sum and difference
of real valued functions, and f (n) denotes the nth derivative of f .

Arithmetic operations on r.v.’s. Let f and g be p.d.f.’s. The densities resulting
from arithmetic operations on i.r.v.’s following those distributions are given by [19]

(f ⊕ g)(t) =

∫ +∞

−∞
f(x)g(t− x) dx,(1.1)

(f � g)(t) =

∫ +∞

−∞
f(x)g(x− t) dx,(1.2)

(f � g)(t) =

∫ +∞

−∞
f(x)g

( t
x

) 1

|x| dx,(1.3)

(f � g)(t) =

∫ +∞

−∞
f(xt)g(x)|x| dx =

∫ +∞

−∞
f(x)g

(x
t

) |x|
t2
dx.(1.4)

If u is a function consisting of n strictly monotone and differentiable pieces ui, the
distribution of u(X), where X is an r.v. with density f , is given by [19]

(1.5) p(x) =
n∑

i=1

f(ui
−1(x))

∣∣∣(ui−1)(1)(x)
∣∣∣ ,

where u−1 denotes the inverse of u, and, in agreement with our notation, u(1) denotes
the first derivative of u.

In the next section we present families of approximable distributions which are
closed under arithmetic operations. The following example shows that approximabil-
ity of the results should not be taken for granted, and that operations on seemingly
benign distributions can lead to pathological results.

Example 1.1 (quotient of approximable r.v.’s may not be approximable). Let the
p.d.f. f be an infinite series of rectangular impulses centered at 40, 41, . . . , 4j , . . . , each
of width 1 and height 1

2j+1 . The function is approximable by a piecewise polynomial
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Fig. 1.1. Illustration for Example 1.1 for N = 3 and N = 4. Logarithmic scale is used on the
x axis.

function fN , consisting of the first N impulses, with an absolute approximation error
of 1

2N+1 .
f�f has, however, an infinite number of singularities at points 1

4−k , k = 0, 1, 2, . . . ,
and clearly cannot be approximated in the ‖ · ‖∞ norm using piecewise polynomial
functions. Indeed, consider the approximation fN and let t = 4−k be fixed:

(fN � fN)(4−k) =

∫
fN (x)fN (x · 4−k)|x| dx =

N−1∑
j=k

fN(4j)fN
(
4j−k

) · 4j

=

N−1∑
j=k

1

2j+1
· 1

2j−k+1
· 4j

=

N−1∑
j=k

2k−2 = (N − k)2k−2 → ∞, as N → ∞.

To see the second equality, notice that the integral is equal to a sum over overlapping
impulses; the first two factors are the height of the resulting impulse and 4j, the value
of x at its center. Figure 1.1, generated using PaCAL, provides a graphical illustration
for N = 3, 4.

The rest of the paper is organized as follows. Section 2 presents the families
of approximable distributions closed under arithmetic operations. Section 3 briefly
discusses details of our implementation, and section 4 demonstrates its capabilities.
Section 5 offers concluding remarks, and the appendix contains the proofs of theorems.

2. Families of distributions closed under arithmetic operations. We re-
quire p.d.f.’s and a specified number of their derivatives to be bounded and continuous
except at a finite number of points at which they are allowed to diverge to infinity.
We will call such points potential singularities of the density function. Note that the
p.d.f. (or some of its derivatives) is not required to have a singularity at such a point;
the only requirement is that outside those points the p.d.f. and a specified number of
its derivatives must be continuous (and consequently bounded outside some arbitrary
small neighborhoods of the potential singularities).

We now introduce the families Fk, k ∈ N, of p.d.f.’s. We say that a p.d.f. f
belongs to Fk if there exists an n ∈ N and points p1, . . . , pn ∈ R (called potential
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singularities of f) such that the following assumptions hold for all 0 ≤ i ≤ k:
A.1 f (i) is continuous everywhere except at the potential singularities p1, . . . , pn.
A.2 |f (i)(x)| = O( 1

|x−pi|i+1 ) as x→ pi, for every potential singularity pi of f .

A.3 |f (i)(x)| = O( 1
|x|i+1 ) as x→ ±∞.

One of the main results of this paper, the following theorem, states that the families
Fk are closed with respect to all arithmetic operations and under taking powers of
r.v.’s.

Theorem 2.1. Let f ∈ Fk and g ∈ Fk be p.d.f.’s with potential singularities
p1, . . . , pn and q1, . . . , qm, respectively. Then

1. f ⊕ g ∈ Fk with potential singularities at pi + qj, 1 ≤ i ≤ n, 1 ≤ j ≤ m;
2. f � g ∈ Fk with potential singularities at pi − qj, 1 ≤ i ≤ n, 1 ≤ j ≤ m;
3. f�g ∈ Fk with potential singularities at 0 and at piqj, 1 ≤ i ≤ n, 1 ≤ j ≤ m;
4. f�g ∈ Fk with potential singularities at 0 and at pi/qj, 1 ≤ i ≤ n, 1 ≤ j ≤ m,
qj �= 0.

Theorem 2.2. Let r ∈ R, r �= 0, and let X be an r.v. with p.d.f. f ∈ Fk with
potential singularities at p1, . . . , pn. Then the p.d.f. of Xr also belongs to Fk, with
potential singularities at 0 and at pi

r for each pi �= 0. For r �∈ Z we assume that
f(x) = 0 for all x < 0.

The proofs of these theorems and those of the remaining theorems can be found in
the appendix. It is clear from Theorem 2.1 that the potential singularity at zero has
a special meaning for multiplication and division: the sum and difference of bounded
p.d.f.’s remain bounded, but products and quotients can introduce a singularity at
zero (consider, e.g., the product of two independent normal r.v.’s). In fact, it is clear
that p.d.f.’s having a single potential singularity at zero form useful subfamilies of Fk

closed under the four arithmetic operations and taking powers.
Assumptions A.1–A.3 are not severe, and the families are indeed very broad.

Practically all standard distributions used in statistics belong to F∞, including heavy
tailed distributions such as Lévy or Pareto which do not have finite moments. The
following result, showing that all asymptotically k-monotone distributions belong to
F , gives one justification of this fact.

Theorem 2.3. If for 0 ≤ i ≤ k, f (i)(x) is monotone for x ≥ M > 0 and for
x ≤ −M , M ∈ R, then f satisfies assumption A.3 for k.

An analogous result can be proved for monotonicity around singularities. Intu-
itively, the density needs to contain an infinite number of “bumps” (and the bumps
need to be sufficiently high) if it is not to belong to Fk.

It is also clear that Fk is closed under linear transformations; if the p.d.f. of X is
in Fk, so is the p.d.f. of aX + b for a, b ∈ R, a �= 0.

A note is needed here on how repeated computations affect the number of singu-
larities in the density functions of their results. Theorem 2.1 implies that the number
of singularities can increase with each operation. However, this rarely happens in
practice. In the case of addition and subtraction, the singularities in the result be-
come less steep with each operation and eventually disappear completely (typically
after just one or two steps)1 due to the smoothing properties of convolution. The
same is true for multiplication and division, except for the singularity at zero which
becomes steeper with each subsequent operation. Such a case is presented in section 4
in the example involving the product of uniformly distributed variables.

1For example, the p.d.f. of the sum of two independent χ2 r.v.’s with 1 degree of freedom has no
singularity, even though the p.d.f.’s of both arguments do.
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2.1. Approximation of probability density functions. Additionally, it
turns out that the p.d.f.’s belonging to Fk can be effectively approximated. We
first define a family FA of functions which will be used to approximate the p.d.f.’s; in
short, we will use polynomials combined with transforms to handle infinite intervals.
More formally, a function f belongs to the family FA if there exist a1, . . . , an ∈ R,
n ≥ 1, and an α ∈ N, α ≥ 1, such that

1. f(x) = P0((−x+ 1 + a1)
−1/α) for x ≤ a1,

2. f(x) = Pn((x+ 1− an)
−1/α) for x > an,

3. f(x) = Pi(x) for x ∈ (ai, ai+1] for every 1 ≤ i < n,
where Pi are polynomials. The expressions in points 1 and 2 come from the use of
variable transform x = 1/uα, α ≥ 1, which maps the interval (0, 1] onto [1,∞).

