
Artificial Intelligence 9999
ISBN 666-666-666, pages 1–18

Issues of Polish Question Answering

Piotr Przybyła

Institute of Computer Science, Polish Academy of Sciences,
ul. Jana Kazimierza 5, 01-248 Warszawa, Poland,
P.Przybyla@phd.ipipan.waw.pl

Abstract
In this paper, perspectives for building a Polish question answering (QA) system
are considered. It begins with an explanation of an increasing demand for such
systems, along with inevitable difficulties and usage examples. Then, a question
answering task is defined as a point of reference and for future evaluation. Existing
solutions of similar tasks for English, evaluated during text processing conferences,
are presented along with their common architectural scheme. To assess the applica-
bility of those solutions to Polish, their language dependence is discussed, preceded
by an outline of distinctive features of Slavonic languages, especially Polish, and
their impact on text processing. Some already existing QA solutions for Polish are
also enumerated.
Keywords: question answering, natural language processing, Polish, information
extraction

1 Introduction

Question Answering (QA) is a challenge present in computer science since its
beginnings. It is a natural human desire: to have a purely automatic tool that will
help in solving problems with information just like mechanical tools solve problems
with matter. The invention of first computers sparked off numerous visions of
talking machines, playing important roles in popular culture. It seemed to be the
most obvious direction of development for electronic brains. From that point of
view, the following definition could be used:

Definition 1 Question Answering System is a computer system, capable of
addressing questions formulated by a human user in his natural language.

Why this feature of computer systems is so important for users and so ne-
glected by their designers? To understand it, one needs to realise that computers
think in their own way, and the burden of translating the problem to a computer-
understandable way usually lies on user’s shoulders. The poorer are the computer
skills of the user, the harder it becomes.

For example consider the task of searching the WWW in order to find a specific
piece of information. This service is a basic tool for Internet users, including the
least experienced ones. However, designing a successful query involves obeying
certain rules. Some of them are counterintuitive (e.g. choosing words which will



2 Piotr Przybyła

not appear in web pages that will not contain desired information), some involve
additional search tools. Unfortunately, most users are not aware of them, which
leads to the following results:

• every day, 3 million queries to the Yandex (a Russian search engine) are plain
questions [1] (How to lose weight? is the most popular),

• 80% of the users do not use boolean operators at all [2],

• other advanced features of search engines (wildcards, etc.) are also seldom
used.

This type of problems are encountered whenever knowledge stored in a computer
system needs to be accessed by a person, who is not qualified enough (although
he may be an expert in his own field), e.g. in medical systems, customer services
or libraries.

In fact, almost all applications could benefit from adding question answering
elements. Even regarding those with low level of interaction with user, such as
weather modelling or engineering calculations, an underlying problem could be
formulated as simple questions in a natural language, like Will it rain tomorrow?
and Is this bridge able to hold the expected load?, respectively. More about such
modules could be found in [3].

1.1 Difficulties

Now, let us focus on another side of the problem: why so desirable feature is so
rarely implemented in commercial products? That is because its realisation is very
hard; Shapiro describes it as AI-complete. It means that solving the problem of the
area is equivalent to solving the entire AI problem - producing a generally intel-
ligent computer program [4]. Features that make the natural language processing
(especially question answering) so challenging are the following:

• contextuality: The meaning of every language element (a word, a sentence)
depends highly on its neighbourhood. It makes Information Retrieval (IR) and
Information Extraction (IE) hard, as information obtained by a user may be
different than expected because of its context. Usually, in those cases, systems
provide the user with additional information about the context, such as text
snippets in web search engines. The most problematic contextual elements
i.e. ellipses1 and anaphoric expressions2 may be dealt with in QA systems by
specialized modules, called anaphora resolution solutions [5].

• ambiguity: Sometimes even while knowing a context of a particular sentence,
we still have a number of possible ways to understand it. It could be unintended,
but also may be a deliberate act of an author in order to influence a recipient,
e.g. by suggesting instead of stating explicitly. Usually, it is assumed that such
situations should not appear in well-formed, informative texts.

1Ellipsis is an omission of a word (or more) in a text, which could be easily determined from
a context.
2Anaphora is an expression with a certain word (or a whole group of words) replaced by

another word, usually a pronoun.



Issues of Polish Question Answering 3

• imprecision: It seems obvious that human utterances lack the precision of,
say, mathematical formulae or numerical computations. However, it is not a
problem as long as questions which are to be answered using this knowledge
are of similar precision. Again, choosing a textual information source adequate
to our needs is crucial.

• implicitness: In communication between humans, a message being transferred
is not stated explicitly, but rather derived from all the knowledge common
for its sender and receiver, which words are only a part of. Other relevant
knowledge sources include gesticulation, facial expression and tone of voice.
Unfortunately, even avoiding the above by working with digital texts, we still
have to take into account another hidden source of knowledge: a common
sense. For example, let us consider the following pair of sentences: Elephants
ate all the fruits yesterday. They seem very content with it. To understand it,
we need to resolve the anaphora they in the second sentence. Unfortunately,
it is not possible on syntactic level; elephants and fruits are both acceptable
candidates in this situation. Obviously, any human reader knows that he should
choose the elephants, as the fruits are unable to have any feelings, including
the contentness. However, this information is not provided by the context; it’s
also highly unlikely to appear in any conventional textual source, such as a
newspaper archive or an encyclopaedia. It is expected to be a part of world
understanding, usually called commonsense knowledge, including which in a
computer system poses a great challenge.

The problems of contextuality and implicitness in a QA task are easier to deal with
when using appropriate linguistic tools; some of them are discussed in section 4.4.
A careful choice of source texts for QA helps to overcome difficulties with ambiguity
and imprecision, see section 2.2.

1.2 Paper aim and organization

In section 2 a clear, language-independent problem definition is presented to focus
on core problems, namely the natural language processing (NLP). Next, in section
3, solutions and approaches present in the literature are enumerated including a
common architectural scheme with detailed explanation of its elements. Section 4
is devoted to discussing the relevancy of previous statements to the Slavonic lan-
guages, especially Polish. In particular, a few existing QA solutions are presented
and the architectural scheme from section 3.3 is analysed to identify language-
dependent elements and discuss their availability in Polish. Section 5 concludes
the paper.

2 Problem definition

In the previous section, the motivation for building QA systems was outlined —
a huge number of computer systems could improve their users’ satisfaction by
implementing natural language communication. The purpose of this section is to
define a QA problem in order to focus our attention on its most important features
and set aside problems related with a particular use. Generally, the task which is to



4 Piotr Przybyła

be defined here is called an open domain factoid question answering using
text corpus. Let us state the following:

Definition 2 Question Answering is a problem of automatic extraction of a
concise answer in a natural language, in response to a question formulated in
the natural language, based on knowledge gathered from collection of texts in the
natural language.

It is a much narrower formulation than in the Definition 1; in this case not only the
questions, but also the answers and the sources are expressed in a natural language.
However, as it includes the core language processing problem, its solutions could
also be used in implementations of similar tasks, say, interface of a database.

2.1 Questions

Let us define a Question in our QA system as a sentence, being a question according
to natural language rules, expected answer to which is a simple entity, i.e.:

• An answer to the question is present in the text collection, but it may be indi-
rect, or preparing it may involve combining knowledge from several documents.

• Questions should not require any complex reasoning or computing, so the focus
remains on text processing. For example the following question: Which is the
largest country of those that spend more than 10% of their budget on their
army? would not be accepted, unless there is a corresponding sentence in a
source text.

• A target of question is a simple entity, regardless whether named (person,
city, country, date, quantity, etc.) or unnamed (thing, concept, property, ani-
mal, event, action etc.). Such question are usually called factoid questions.
Queries demanding a definition or an explanation, such as What is a global
warming? do not fall into this category.

• The queries are grammatically correct questions in the natural language, which
rules out requests like Tell me the name of the first post-war president of
France.

A test set for a QA task is just a set of questions as defined above; no additional
information, e.g. about context or domain, is provided, thus the questions need to
be self-explaining and precise.