Theorem 2.4. Let f ∈ Fk with potential singularities p1, . . . , pn for some k ≥ 0.
Then

1. for every ε > 0 and δ > 0 there exists a function f̃ ∈ FA such that |f(x) −
f̃(x)| ≤ ε for all x such that minj |x− pj | > δ,

2. if k > 0, then Pi can be obtained using Chebyshev approximations,
3. if k > 1, then, in addition, the error of the Chebyshev approximation decreases

as O(N−min(α−1,k)+1), where N is the maximum degree of polynomials Pi

used in the definition of f̃ , and α ≥ 1 is the constant used in the definition
of FA.

In other words, densities in Fk can be approximated with polynomials (using
transforms for infinite intervals) except for arbitrarily small neighborhoods around
potential singularities. The larger the value of k, the easier the approximation. For
k = 0, the theorem guarantees the existence of an approximation, but there is no
guarantee on the rate of convergence, and Chebyshev expansions cannot be used
to obtain it. If k > 0, efficient and numerically stable Chebyshev approximations
are possible, and when k > 1, the convergence rate can be guaranteed, with the
approximation error decreasing as O(N−k+1) for a sufficiently large value of α. In
practice, the distributions are defined using functions which are piecewise infinitely
differentiable, so the convergence is very fast.

Let us comment here on approximation of functions with singularities. In prac-
tice one uses tricks which make this approximation easier. For example, one might
approximate the function |x − pi|f , which may not have a singularity, and multiply
the approximation by 1/|x− pi| to regain the behavior around pi. While such meth-
ods are useful in practice, the guarantees offered on the absolute error are not any
stronger than those given in the theorem above. The handling of singularities in our
implementation is described in the next section.

3. A practical implementation. In this section we describe a practical im-
plementation of the proposed methodology. The library called PaCAL (ProbAbilistic
CALculator) has been implemented in Python and is freely available at http://pacal.
sf.net. We now briefly discuss implementation details such as the approximation and
integration procedures used; full details are beyond the scope of this paper. Section 4
shows example applications of the package.

Overall, arithmetic operations on densities f and g are performed as follows. First,
potential singularities of the result are obtained using Theorem 2.1. They determine
the intervals on which the result will be approximated. For the approximation pro-
cedure to work, it suffices that the result be evaluated at a finite number of points.
Each such evaluation is performed by directly applying numerical integration to one
of the formulas (1.1)–(1.4). The two key components of the package are thus the
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approximation and integration routines which will be described in the remaining part
of this section.

Approximation. The distributions are represented as piecewise polynomial ap-
proximations of their p.d.f.’s. Each approximated piece of the function is called a
segment. The endpoints of segments are placed at potential singularities and at plus
and minus infinity. Without loss of generality we assume that each segment belongs
to one of the following three kinds:

1. a segment on a closed interval with no singularities,
2. a segment on a closed interval with a singularity at one of its endpoints,
3. a segment with no singularities and with one of the endpoints at plus or minus

infinity.
Segments of the first kind, which involve no singularities and no infinite endpoints,
can be approximated directly, using Chebyshev approximations. It turns out that
such an approximation can very easily be achieved using the so-called barycentric
interpolation formula [2]

f̃(x) =

N∑
i=0

wi

x− xi
fi

/ N∑
i=0

wi

x− xi
,

where xi’s are interpolation points (nodes), fi is the value of the interpolated function
at xi, and wi’s are weights. We used the Chebyshev nodes of the first or second kind
for which the weights wi have a simple form [2]. In this case, the formula is equivalent
to performing Chebyshev approximation using other, more expensive, methods. This
approach is efficient and very stable numerically. In principle any other approximation
method can be used, such as Fourier series.

Infinite intervals. Theorem 2.4 in section 2.1 gives a solution for approximating
functions on infinite intervals; using the variable transform 1/xα, α ∈ N, α ≥ 1 guar-
antees that the error decreases as O(N−min(α−1,k)+1), where N is the degree of the
polynomial. In the literature [4], the value of α = 1 is typically used, but Theo-
rem 2.4 shows that higher values can indeed be beneficial. In our implementation we
use α = 6. Additionally, in the tails of the distribution we approximate log f(exp(x)),
the log-log transform of the p.d.f., in order to get good asymptotic behavior for very
high values of x.

Singularities. Each of the approximated p.d.f.’s has associated with it a set of
potential singularities. Outside of this set the function is well behaved, but at those
points its behavior can be problematic.

First we need to determine whether a potential singularity is indeed a singular-
ity and, if this is the case, take measures to represent it as accurately as possible.
Unfortunately, we cannot determine in advance whether singularities in arguments’
p.d.f.’s give rise to a singularity in the result of an arithmetic operation;2 we thus
try to determine the presence of a singularity numerically, by computing limits. The
method we use to represent singularities works well even if there is no singularity at
a given point, so the consequences of wrongly classifying a point as a singularity are
not severe; typically only a small loss of accuracy occurs.

When a segment is believed to have a singularity at its left endpoint we approx-
imate the log-log transform of f on an interval [pi + δ, b], where pi is the potential
singularity (segment’s left endpoint) and δ is a small constant. We use δ = 10−50

2The sum of two i.r.v.’s with p.d.f.’s 0.25x−0.75 on [0, 1] has a singularity at zero, while the sum
of two χ2 distributions with 1 degree of freedom does not.
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for pi = 0 and larger values otherwise. Singularities at the right endpoint are han-
dled analogously. Note that this approach is quite different from what is typically
suggested in the literature,3 but it proved more robust in our case.

Integration. Numerical integration plays a central role in the implementation. It
is used in (1.1)–(1.4) and in computation of moments and c.d.f.’s.

For finite intervals we use Clenshaw–Curtis and Fejér quadratures as described
in [20, 21]. For integrals on infinite intervals and for integrals of functions involving
singularities we use variable transformations to change the integral into a proper
integral on a finite interval. Unfortunately, we cannot guarantee that the integrals
can be computed for all densities in Fk; thus, even though we guarantee that the
results of arithmetic operations can be approximated, we cannot guarantee that we
can always obtain those approximations. However, this turns out to be possible in
almost all practically useful cases.

It is easy to see that for integrals on semi-infinite intervals of functions such that
f = O(1/xβ) as x → ∞, β > 1, the change of variable t = xα, where α > 1/(β − 1),
leads to proper integrals with respect to t. Similarly, for improper integrals of a
function with a singularity at zero such that f = O(1/xβ) as x → 0, 0 < β < 1, the
substitution t = xα, where α > 1/(1− β), leads to a proper integral. Details can be
found in [8, sections 2.12 and 3.1] and [3].

In our implementation, we use α = 6 for both infinite intervals and singularities,
which is sufficient for most heavy tailed distributions like Lévy, Student’s t, or Pareto
distribution with a broad range of parameters, as well as for distributions with “heavy
singularities” like the χ2 with 1 degree of freedom. For heavier tails the exponent needs
to be increased.

Error estimation. A question arises regarding how to measure the accuracy of the
results. Numerical interpolation and integration methods allow for error estimation,
and such estimates are available in PaCAL. Our error estimation method for interpo-
lation is based on comparing the interpolated values with function values provided
to the interpolator at each new interpolation point; for integration we use the stan-
dard approach of taking the difference between successive approximations as the error
estimate [18, 8].

However, we found that a very useful estimate of the accuracy is the integral of
the density over the whole real line (the “zeroth” moment). Since we take no explicit
steps to guarantee that the densities integrate to 1, the quantity |1 − ∫∞

−∞ f | is a
useful indicator of accuracy which takes into account the accumulation of error over
subsequent operations. We call this quantity the ‖·‖1 error. We noticed that the ‖·‖1
error is a good indicator of the order of magnitude of other types of errors such as the
‖ · ‖∞ error (see below) or the error in computation of the quantiles. Moreover, this
type of error better corresponds to statistical applications, where quantities involving
integrals of the density function (such as mean, median, and values of the c.d.f.) are
more important than the density function itself.

If, in a given case, the resulting p.d.f. has a closed form expression, we report
the maximum absolute difference, on a densely sampled set of points, between the
expression and the density computed by PaCAL. We call this difference the ‖ · ‖∞
error. Sometimes, statistics of the result, such as the mean or variance, are available
and can be compared with values computed numerically. Since the mean and variance
are computed using numerical integration, their accurate values are strong evidence

3Namely, recursively splitting the approximation interval or factoring the singularity out of the
function.
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that the density itself is also accurate. A rough verification is always possible using
sampling and histograms.

4. Experiments and examples. In this section we present examples of how
the library is used, some potential applications, and an experimental verification of
its accuracy. Let us begin with a short example session:

from pacal import *

C = NormalDistr(0,1) / NormalDistr(0,1)

P = C * C; Q = C / C

P.plot()

show()

The code divides two normally distributed r.v.’s obtaining a Cauchy r.v. assigned
to a variable C. Then the quotient Q and the product P of two Cauchy r.v.’s are com-
puted4 and their p.d.f.’s plotted. The result is shown in the upper half of Figure 4.1;
note the singularity at zero. The distribution also features heavy tails. The lower half
of the figure shows the difference between p.d.f.’s of P and Q, which should ideally be
zero, as the product and quotient of Cauchy r.v.’s have the same distributions [19].
The difference is always below 10−15 and often below 10−16. The ‖ · ‖1 error of C is
about 6 · 10−16 and for P and Q in the range of 10−13. We can now compute various
parameters of the distributions. For example, P.cdf(-1) and Q.cdf(-1) both yield
the c.d.f. of the distribution at −1 using numerical integration. The returned value
(0.25) is accurate to 13 decimal places. We now show some examples which demon-
strate the accuracy of the package on standard distributions used in the probability
theory.
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Fig. 4.1. P.d.f.’s of the product and quo-
tient of two independent Cauchy r.v.’s (com-
puted as a quotient of independent normal
r.v.’s). Difference between the two p.d.f.’s.
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Stable distributions. We start with sums of stable distributions for which the
closed forms of the results are known so we can compute the ‖ · ‖∞ error. Figure 4.2
shows the accuracy for sums of N i.i.d. r.v.’s for three stable distributions: normal,
Cauchy, and Lévy. The sums are generated by the following piece of code:

S_n = NormalDistr()

for i in range(N-1):

S_n += NormalDistr()

4Independence is always assumed. For example, in the expression C*C, both uses of C are treated
as independent r.v.’s.
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In the first line, NormalDistr can be replaced by CauchyDistr or LevyDistr as
appropriate. The accuracy remains very high for the normal and Cauchy distributions.
For Lévy, the ‖ · ‖1 accuracy remains high for N up to around 20. For larger values,
it degrades due to the very heavy tails of the distribution (O(x−1.5)). However, even
for N = 50, the ‖ · ‖1 error still corresponds to four correct decimal digits. The ‖ · ‖∞
error is also quite low. It can also be seen that the ‖ ·‖1 error is indeed a good general
indicator of accuracy. Computing the sum of 50 terms took 59.94 seconds for the
Normal distribution, 74.61 seconds for the Cauchy distribution, and 33.15 seconds for
the Lévy distribution.

Sum of uniformly distributed r.v.’s. Often, even when closed form expressions
are available, they are numerically unstable. Take the sum of N i.r.v.’s uniformly
distributed on [0, 1]. The closed form expression for the p.d.f. is given in [19] but
is numerically unstable. For N = 50, the values obtained from the closed form
expression blow up to the range of 1010 (using double precision arithmetic), while
PaCAL remains accurate and gives the mean of 25 and variance of 50/12, both with
13 correct decimal digits. Figure 4.3 shows how various types of error, including the
error estimates provided by PaCAL, change with the number of terms in the sum.
Exact values needed for computation of the ‖ ·‖∞ error were obtained from the closed
form solution using extended precision arithmetic. It is clear that the numerical error
of the explicit formula grows exponentially, while PaCAL remains accurate. It can also
be seen that PaCAL provides reasonable estimates of the ‖ · ‖∞ error and, again, that
the ‖ · ‖1 error is a good overall estimate of accuracy.

We have also compared the results with Mathematica, which allows for symbolic
computation of convolutions. For the sum of 16 terms, it took about 190 seconds
to obtain the closed form solution identical to the one given in [19] and used in our
experiment. Numerical evaluation of the expression gave, of course, the same, expo-
nentially growing, errors. For comparison, PaCAL took only 1.17 seconds to compute
the sum for 16 terms, and about 9.78 seconds for 50 terms. Of course, in most cases
closed form expressions do not exist, and the symbolic approach cannot be used at all.

Product of uniformly distributed r.v.’s. Another experiment demonstrating the
accuracy of PaCAL involves the product of N i.r.v.’s uniformly distributed on [0, 1].
The closed form solution is logN−1(1/x)/(N − 1)! and has a logarithmic singularity
at zero, the steepness of which increases with N . For example, for N = 20, the range
between zero and about 2.87 · 10−9 contains half of the total probability mass, while
the support of the density function is [0, 1]. Such steep singularities typically pose
severe numerical difficulties. Figure 4.4 shows the errors for the products of up to 20
uniformly distributed i.r.v.’s computed using PaCAL. While the relative ‖ · ‖∞ error
grows, several correct digits are available even for the difficult case of N = 20. Again,
the error estimates are correct, if somewhat conservative, and the ‖ ·‖1 error is a good
overall indicator. The computation took about 54.1 seconds.

Product of two normal r.v.’s. Figure 4.5 shows the product of two normally dis-
tributed r.v.’s, with variances equal to 1 and means, respectively, to 1, 2, and 3. All
resulting distributions have singularities at zero, but for factors with higher means,
the singularities contain very little probability mass (see the inset in the third chart).
Nevertheless, PaCAL correctly detected the singularities and interpolated them accu-
rately. Histograms are included in the figure for comparison.

4.1. Physical measurements. In this section we present applications to phys-
ical measurements, which frequently involve arithmetic operations on i.r.v.’s.
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The coefficient of thermal expansion. Consider measuring the coefficient of ther-
mal expansion K by measuring the initial length La of an element, its final length Lb,
and the temperature change ΔT . All quantities are measured with some error: lengths
with uniform error (e.g., using a digital meter) and the temperature with normal er-
ror (random noise is present in the measuring device). Suppose that La is uniformly
distributed on the interval [9.0, 10.0], Lb uniformly distributed on [11.0, 12.0], and ΔT
normally distributed with mean 2 and standard deviation of 1. The noise in the tem-
perature measurement is thus large. The distribution of K = (Lb − La)/(LaΔT ) =
(Lb/La − 1)/ΔT (the expression is restructured to avoid statistical dependency be-
tween the numerator and the denominator) is shown in Figure 4.6. The distribution
has a rather unexpected shape, very different from what a normal approximation
might produce. The ‖ · ‖1 error of the result is 8.79 · 10−14. Because the numerator
is always positive we can compare the probability of K < 0 with the probability of
ΔT < 0. Indeed, the expression K.cdf(0) - NormalDistr(1,2).cdf(0) gives the
result −4.14 · 10−14.