2.2 Texts

As stated in section 1.1, a level of difficulty of a QA task depends highly on texts
to be processed. An ideal textual database for evaluating such systems would have
the following properties:

• linguistic correctness: Usually texts that people describe as well-written and
correct are also relatively easy for automatic processing.

• precision: To extract valuable information from the texts, we need them to
be written precisely, without ambiguities or vague statements.



Issues of Polish Question Answering 5

• informativeness: To be able to answer interesting, non-trivial and worth
asking questions, we need the corresponding source to contain appropriate
answers. That rules out all sort of literary work, albeit satisfying the remaining
conditions.

• abundance: Modern NLP challenges are mostly connected with a need to
deal with huge numbers of texts — to evaluate a QA system we want it to
process a significant knowledge base, containing an overwhelming amount of
information, mostly irrelevant to any query.

• open-domain: Closed-domain systems are being actively developed, but em-
ploy different techniques (such as manual creation of possible questions list or
a knowledge base). Herein, only open-domain systems are considered, which
needs to be reflected in the knowledge source.

Sources which are used for similar purposes in literature are newswire bases or
encyclopaedias. They come from relatively reliable sources and satisfy all the con-
ditions outlined above. On the other hand, they are very far from what may be
found in the most important ”battleground” of the modern text processing: the
Internet. The content of web pages is usually imprecise, ambiguous, more persua-
sive or emotional than informative, often incorrect in terms of syntax or spelling.
The Wikipedia may be some kind of a compromise in that matter: offers highly-
informative articles, but written by internet users instead of professional journalists
or scientists.

2.3 Answers

What exactly is an answer to our question? For example, let us consider the
question When did Albert Einstein marry his second wife?. In fact, the four answer
levels are possible:3

1. A document containing an answer: Wikipedia:Albert Einstein. However, such
an answer is rather typical for Information Retrieval systems, as it still requires
a user to extract the entity from the text.

2. An answering sentence: Einstein married Elsa Löwenthal (née Einstein) on 2
June 1919, after having had a relationship with her since 1912. Here, there is
less work for a user, but he still needs to find the dates in the sentence and
decide, which corresponds to his question.

3. Only an entity demanded: 2 June 1919. That seems to be the option most
convenient for a user.

4. A full phrase based on a question: Albert Einstein married his second wife on
2 June 1919. Although that would be a natural way of responding, it is seldom
implemented in existing open-domain QA systems.

Henceforth, in this paper by answer the entity demanded, as in the point 3, will
be meant.

3Answers extracted from: http://en.wikipedia.org/wiki/Albert_Einstein.



6 Piotr Przybyła

2.4 Evaluation

Generally, an evaluation of a QA system is a process of measuring its outcome in
a precisely defined environment. The environment consists of questions, sources
and answers satisfying certain conditions, for example those outlined in sections
2.1, 2.2 and 2.3 of this document. What is more, one needs to define measures
to be applied to gathered answers. Aside from obvious computing a percentage of
questions answered correctly, worth mentioning are number of questions a tested
system decided to answer (crucial in Jeopardy! competition, in which QA system
named Watson took part [6]) and adequacy of a document returned as a support
of an answer (e.g. TREC competition [7]).

3 Related work

The field of question answering attracts a lot of attention, resulting in many inter-
esting solutions. However, while their authors use different testing environments or
different correctness measures, they remain incomparable. One of the ways to over-
come this problem are open competitions organised together with corresponding
conferences.

3.1 Open competitions

The most important competition was Question Answering track at Text REtrieval
Conference (TREC), which was arranged in years 1999-2007 [7]. In 2007, a total
of 515 questions was organised in 70 series, each related to a certain target (e.g.
Guiness Brewery, Jon Bon Jovi or March Madness 2011 ). The following question
types were present4:

• FACTOID: an expected result type is a single entity, being an answer to the
question, e.g. On what date did this earthquake strike?,

• LIST: an expected result type is a list of entities satisfying the question, e.g.
What countries were affected by this earthquake?,

• OTHER: an expected answer type is an interesting information nugget about
the target, different from those present in the remaining questions from the
series.