Combining independent measurements. Suppose that we have two measuring in-
struments which differ in accuracy and error distributions. Suppose now that we want
to combine the measurements of both devices such that the result is, in some sense,
most accurate.

Suppose the errors are additive, so that we can ignore the measurement values
themselves and concentrate only on the errors. Let E1 and E2 be r.v.’s representing
the measurement errors of the two devices. Assume, for example, that E1 is uniformly
distributed over [−1, 1] and E2 is normally distributed with zero mean and standard
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deviation 1 (this loosely corresponds to using a digital and an analog meter). Suppose
further that the measurements will be combined by taking a weighted mean, in which
case the combined error can be represented as Eα = αE1 + (1 − α)E2 for α ∈ [0, 1]
and the question is, Which value of α is optimal?

The answer depends on which measure of dispersion is used for the result. We con-
sider three measures: standard deviation std(E), median absolute deviation MAD(E),
and inter-quantile range iqrange0.025(E), that is, the difference between 0.975-quantile
and 0.025-quantile (of course, any other quantiles could be used). The last measure
corresponds to obtaining an as tight as possible 95% confidence interval and, in many
situations, is the most useful one.

The solution for the case of standard deviation is well known in measurement the-
ory and is easy to derive [14]. Minimization of iqrange is more difficult as, in general,
no closed form solutions exist. The MAD is also interesting as it is more robust than
standard deviation and (as does iqrange) exists for all distributions including power
laws. Here, again, no general closed form solutions exist.

Using PaCAL we can easily find best values of α by using the expression (alpha*E1

+ (1-alpha)*E2).iqrange(0.025) and plugging it into an arbitrary minimization
algorithm to find the optimum value of α. From a technical point of view, when our
library is used, minimizing the iqrange or MAD is just as easy as minimizing the
variance: simply replace the statistic to be computed in the expression passed to the
minimizer. The same is true for other error distributions, as long as the problem is
unimodal and the minimizer can obtain the solution.

Results of the optimization for the three dispersion measures are shown in Ta-
ble 4.1. It can be seen that minimizing each dispersion measure gives visibly different
results. Also, the proper choice of α results in a much narrower confidence inter-
val than combining the measurements for best variance. The difference in MAD is
also quite significant. The results for standard deviation agree exactly with theoretical
computations, and the ‖·‖1 errors are very small. Figure 4.7 shows error distributions
for the three optimal values of α.

4.2. Statistical applications.
The generalized χ2 distributions. Adding the χ2 r.v.’s with 1 degree of freedom

poses interesting challenges. The p.d.f. of the χ2(1) distribution has a singularity at
zero. After adding another independent χ2(1)-distributed r.v., we obtain the expo-
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Table 4.1

Mixtures of measurements minimizing the three dispersion measures: std, MAD, and iqrange0.025.

Minimal Minimal Minimal
std MAD iqrange0.025

Eα 0.75E1 + 0.25E2 0.645E1 + 0.355E2 0.869E1 + 0.130E2

std 0.500000000001 0.514511529168 0.518758649832
MAD 0.382868515019 0.366016941933 0.434874405386
iqrange0.025 1.83555677037 1.96758060442 1.77536580577

‖ · ‖1 error 0 2.22 · 10−16 4.44 · 10−16

nential distribution and the singularity disappears. However, after adding yet another
such variable, the singularity at zero reappears in the first derivative of the density.
Unless it is detected and handled, approximation will be poor. Overall the pattern
repeats, χ2(n) has no singularities for even n, and for odd n a singularity appears in
the ((n − 1)/2)th derivative. PaCAL handles the χ2 distribution very well; we will,
however, instead show a related, more interesting example.

The generalized χ2 distribution [7] is defined as λ0X0+
∑n

i=1 λiXi
2, where λi are

real coefficients and Xi are normally distributed with mean μi and variance 1. The
distribution has several important applications in statistics, e.g., computing quadratic
forms of normal variables. The p.d.f. of the distribution has no closed form repre-
sentation, and approximations have to be used. Using PaCAL, it is very easy to work
with the distribution. For example, when λ0 = 0, λ1 = 10, λ2 = 1, λ3 = 0.1, μ1 =
μ2 = 1, μ3 = 0, the p.d.f. is shown in Figure 4.8. Notice the singularity in the first
derivative at zero. After adding the initial normal term (with λ0 = 2 and μ0 = −5),
the singularity disappears (Figure 4.8). The integrals of both densities are within
5 · 10−16 from 1. To further assess the accuracy we computed means and variances of
both distributions and compared them with theoretical values. We obtained means
22.1 and 17.1, respectively, and variances 606.02 and 610.02 correct up to 15 deci-
mal places. Of course, one can compute any parameter of the distributions, such as
quantiles and values of the c.d.f.

Tail exponent estimation. The next problem we discuss is that of obtaining dis-
tributions of sample statistics for an estimator of tail exponents. Suppose our data
comes from a heavy tailed distribution with the p.d.f. behaving like x−α as x → ∞,
and we want to estimate the value of α based on an i.i.d. sample of size N . A popular
choice is Hill’s estimator given by the following equation [6]:

α̂ = 1 +N

[
N∑
i=1

log
Xi

Xmin

]−1

,

where Xi are the samples and Xmin > 0 a threshold; only samples satisfying Xi ≥
Xmin are used in the computation. Note that while we give no theoretical guarantees
for functions of the r.v.’s such as the logarithm, several of them have been implemented
and work very well in practice. Figure 4.9 shows the distribution of the estimator for
samples of various sizes taken from the Pareto distribution with parameter 1 (the tail
exponent equal to 2). It can be seen that the estimator is biased and that the bias
decreases with sample size. Using PaCAL, we can easily obtain confidence intervals
for the estimate; e.g., for N = 5 and significance level of 0.05 we get an interval
[1.5462, 3.5379].

Noncentral t-distribution. We now move to the noncentral t-distribution, which
is used, e.g., to assess the power of the t-test. We computed the p.d.f. and the c.d.f.
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of this distribution for df = 7 degrees of freedom and noncentrality parameter of
μ = 10.3 for some example values of x using R, SAS, Mathematica, and PaCAL. The
code used was very simple:

nonc_t = NormalDistr(mu, 1) / sqrt(ChiSquareDistr(df) / df)

print nonc_t.pdf(x), nonc_t.cdf(x)

Table 4.2 gives the computation errors. The exact values for comparison have been
obtained using extended precision arithmetic and an expression for the density of the
distribution involving hypergeometric functions.

Table 4.2

Error in computing the values of the p.d.f. and c.d.f. of the noncentral t-distribution with 7
degrees of freedom and noncentrality 10.3 using various statistical packages and PaCAL.

x = 5.1 x = −50 x = −1000
p.d.f. c.d.f. p.d.f. c.d.f. p.d.f. c.d.f.

PaCAL 6.94e-18 2.17e-19 5.22e-54 1.44e-53 8.26e-64 1.58e-62
SAS 3.21e-17 5.23e-17 4.42e-54 2.77e-54 —1 1.08e-62
R 1.70e-13 3.91e-13 1.55e-172 9.36e-142 5.14e-512 3.39e-142

Mathematica 1.04e-17 3.21e-17 1.54e-21 9.40e-40 5.14e-51 7.35e-49

1No value is returned due to error.
2Decreased accuracy is signaled.

It can be seen that computing the noncentral t-distribution is not trivial; R and
Mathematica fail for arguments further away from zero with error exceeding the com-
puted value by several orders of magnitude. SAS works very well, except for a corner
case in the computation of the p.d.f. PaCAL, despite being a generic package, did very
well in all cases, always obtaining excellent accuracy (on par with SAS), showing that
the package may be useful even for standard statistical distributions.

For the c.d.f., R uses an expansion into an infinite series of incomplete beta
functions given in [17]. We believe that the expansion becomes inaccurate for large
values of x. The example also shows that direct numerical integration can sometimes
be preferable to more complicated approaches.

Other examples. We have run tests on several other examples which, due to space
limitations, cannot be included in this paper. We have tested all examples (involving
independent variables) from [19], as well as several standard relationships between
distributions listed in statistical textbooks and Wikipedia, typically with excellent
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results. Our tests included limiting of sums of i.i.d. variables, ratio distributions, etc.;
see the PaCAL webpage and sources for more examples.

5. Conclusions and future research. This paper discussed a numerical ap-
proach to arithmetic on i.r.v.’s. Theoretical results, as well as a practical implementa-
tion, have been presented. On the theoretical side, very broad families of distributions
have been introduced which are closed under the four arithmetic operations and un-
der taking powers. The families are also shown to contain distributions which are
approximable with polynomials to arbitrary accuracy. The practical implementation
is shown to perform well even for difficult distributions with singularities and heavy
tails. The accuracy is often close to machine precision. We have shown nontrivial
applications to statistical inference and physical measurements.

There are several possible directions for future work. Some improvements can
be made to the implementation such as better handling of singularities at nonzero
locations (which currently incur a loss in accuracy) or the implementation of discrete
distributions. On the theoretical side, it would be desirable to construct families
of distributions closed also under taking functions of r.v.’s. An important case is
closure under the logarithm and exponentiation.5 A major topic of future research
are operations on dependent r.v.’s. In the example involving the coefficient of thermal
expansion it was possible to work around the dependency, but this is not always the
case. Extension to random processes would also be very useful.

Appendix: Proofs of the theorems. We begin by proving results on proper-
ties of the densities in Fk.

Proof of Theorem 2.3. We will give the proof only for x → ∞ and even i. The
remaining cases are analogous. It is easy to see that f (i) must be nonnegative and
nonincreasing. We now have, for x ≥M ,

‖f‖1 ≥
∫ x

−∞
f(y) dy =

∫ x

−∞
dy

∫ y

−∞
dz1 · · ·

∫ zi−1

−∞
f (i)(zi) dzi

=
1

i!

∫ x

−∞
(x− y)if (i)(y) dy

≥ f (i)(x)

i!

∫ x

M

(x− y)i dy =
f (i)(x)

i!(i+ 1)
(x−M)i+1 =

f (i)(x)

(i + 1)!
(x −M)i+1,

where we first express f as a repeated integral of f (i), replace the repeated integration
with a single integral using the Cauchy formula for repeated integration [11], and apply
the monotonicity of f (i) to factor it out of the integral (recall that i is even so the
integrand is nonnegative). Consequently

f (i)(x) ≤ (i + 1)!‖f‖1
(x −M)i+1

= O

(
1

xi+1

)
as x→ ∞.

Lemma 6.1. If f ∈ Fk with potential singularities p1, . . . , pn, then, for every
ε > 0 and 0 ≤ i ≤ k, |f (i)| is bounded on the set (−∞, p1 − ε] ∪ [p1 + ε, p2 − ε] ∪ · · · ∪
[pn−1 + ε, pn − ε] ∪ [pn + ε,∞).

The lemma is an immediate consequence of the extreme value theorem and as-
sumptions A.1 and A.3.

5The families Fk are not closed under logarithms. To see this, construct a density consisting of
rectangles, the height of which decreases as 1/x.
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Before proceeding to the proof of the main results, let us first restate basic results
on convolutions [10, Propositions 8.8 and 8.10], which will frequently be used below.

Lemma 6.2. If f ∈ L∞ and g ∈ L1, then f ⊕ g is bounded and uniformly
continuous, and ‖f ⊕ g‖∞ ≤ ‖f‖∞‖g‖1 (Young’s inequality).

Lemma 6.3. If f ∈ L∞, g ∈ L1, and f ∈ Ck, then (f ⊕ g)(i) = f (i) ⊕ g.
Note that g need not be differentiable for the result to hold. However, the deriva-

tives of f need to be continuous on the whole real line, which complicates our proofs
as we assume only piecewise continuity. The strategy we will take is cutting the den-
sities into smooth pieces to which Lemma 6.3 can be applied. The following result
shows how such cuts can be obtained and gives some of their properties.

Lemma 6.4. Let f be a function. Let K = [p− δ
2 , p+

δ
2 ] and V = (p− δ, p+ δ)

for some p, δ ∈ R and δ > 0. There is a function ψp,δ such that
1. if f is k times continuously differentiable on V , then ψp,δf ∈ Ck, and for all

0 ≤ i ≤ k,

(ψp,δf)
(i)(x) =

{
0 for x �∈ V,

f (i)(x) for x ∈ K;

2. if f is k times continuously differentiable on R \K, then (1 − ψp,δ)f ∈ Ck,
and for all 0 ≤ i ≤ k,

((1− ψp,δ)f)
(i)(x) =

{
0 for x ∈ K,

f (i)(x) for x �∈ V ;

3. if, in addition, |f (i)(x)| = O( 1
|x−p|i+1 ) for all 0 ≤ i ≤ k on some set A,

then |(ψp,δf)
(i)| and |((1 − ψp,δ)f)

(i)| are O( 1
|x−p|i+1 ) on A. The bound is

independent of δ.
Proof. By Theorem 1.4.1 in [13], there exists a function ψp,δ ∈ C∞ such that

0 ≤ ψp,δ ≤ 1,

ψp,δ(x) =

{
0 for x �∈ V,

1 for x ∈ K,

and |(ψp,δ)
(i)(x)| = O

(
1
δi

)
on V \K; i.e. the derivatives of ψp,δ are bounded, and the

bound depends only on δ. Furthermore, for all i > 0, ψp,δ
(i) is zero outside of V \K.

We will show that ψp,δ satisfies the requirements of the lemma.
Since f is k times continuously differentiable on V and ψp,δ ∈ C∞, ψp,δf must

be in Ck. The equality in part 1 follows, since ψp,δf is equal to f on K and is zero
outside of K. The proof of part 2 is analogous.

For part 3 we need to split the set A into three parts. On A ∩K, ψp,δf = 0, and
the result is obvious. On A ∩ (R \ V ), ψp,δf = f , and the bound follows from the
assumption on f . The part on A ∩ (V \K) is more difficult.

For i = 0 we have |ψp,δf | ≤ |f | = O( 1
|x−p|). Notice that since

δ
2 ≤ |x− p| ≤ δ, for

x ∈ V \K, |ψp,δ
(i)| = O( 1

δi ) = O( 1
|x−p|i ) on A ∩ (V \K). Using the Leibniz rule for

the derivative of the product, we get for x ∈ A ∩ (V \K)

|(ψp,δf)
(i)(x)| ≤

i∑
j=0

(
i

j

)
|ψp,δ

(j)(x)| · |f (i−j)(x)| = O
(
1/|x− p|i+1

)
.

The proof for 1− ψp,δ is analogous.
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Sum of i.r.v.’s. We now proceed to prove Theorem 2.1 for addition. The idea is as
follows: using Lemma 6.4, we will smoothly cut out problematic parts of the densities
(e.g., containing singularities), demonstrate that the convolution of the remaining
parts shows the desired behavior (e.g., continuity), and argue that the support of the
convolution of the offending parts, which have been cut out, can be made arbitrarily
small. In the next lemma, the offending parts correspond to f1 and g1.

Lemma 6.5. Let f, g ∈ L1 and ‖f‖1, ‖g‖1 ≤ 1. Further, let f0, f1, g0, g1 be
functions such that f = f0 + f1, g = g0 + g1, f0, g0 ∈ Ck. Then

(6.1) f ⊕ g = f0 ⊕ g + f1 ⊕ g0 + f1 ⊕ g1.