In 2008, the competition transformed into Opinion Question Answering at First
Text Analysis Conference (TAC 2008), where the task was to find opinions in
a blog corpus [8]. The Question Answering for Machine Reading Evaluation has
been offered at Conference and Labs of the Evaluation Forum. In this case answers
were given (5 options for each of 160 questions), so the focus was on a deep text
understanding, namely not only finding entities in text, but also reasoning and
inferring based on extracted knowledge [9]. Tasks (i.e. source texts, questions and
answers) were given in English, German, Italian, Romanian, Spanish, Arabic and
Bulgarian. Another multilingual task was the Cross-Lingual Question Answering
(CLQA) Task at NTCIR (NII Test Collection for IR Systems) Workshop. An aim

4Examples from the target Pakistan earthquakes of October 2005, published in [7].



Issues of Polish Question Answering 7

was to answer questions with named entities extracted from corpora in Chinese,
Japanese and English [10].

Another idea worth mentioning has been proposed by a team working on Wat-
son [6] at IBM. In [11] they proposed to build so-called Open Collaboration Frame-
work not only in order to compare results, but also to invigorate collaboration
between academic and industrial organisations by using shared system model and
open-source components and exchanging elements of QA solutions.

3.2 Solutions

The first solutions for problems formulated in a way similar to section 2 were
proposed in the 60’s (a detailed review may be found in [12]). However, they
relied mostly on transforming a text and questions into some kind of a formal
representation and then employing rapidly developing theorem-proving techniques
to find an answer. Unfortunately, this approach did not lead to satisfying results
not only because of the ambiguity and imprecision of English, but also because of a
lack of reliable linguistic tools necessary for such a transformation. In this situation,
researchers needed to base on few manually-prepared rules covering only a small
part of the language. The beginnings of the Internet encouraged researchers to use
similar approach again, this time to extract information from the WWW [13].

A large number of modern QA systems took part in the TREC QA competition
in years 1999-2007 (overviews published in [14, 15, 16, 17, 18, 19, 20, 21, 7]). Most
of participating solutions had a similar architecture, outlined in the next section,
and used available linguistic tools and resources heavily.

The last breakthrough worth mentioning was made by a team from the IBM
Research Division, who managed to build Watson, a complex QA system, which
participated live in the U.S. TV quiz show called Jeopardy! [6]. The task differs
from what is described above in three ways: first, queries are not formulated as
pure questions, but clues, to which a participant is expected to respond, ask-
ing an appropriate question. Secondly, usually it is not enough to have pure fac-
toid knowledge; one needs to combine distant relations, solve puzzles, understand
word games. Finally, during competition, each of the participants needs to decide
whether he wants to respond to a clue after seeing it; therefore, a precise confidence
estimation becomes crucial.

3.3 Common architecture

As stated above, a majority of modern QA solutions share a common architectural
scheme, which has been illustrated in Figure 1.

As we can see in the figure, a whole process starts with a pre-processing of
a text base, which is to be executed offline, before the system is presented to
users. When a question is available, it undergoes a similar processing stage, which
also determines its type. The information is used in subsequent steps: searching
for relevant documents using an index, choosing a sentence which matches the
question best, and, finally, extracting a demanded entity from the sentence.



8 Piotr Przybyła

Figure 1: Outline of a typical QA system.

3.3.1 Text base processing

Before an evaluation begins, the text corpus is processed to facilitate its usage as a
knowledge base for question answering. For English sources, usually a stemming5

is applied, but in case of languages with the nominal inflection it may get more
complicated (see section 4.1). Systems employing a deep semantic parsing may
also execute it as a stage of the text preprocessing (e.g. [22]).

3.3.2 Index

An index is introduced because of performance reasons. Regardless of a sentence
selection method, it is not possible to apply it to all of the documents from the
corpus. Therefore, in the preparatory stage, the full-text search index is created,
using one of powerful and freely available search engines, such as Apache Lucene.
When the question is processed, it is transformed into a list of keywords, forming
a search query. This transformation process usually includes a removal of stop-
words6 and using external resources for query expansion by adding synonyms [23]
or more complex semantic transformations [22]. A certain number of top results
is then passed on to the subsequent steps. Some of the systems, such as [24],
include feedback loops, returning to this stage in case of extracted documents
being irrelevant.

3.3.3 Question processing

There are three goals of this stage:

5Stemming is a process of assigning a pseudo-word (called a stem) to words in a text in a
way that will guarantee (or, more likely, make very probable) that different forms of the same
word will get equal stems.
6The term stop-words refers to words, which are very frequent in all documents in a particular

language, such as (for English) a, the or is.



Issues of Polish Question Answering 9

1. question type determination,
2. answer type determination,
3. transformation to a search query.

The first task is to find out what is a general type of the question: factoid, list,
definition, yes-no or other. In the TREC QA task this information was being given
explicitly [7], but it is not the case in real-world applications. The second stage is
an interesting problem itself: how to determine what is the type of an entity, which
is sought by the questioner? The interrogative pronouns (e.g. who, where, when)
may be of some use (who usually refers to a person), but they are not enough
(who question may also be answered by an entity being an organisation). Usually
solutions include a number of possible target categories (e.g. PERSON, DATE,
TITLE, QUANTITY, CITY, . . . ) or even complex hierarchies, like in [25]. Apart
from rules created manually some systems use the WordNet7 [24, 27] or machine
learning techniques [25, 28] to find the answer type. Requiring the user to fill in
a form instead of writing the question, like in [29], renders question processing
unnecessary.

3.3.4 Sentence selection

The core element of every QA system is responsible for choosing a sentence which
is most likely to contain the answer. Four main approaches to the problem may
be identified:

1. Pattern matching,
2. Semantic matching,
3. Probabilistic matching,
4. Conversion into logic forms.

Pattern matching is an extremely simple and surprisingly effective technique
for question answering which has been used extensively. For example, let us con-
sider the following question: When did Frederick I Barbarossa die?. It is quite
probable that the answering sentence will take the form: Frederick I Barbarossa
died on <DATE>. We can then scan the sources very efficiently, just looking for
the specified pattern. Of course, if this information is expressed differently, then
the approach fails. However, if we use the WWW as a corpus, then we may exploit
its redundancy; the same information appearing in different web pages, expressed
in different ways, increases the probability of finding our pattern. Apart from cre-
ating those patterns by hand, we may also automatically acquire them from the
Web [30, 31]. This approach has also been successively employed when focusing
on a particular question type, namely definition questions [32].

The use of the pattern matching is always limited by a variety of the natural
languages; that is why semantic matching is being employed nowadays. In this
approach we still match the question to a candidate sentence, but the connection
between (potentially) corresponding words is no longer a pure equality, but can be

7Princeton WordNet [26] is a lexical database containing words organized in synonymous sets
and connected by semantic relations, such as hypernymy, hyponymy or meronymy (part-whole
relation).



10 Piotr Przybyła

derived from a lexical database like the WordNet. For example, while answering the
question mentioned previously (When did Frederick I Barbarossa die? ) we should
also accept On <DATE> Frederick I Barbarossa passed away as an answer because
to pass away and to die are synonyms, but also Frederick I Barbarossa drowned in
the river on <DATE> because to drown is a hyponym of to die. We could also take
into account more complex relations to find sentences like The death of Frederick
I Barbarossa on <DATE> led to . . . by recognizing the connection between to die
and death. Harabagiu et al. proposed and evaluated a semantic matching solution
[24] based on the WordNet, while Moldovan and Novischi proposed an algorithm
for computing the strength of a relation between different concepts in [33]. An
interesting solution is presented in [22], where a whole sentence is transformed
into a semantic network, called MultiNet, and then matched to a question. Besides
the WordNet matching, other important semantic connections of the question and
the sentence are outlined in [34], such as similar noun phrases and co-occurring
named entities.

Probabilistic matching is based on gathering a set of features, characterizing a
similarity between the question and a candidate sentence, but also including other
evidence, such as presence of named entities or information from WordNet. To
assess importance of particular features and to select the sentence which is most
likely to contain the answer, tools from the statistics are used, such as the logistic
regression [35] or the entropy [36].