If, in addition, t �∈ supp(f1 ⊕ g1), then for all 0 ≤ i ≤ k,

(6.2) (f ⊕ g)(i)(t) ≤ ‖f0(i)‖∞ + ‖g0(i)‖∞.
Proof. Equation (6.1) follows from distributivity of convolution. For t �∈ supp(f1⊕

g1), the term f1 ⊕ g1 can be ignored, and the following statements hold:

(f ⊕ g)(i)(t) = (f0
(i) ⊕ g + f1 ⊕ g0

(i))(t) ≤ ‖f0(i) ⊕ g + f1 ⊕ g0
(i)‖∞

≤ ‖f0(i)‖∞‖g‖1 + ‖f1‖1‖g0(i)‖∞ ≤ ‖f0(i)‖∞ + ‖g0(i)‖∞,(6.3)

where the equality follows from Lemma 6.3 and the fact that f0, g0 ∈ Ck, the first
inequality follows from the definition of the ‖ · ‖∞ norm, the second inequality follows
from the triangle inequality and Young’s inequality, and the final inequality follows
from the assumption on ‖f‖1 and ‖g‖1.

To prove Theorem 2.1(1), we need to show that if f and g satisfy assumptions A.1–
A.3, so does f ⊕ g. This is done in the following two lemmas.

Lemma 6.6. Let f, g be p.d.f.’s satisfying assumptions A.1 and A.3. Then f ⊕ g
satisfies A.3.

Proof. Let t0 > 0 be a constant such that both f and g satisfy the bound in
assumption A.3 on (−∞,−t0] ∪ [t0,∞). Take any t such that |t| > 8t0 and set

p = q = 0, δ = |t|
4 . Let

(6.4) f0 = (1− ψp,δ)f, g0 = (1− ψq,δ)g, f1 = ψp,δf, g1 = ψq,δg,

where the ψp,δ is given in Lemma 6.4. The reader should bear in mind that the
functions depend on the chosen δ (and thus on t) even though it is not explicitly
indicated. Since t (and thus δ) has been chosen large enough for f and g to satisfy
the bound in assumption A.3 on the supports of f0 and g0, respectively, by Lemma 6.4

we have f0
(i)(x), g0

(i)(x) = O( 1
|x|i+1 ), and since supp(f0) = supp(g0) = (−∞,− |t|

8 ] ∪
[ |t|8 ,∞), the bound attains its maximum at ± |t|

8 . Therefore ‖f0(i)‖∞, ‖g0(i)‖∞ =
O( 1

|t|i+1 ). Note that t �∈ supp(f1 ⊕ g1) = [− t
2 ,

t
2 ], and apply Lemma 6.5 to get

(f ⊕ g)(i)(t) ≤ ‖f0(i)‖∞ + ‖g0(i)‖∞ = O( 1
|t|i+1 ).

Lemma 6.7. If p.d.f.’s f and g with potential singularities p1, . . . , pn and q1, . . . , qm,
respectively, satisfy assumptions A.1 and A.2, then so does f ⊕ g with potential sin-
gularities pi + qj, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proof. If f has no potential singularities, then f ∈ Ck, and for all 0 ≤ i ≤ k,
(f ⊕ g)(i) = f (i) ⊕ g (Lemma 6.3), which is bounded and continuous since f (i) is
bounded, and g ∈ L1 (Lemma 6.2). Thus f ⊕ g satisfies A.1 and, since it has no
potential singularities, trivially also A.2.
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Let us now assume that f and g both have exactly one potential singularity,
respectively, p and q. Fix a δ > 0. Let f0, f1, g0, g1 be defined as in (6.4). The reader
should bear in mind that the functions depend on the chosen δ even though it is
not explicitly indicated. Notice that p, q, and δ are such that supports of f1 and g1
contain the respective potential singularities of f and g, while f0, g0 are well behaved,
belonging to Ck by Lemma 6.4.

We begin by proving that f ⊕ g satisfies assumption A.1. Using (6.1), we get
f ⊕ g = f0 ⊕ g + f1 ⊕ g0 + f1 ⊕ g1. Since f0, g0 ∈ Ck, by Lemmas 6.3 and 6.2,

f
(i)
0 ⊕ g + f1 ⊕ g

(i)
0 is continuous. On the other hand, f1 ⊕ g1 need not be bounded,

continuous, or differentiable, but its support is contained in [p + q − 2δ, p+ q + 2δ].
Since δ can be made arbitrarily small, (f ⊕ g)(i) is continuous at every point different
from p+ q, which completes the proof for assumption A.1.

Let us now prove the asymptotic behavior around potential singularities. To this

end, take any t �= p + q, set δ = |t−(p+q)|
4 , and split f and g into f0, f1 and g0, g1,

respectively, using (6.4). Notice that δ has been chosen such that after splitting
f ⊕ g according to (6.1), t lies outside supp(f1 ⊕ g1), and, according to Lemma 6.5,

(f ⊕ g)(i)(t) ≤ ‖f0(i)‖∞ + ‖g0(i)‖∞.

We need to bound ‖f0(i)‖∞ as t → p + q. Assume that t is close enough to
p + q for assumption A.2 to hold for f on A = (p − δ, p + δ). By Lemma 6.4,

|f0(i)(x)| = O( 1
|x−p|i+1 ) for x ∈ A. Outside of A, f0 = f and |f0(i)(x)| is bounded

either by a constant (Lemma 6.1) or by O( 1
|x−p|i+1 ) (assumption A.2). Clearly, for δ

small enough (that is, for t close enough to p+q), the bound O( 1
|x−p|i+1 ) will dominate.

On the support of f0, the bound is maximized for x = p± δ
2 . The same holds for g0,

and ‖f0(i)‖∞ + ‖g0(i)‖∞ = O
(

1
δi+1

)
. Substituting δ = |t−(p+q)|

4 completes the proof
for this part.

If f has more than one potential singularity, we need to split f smoothly into f0
and f1, . . . , fn such that f = f0 + f1 + · · · + fn, f0 ∈ Ck, and for 1 ≤ i ≤ n, the
support of fi contains exactly one potential singularity pi. The existence of such a
split follows from [13, Theorem 1.4.5]. Analogously g is split into g0 and g1, . . . , gm,
giving

(6.5) f ⊕ g =

n∑
i=0

m∑
j=0

fi ⊕ gj .

Each fi, gi has at most only one potential singularity and satisfies assumptions A.1
and A.2. By the discussion above, so does each fi ⊕ gj with potential singularity
at pi + qj . The sum (6.5) clearly satisfies those assumptions as well, with potential
singularities pi + qj , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Product of i.r.v.’s. Our proof for the product will be based on the fact that
X · Y = exp(logX + log Y ). We begin by proving some technical lemmas.

Lemma 6.8. Let p ∈ R, f(x) = O( 1
|x−p|i ) in some neighborhood [p−δ, p)∪(p, p+δ]

of p, and let g be a differentiable, continuous function on some interval [a, b], such
that g([a, b]) = [p − δ, p+ δ] and 0 < m < |g(1)(y)| on [a, b], where m is a constant.
Then

f(g(y)) = O
(|y − p′|−i

)
on [a, b] \ {p′}, where p′ ∈ [a, b] satisfies p = g(p′).
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Proof. First note that since g is invertible on [a, b], such a p′ always exists and
is unique and equal to g−1(p). Since p′ ∈ [a, b], the mean value theorem states that
for all y ∈ [a, b] we have g(y)− g(p′) = g(1)(ξ)(y − p′) for some ξ ∈ [a, b]. Let us now
substitute x = g(y) in the assumed bound on f(x). Notice that for all y ∈ [a, b]\{p′},
g(y) ∈ [p− δ, p) ∪ (p, p+ δ], so the bound can be applied. We get

f(g(y)) = O
(|g(y)− g(p′)|−i

)
= O

(
|g(1)(ξ)(y − p′)|−i

)
= O

(|y − p′|−i
)
.