The last approach (conversion into logic forms) is less popular, but also has
its advantages. The source text is converted into a formal language (say, a set of
predicates) by a specialised parser, and knowledge obtained in that way may be
used to find an answer in a process similar to theorem proving. Of course, once
we have valid knowledge represented as a set of predicates, it is guaranteed that
the answers will be valid, too. The only problem is that converting an ambiguous,
imprecise, contextual and implicit natural language statements into strict logics
poses a great challenge (if is possible at all). Apart from the already mentioned
solution by Katz [13], an interesting system has been presented in [37]. To cope
with those unpleasant features of a natural language, they propose a set of sources
of world knowledge (common sense), such as lexical chains between concepts in
WordNet, mentioned previously.

3.3.5 Answer extraction

If it is enough to give a sentence as an answer, the result of the selection outlined
above (i.e. the best sentence) is presented to the user. However, if we want to
show only an entity demanded, as proposed in section 2.3, then an appropriate
extraction is necessary. Usually it is easy to select words corresponding to an entity
of an expected type (e.g. a date). If there are more than one, we need to know
from the previous stage, which of the entities has been matched as the answer.
Providing an answer in a way proposed in section 2.3 p. 4 would involve the Natural
Language Generation (NLG) capabilities.



Issues of Polish Question Answering 11

3.3.6 Other modules

Apart from the stages described above, a question answering system may include a
number of additional tools, improving its performance. Usually they are employed
in the sentence selection stage.

• WordNet lexical database, used in a variety of roles, described above.
• Named Entity Recognition (NER) solutions are used to scan the text

efficiently and find fragments which correspond to named entities8. They are
useful in QA to reduce a number of sentences taken into account by processing
only those containing named entities of type compatible with the question
target and to extract the desired entity from the sentence.

• Anaphora resolution - anaphora, as described previously, is a word (usually
a pronoun) substituting an expression which has already been mentioned. The
process of resolution, i.e. assigning a set of possible targets to each anaphoric
expression is very helpful in question answering. For example, let us consider
answering the question When did Albert Einstein publish special relativity
theory? The Wikipedia article contains the following:

On 30 April 1905, Einstein completed his thesis, with Alfred Kleiner,
Professor of Experimental Physics, serving as pro-forma advisor. Einstein
was awarded a PhD by the University of Zurich. His dissertation was entitled
”A New Determination of Molecular Dimensions”. That same year, which
has been called Einstein’s annus mirabilis (miracle year), he published four
groundbreaking papers, on the (...), special relativity, and (...), which were to
bring him to the notice of the academic world.9

As we can see, the question target (year 1905) is three sentences away
from the mention of the special relativity publication. The only link between
them is the anaphoric expression That same year. Moreover, it does not refer
to the whole named entity 30 April 1905, but only to the year, which has
to be taken into account during resolution (special relativity was published
in 1905, but not on April 30). An example of successful incorporation of an
anaphora resolution module into a QA system is presented in [5].

4 Prospects for Polish

One of the goals of this paper is to outline the prospects for building a Polish
question answering system. Unfortunately, all of the solutions described above
were prepared for English or German, which differ substantially from Polish in
their structure. The purpose of this section is to analyse which of the elements
of the question answering environment are directly applicable to Polish, which
require some modifications, and which are hardly usable.
8The meaning of a named entity term is somewhat vague. Usually it is supposed to include

entities referred by proper names (persons, organisations, countries, cities, mountains, lakes,
etc.), titles of works (books, pieces of music, paintings, journals etc.), temporal (time, date, year,
century) and numerical expressions (count, quantity, percentage, money).
9Extracted from the article in Wikipedia: http://en.wikipedia.org/wiki/Albert_Einstein.



12 Piotr Przybyła

4.1 NLP of Slavonic languages

Polish is a Slavonic language and shares most of the features common for the
group. The most important ones from the point of view of NLP are: the rich
nominal inflection, the free word order and the complicated inflection of proper
names (both Polish and foreign). Herein, they are briefly explained only; a detailed
review may be found in [38].