The last inequality follows from the assumption that |g(1)(ξ)| > m for ξ ∈ [a, b].
The next lemma gives the nth derivatives of several nested functions.
Lemma 6.9. The following expressions hold for all n ≥ 1:
1. (f(ex))(n) =

∑n
i=1 βif

(i)(ex)eix,

2. (f (xα))
(n)

=
∑n

i=1 βif
(i) (xα)xiα−n,

3. (f(log x))
(n)

= 1
xn

∑n
i=1 βif

(i)(log x),

4. (xf(x))
(n)

= xf (n)(x) + nf (n−1)(x)
for some constants βi (different for every part of the lemma). In part 2, if α ∈ N and
�n
i � ≥ α+ 1, then βi = 0.

Proof. The proof (except for the last part) will use Faà di Bruno’s formula [15]
for the nth derivative of the composition of two functions

(6.6) (f(g))(n) =
∑
π∈P

f (|π|)(g(x))
∏
B∈π

g(|B|)(x),

where P is the set of all partitions of the set {1, . . . , n}, |π| is the number of blocks
in a partition π, and |B| is the size of partition block B.

For part 1, since all derivatives of ex are equal to ex, we have

(f(ex))(n) =
∑
π∈P

f (|π|)(ex)
∏
B∈π

ex =
∑
π∈P

f (|π|)(ex)e|π|x =

n∑
i=1

βif
(i)(ex)eix,

where βi is the number of partitions of {1, . . . , n} with i blocks. For part 2,

(f (xα))
(n)

=
∑
π∈P

f (|π|) (xα)
∏
B∈π

(xα)
(|B|)

=
∑
π∈P

f (|π|) (xα)
∏
B∈π

c|B|xα−|B|

=
∑
π∈P

f (|π|) (xα) cπx|π|α−n =

n∑
i=1

βif
(i) (xα)xiα−n,

noting that
∑

B∈π |B| = n and denoting c|B| = α(α − 1) · · · (α − |B| + 1), cπ =∏
B∈π c|B|, βi =

∑
π∈P,|π|=i cπ. If |π| = i, then there is a block B ∈ π with |B| ≥ �n

i �.
Clearly, if α ∈ N and |B| ≥ �n

i � ≥ α + 1, then c|B| = 0, and consequently cπ = 0.
Since this is true for all partitions with i blocks, βi must be equal to zero. The proof
of part 3 is very similar to that of part 2 and is omitted. Part 4 follows from the
Leibniz rule for differentiation.

Lemma 6.10. Let f, g, h be functions. If g and h are n times continuously
differentiable at some point p and f is n times continuously differentiable at g(p),
then h(x)f(g(x)) is n times continuously differentiable at p.

Proof. The continuity of (f(g))(i) at p for 0 ≤ i ≤ n follows from (6.6) after taking
into account the continuity of composition and product of continuous functions. The
continuity of [h(x)f(g(x))](i) at p now follows from application of the Leibniz rule for
differentiation and the continuity of the product of continuous functions.
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Lemma 6.11. Let |f (i)(x)| = O( 1
|x−p|i+1 ) in some neighborhood [p−δ, p)∪(p, p+δ]

of p for 0 ≤ i ≤ n, and let g and h be n times continuously differentiable on some
interval [a, b], such that g([a, b]) = [p − δ, p + δ] and 0 < m < |g(i)(y)| on [a, b] for
0 ≤ i ≤ n, where m is a constant. Then |[h(y)f(g(y))](i)| = O(|y − p′|−(i+1)) on
[a, b] \ {p′}, where p′ ∈ [a, b] satisfies p = g(p′).

Proof. Since g and h are n times continuously differentiable on [a, b], they are also
bounded on that interval. Applying (6.6) to (f(g))(i) together with Lemma 6.8 and
the fact that |g(i)(y)| is upper bounded by a constant on [a, b] proves that (f(g))(i)

satisfies the conclusion of the lemma for 0 ≤ i ≤ n. To see that multiplying by h
does not change the conclusion, use the Leibniz rule for differentiation and take into
account the boundedness of h(i) on [a, b].

Lemma 6.12. If f ∈ Fk with potential singularities p1, . . . , pn, then exf(ex) is
in L1 and satisfies assumptions A.1 and A.2 for the same value of k, with potential
singularities at log pi for each pi > 0. Moreover, (exf(ex))(i) = O(1) for x → ±∞,
0 ≤ i ≤ k.

Proof. Note that only the nonnegative part of the support of f affects the result,
so without loss of generality we can assume that all potential singularities of f are
nonnegative. Substituting u = ex, we get

∫∞
−∞ exf(ex) dx =

∫∞
0
f(u) du, so exf(ex) ∈

L1. The fact that exf(ex) satisfies A.1 and A.2 follows immediately from Lemmas 6.10
and 6.11.

To prove the asymptotic behavior at ±∞, let M be a constant such that the
bounds in A.3 hold for f on [M,∞), and let δ be a constant such that the bounds
in A.2 hold for f on (0, δ] (note that the bounds hold regardless of whether f has a
potential singularity at zero). Thus |f (i)(x)| = O

(
1

xi+1

)
on (0, δ] ∪ [M,∞), and for

every 0 ≤ i ≤ k we have |e(i+1)xf (i)(ex)| = O(1) on (−∞, log δ] ∪ [logM,∞). We
now extend this result to (exf(ex))(i). The case i = 0 is trivial. For i > 0, denote
z(x) = xf(x), and use parts 1 and 4 of Lemma 6.9 to get

(exf(ex))(i) = (z(ex))(i) =

i∑
j=1

βjz
(j)(ex) · ejx

=

i∑
j=1

βje
(j+1)xf (j)(ex) + jβje

jxf (j−1)(ex).(6.7)

Since equation (6.7) is a weighted sum of terms of the form e(i+1)xf (i)(ex), the result
follows.

Lemma 6.13. Let f and g be p.d.f.’s satisfying assumption A.1, such that
f (i), g(i) = O(1) as x → ±∞ for 0 ≤ i ≤ k. Then (f ⊕ g)(i)(t) = O(1) as t → ±∞
for 0 ≤ i ≤ k.

The proof is analogous to the proof of Lemma 6.6 and is omitted. Keep in mind
that f, g ∈ L1 so the convolutions remain bounded. We are now ready to prove our
main result for products of i.r.v.’s.

Lemma 6.14. Let f and g be p.d.f.’s with potential singularities at p1, . . . , pn
and q1, . . . , qm, respectively, satisfying assumptions A.1–A.3. Then f�g also satisfies
assumptions A.1–A.3 and has potential singularities at 0 and at piqj for 1 ≤ i ≤ n,
1 ≤ j ≤ m.
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Proof. Notice that it is sufficient to prove the result for nonnegative r.v.’s, that
is, to assume that f(x), g(x) = 0 for x < 0. Otherwise, due to distributivity of � with
respect to pointwise addition of functions, each distribution is split into positive and
negative parts which are multiplied separately and added; see [19] for details.

Using the nonnegativity of supports of f and g and substituting x = eu, we get,
for every t > 0,

(f � g)(t) =

∫ +∞

0

1

x
f

(
t

x

)
g(x) dx =

∫ +∞

−∞
e−uf(elog t−u)g(eu)eu du

= e− log t

∫ +∞

−∞
elog t−uf(elog t−u)eug(eu) du =

1

t
h(log t),(6.8)

where h(t) = (euf(eu)) ⊕ (eug(eu)). By Lemmas 6.12 and 6.7, h satisfies assump-
tions A.1 and A.2 with potential singularities at log piqj for all pi > 0, qj > 0.
Applying Lemmas 6.10 and 6.11 to 1

th(log t), we conclude that f � g satisfies as-
sumptions A.1 and A.2 with potential singularities piqj for all pi > 0, qj > 0 outside
the neighborhood of zero.