The nominal inflection makes text processing substantially harder, as every
noun or adjective may take a number of forms10 depending on its role in a sentence.
On the other hand, it allows words to appear in different order without a complete
change of meaning, as information about their roles in the sentence (e.g. distinction
between a subject and an object of a verb) is preserved in the nominal inflection.
For example, let us consider the following sentence: John ate a fish. Its obvious
translation to Polish would be: Jan zjadł rybę. However, we could also say Rybę
zjadł Jan with the same meaning but a slightly different focus. The remaining
options (Zjadł rybę Jan, Zjadł Jan rybę, Jan rybę zjadł, Rybę Jan zjadł) would seem
awkward, but remain perfectly understandable. This is not the case in English: A
fish ate John has a totally different meaning. Of course, for longer sentences only
some of the orderings preserve its comprehensibility; that is why this phenomenon
is called the relatively free word order.

The nominal inflection affects also proper names, altering their appearance.
An inflected form depend on numerous factors, such as a source language, a name
pronunciation and a language tradition. The nominal inflection of foreign proper
names confuse even native speakers of Polish; it is a cause of very common errors.
Polish proper nouns inflect differently than their common equivalents too, for
details see [38]. That is why the NER task is much harder in the Slavonic languages
than in English.

4.2 Existing solutions for Polish

Only a few attempts to build a QA system have been made for Polish. First
one, from 1985, was a Polish interface [39] to the ORBIS database, containing
information about the solar system planets encoded as PROLOG rules. A POLINT
system, based on it, is still being developed in the Adam Mickiewicz University
in Poznań [40]. In 2002 another system capable of handling questions in Polish
operating in a restricted domain (business information) was presented by Duclaye
et al. [41]. Some elements (a reasoning module responsible for spatial relations) of
a Polish QA system under development (Hipisek.pl) have been published by Walas
[42].

A solution closest to what is analysed in this paper is that proposed by
Piechociński and Mykowiecka [43]. It answers questions in Polish (translated from
the TREC QA task) by scanning the content of the Polish Wikipedia. Unfortu-
nately, it relies heavily on its structure, so couldn’t operate on an arbitrary text
corpus.

10In Polish there exist 7 cases, but in each declension some of them correspond to identical
forms.



Issues of Polish Question Answering 13

To sum up, several QA systems for Polish exist, but their usage is limited either
by a reliance on a specific knowledge base [43] or by a closed domain (the remaining
ones). None of them would be able to participate in a TREC competition in Polish,
i.e. answer natural language questions using a given corpus of texts.

4.3 Language-dependence of elements

To discuss the possibility of building a Polish QA system, solving TREC-like tasks,
the elements of the common architecture outlined in section 3.3 are analysed here
to show their dependence on a processed language.

4.3.1 Text base processing

The main objective of this stage is to analyse words in order to replace them by
a stem or a base form, common for all inflected forms of a particular word. In
English it is done by stemming, i.e. transforming each segment according to a
set of predefined rules. Unfortunately, because of the rich nominal inflection, the
mutability of Slavonic words is much higher. Although stemmers for Polish exist
as well [44], their performance is not very good. It is more recommendable to use a
full morphological analyser, which processes a text slower, but guarantees to find
every possible base form for each recognized segment.

4.3.2 Index

Index could work equally well with English and the Slavonic languages, if imple-
mented properly. For example, the Lucene works perfectly with Polish corpora.

4.3.3 Question processing

The question processing module clearly needs to be prepared for a particular lan-
guage, as question syntaxes may differ a lot between languages.

4.3.4 Sentence selection

Sentence selection method deserves special attention. Some of the approaches may
depend on a processed language, but not necessarily all of them.

Let us consider sentence selection by pattern matching. It may be successfully
applied to some languages, but Slavonic unfortunately will lead to much lower
accuracy. That is because of the relatively free word order, which makes a pattern
match only a most common ordering and ignore remaining ones. For example, let
us try to answer the question Who ate a fish?. It would be converted to the pattern
{<PERSON> <eat>11 <fish>} and result in a match after finding the sentence
John ate a fish. For Polish, the same question Kto zjadł rybę? correspond to the
pattern {<PERSON> <jeść> <ryba>}, which matches the sentence Jan zjadł
rybę, but fails in case of Rybę zjadł Jan, which carries the same meaning. This
feature of the Slavonic languages also makes conversion into logic forms harder.