What remains to be demonstrated is asymptotic behavior of (f�g)(t) around zero
(assumption A.2 for the potential singularity at zero) and at infinity (assumption A.3).
We apply the Leibniz rule for differentiation of the product and Lemma 6.9(3):

(f � g)(i)(t) =

[
1

t
h(log t)

](i)
=

i∑
j=0

(
i

j

)(
1

t

)(i−j)

(h(log t))
(j)

=

i∑
j=0

(
i

j

)
ci−j

ti−j+1
(h(log t))

(j)
=

ci
ti+1

h(log t) +

i∑
j=1

(
i

j

)
ci−j

ti−j+1

1

tj

j∑
l=1

βlh
(l)(log t)

=
1

ti+1

i∑
l=0

γlh
(l)(log t),

(6.9)

where γl and ci are some constant coefficients. Let us now look at the terms h(l)(log t).
By Lemmas 6.12 and 6.13, h(l)(t) = O(1) for t→ ±∞, 0 ≤ l ≤ k. As t→ ∞, we have
log t → ∞, and |h(l)(log t)| = O(1). The same is true when t → 0+ and log t → −∞.
Multiplying by 1

ti+1 gives the desired result.
Powers of r.v.’s. Before completing the proof of Theorem 2.1 we need to prove

Theorem 2.2.
Proof of Theorem 2.2. We consider only the case when xr is an increasing function

of x. When xr is decreasing, the proof is analogous. When the function is not
monotone, negative and positive values of x are considered separately and added
using (1.5).

Let α = 1/r. The p.d.f. of Xr, as given by (1.5), is αxα−1f(xα). By Lemmas 6.10
and 6.11 it satisfies assumptions A.1 and A.2, except the neighborhood of zero, where
xα−1 may have a singularity. To demonstrate the asymptotic behavior around zero
and toward plus and minus infinity, use the Leibniz rule for the derivative of the
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product, followed by application of Lemma 6.9(2), to get

(
αxα−1f(xα)

)(i)
= α

i∑
j=0

(
i

j

)(
xα−1

)(i−j)
(f(xα))

(j)

= α

i∑
j=0

(
i

j

)
ci−j

j∑
l=1

βlx
α(l+1)−(i+1)f (l)(xα)(6.10)

for some constants ci−j and βl. Assuming |f (l)(x)| = O
(

1
xl+1

)
, we get

xα(l+1)−(i+1)f (l)(xα) = O

(
xα(l+1)−(i+1)

xα(l+1)

)
= O

(
1

xi+1

)
.

Since we assumed xα to be increasing, it maps the neighborhoods of zero, plus and
minus infinity, into themselves, which means that the bound on |f (l)(xα)| assumed
above does indeed hold due to assumptions A.2 and A.3. Note that the bound also
holds if f has no potential singularity at zero, since it must then be bounded together
with its derivatives of order up to k.

Since assumptions A.2 and A.3 hold for each term in (6.10), they also hold for
αxα−1f(xα).

We are now ready to prove the main theorem of the paper.
Proof of Theorem 2.1. The part for addition follows from Lemmas 6.7 and 6.6,

and the part for multiplication from Lemma 6.14. For subtraction it suffices to note
that f � g = f ⊕ (g(−x)).

For division of two independent r.v.’s X and Y , write X/Y as X · (Y −1). Now,
the density of Y −1 is in Fk by Theorem 2.2 for r = −1. Applying the result for
products shows that the density of X/Y is also in Fk.

Approximation. We now prove Theorem 2.4 on approximability of distributions
in Fk. Let us first recall some results from approximation theory.

Lemma 6.15. The following statements hold:
1. If f is continuous on [a, b], then for every ε > 0 there exists a polynomial P

such that |f − P | ≤ ε on [a, b].
2. If f has a continuous derivative on [a, b], then the polynomial P can be ob-

tained using Chebyshev expansion.
3. Let f (i) be continuous on [a, b] for all 0 ≤ i ≤ k, k > 1. Then the error of

the Chebyshev approximation decreases as O(N−k+1), where N is the degree
of the approximating polynomial.

The first part follows from the Stone–Weierstrass theorem, the second follows
from [18, Theorem 5.7], and the third is Theorem 5.14 in [18].

Proof of Theorem 2.4. Consider a p.d.f. f ∈ Fk for some k ≥ 0 with potential
singularities p1 < · · · < pn. We begin by defining an appropriate approximating
function f̃ ∈ FA (see section 2.1). Let ai = pi for 1 ≤ i ≤ n, and take α > k. For
0 < i < n, let Pi be a polynomial approximation of f on [pi + δ, pi+1 − δ]. The proof
in this case follows immediately from Lemma 6.15. For the infinite intervals, let P0

be a polynomial approximation on [0, (1 + δ)−1/α] of

h0(u) =

{
f(a1 + 1− 1

uα ) for 0 < u ≤ 1,

0 for u = 0,
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and let Pn be a polynomial approximation on [0, (1 + δ)−1/α] of

hn(u) =

{
f(an − 1 + 1

uα ) for 0 < u ≤ 1,

0 for u = 0.

The approximation intervals have been chosen such that they are mapped onto (−∞,
a1 − δ] and [an + δ,∞), respectively. Note that the arguments of f are inverses of the
expressions in the definition of FA. Thus, if P0(u) approximates h0(u) with error ε
for u ∈ [0, (1 + δ)−1/α], then, for every x ∈ (−∞, a0 − δ], we have

|f̃(x) − f(x)| = |f̃(a1 + 1 + u−α)− f(a1 + 1 + u−α)| = |P0(u)− h0(u)| ≤ ε.

An analogous result holds for the positive tail. It now suffices to show, using Lemma
6.15, that a suitable P0 can be constructed for h0. For this, let us find the maximum

value of l for which h
(l)
0 is continuous on [0, (1 + δ)−1/α]. The only difficult part is

continuity at 0, for which we need limu→0 h
(l)
0 (u) = 0. Obviously l ≤ k. The case

l = 0 is trivial. Using point 2 of Lemma 6.9 and assumption A.3, we get for 1 ≤ l ≤ k
and u→ 0

h
(l)
0 (u) =

l∑
j=1

βjf
(j)

(
a1 + 1 + u−α

)
u−jα−l =

l∑
j=1

βjO
(
uα(j+1)

)
u−jα−l = O

(
uα−l

)
,

and to get limu→0 h
(l)
0 (u) = 0 we need α− l > 0 and l ≤ α − 1. Thus h0 has at least

min(α− 1, k) continuous derivatives, and the result follows from Lemma 6.15(3). The
proof for the right tail is analogous.
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[15] W. P. Johnson, The curious history of Faà di Bruno’s formula, Amer. Math. Monthly, 109
(2002), pp. 217–234.

[16] J. E. Kolassa, Series Approximation Methods in Statistics, Springer-Verlag, New York, 2006.
[17] R. V. Lenth, Algorithm AS 243: Cumulative distribution function of the non-central t distri-

bution, Appl. Statist., 38 (1989), pp. 185–189.
[18] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca

Raton, FL, 2003.
[19] M. D. Springer, The Algebra of Random Variables, John Wiley & Sons, New York, Chichester,

Brisbane, 1979.
[20] L. N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis?, SIAM Rev., 50 (2008),

pp. 67–87.
[21] J. Waldvogel, Fast construction of the Fejér and Clenshaw-Curtis quadrature rules, BIT, 46

(2006), pp. 195–202.
[22] R. C. Williamson, Probabilistic Arithmetic, Ph.D. thesis, Department of Electrical Engineer-

ing, University of Queensland, St. Lucia, Queensland, Australia, 1989.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