11By <eat> I mean any word which becomes identical to a base form eat after stemming, i.e.
eat, ate, eaten, etc.



14 Piotr Przybyła

4.3.5 Answer extraction

Answer extraction stage depends heavily on a sentence structure, which is lan-
guage dependent. This is another element, which becomes harder to implement
for languages with the free word order.

4.3.6 Other modules

• WordNet contains relations about words in a particular language. Some of
them correspond to relations between real-world entities (a horse is a hyponym
of an animal in most languages), but some do not.

• Named Entity Recognition (NER) is an example of a task which becomes
substantially more complex when implemented to the Slavonic languages. A
core part of most such solutions is a gazetter i.e. a large database of known
proper names. For example, we could most likely find there the name Nelson.
If it appears in a text, NER module spots it easily. Unfortunately, this is
not the case in Polish because of the rich nominal inflection - this very same
name could appear in 5 different singular forms (Nelson, Nelsona, Nelsonowi,
Nelsonem, and Nelsonie) and 5 plural (e.g. while talking about Nelson family).
Complicated and often incorrect inflection of foreign proper names also needs
to be taken into account.

• Anaphora resolution clearly depends on a processed language.

4.4 Linguistic tools

In the previous section we’ve mentioned a lot of linguistic tools which are relevant
when building a QA system, but could not be used in different languages. Let us
check their availability for Polish:

• stemming - As stated previously, several stemmers for Polish, discussed in
[44], exist.

• morphological analysis - There are several tools of that type, Morfeusz
SGJP [45], Morfologik [46], PoliMorf [46], to name only a few.

• tagging - Several taggers, capable of selecting the most probable interpretation
of these provided by morphological analysers, exist, such as PANTERA [47]
(using transformation-based learning) or TaKIPI [48] (using decision trees),

• shallow parsing - Spejd [49] allows to obtain a shallow structure of a sentence.
• deep parsing - Świgra [50] creates deep parsing trees in the DCG formalism.
• named entity recognition - Two tools could be employed for this task:

NERF [51] and Liner2 [52].
• WordNet - Widely available are: plWordNet [53], containing over 110000

synsets and PolNet [54] with approximately 11700 synsets.
• anaphora resolution - Polish anaphora resolution module (Project CORE )

is under development [55].

As visible above, there are plenty of linguistic tools available for Polish, making a
good starting point for developing a Polish question answering system.



Issues of Polish Question Answering 15

5 Conclusion

In this paper, the possibility of building a Polish question answering system was
discussed. First, a general explanation of a QA problem and possible improvements
of the user experience by implementing natural language communication modules
were shown to justify an effort of tackling the task. To focus on the most important
properties of the QA problem, its definition, also usable for preparing an evalua-
tion, was specified. Numerous solutions for English were presented to show their
common architecture and distinctive features. Presented description of properties
of the Slavonic languages and an analysis of language dependence of the elements
of the scheme substantiate the claim that we need to apply a different approach
to several issues, when Polish is concerned. Its feasibility is further supported by
an enumeration of existing implementations of the relevant linguistic tools.

I demonstrated that an open-domain text-based question answering system for
Polish is not only desirable but also achievable given the current level of develop-
ment of Polish NLP. This study is a first step of building such a system.

Acknowledgements

Critical reading of the manuscript by Agnieszka Mykowiecka is gratefully ac-
knowledged. Study was supported by research fellowship within ”Information
technologies: research and their interdisciplinary applications” agreement number
POKL.04.01.01-00-051/10-00.

References

[1] Yandex.ru: Report on Yandex.ru queries. Technical report (2010)

[2] Hook, D.: Study of Search Engine Transaction Logs Shows Little Change in How
Users use Search Engines. Evidence Based Library and Information Practice 1(3)
(2006) 88–94

[3] Andrenucci, A., Sneiders, E.: Automated Question Answering: Review of the Main
Approaches. In: Third International Conference on Information Technology and
Applications (ICITA’05). (2005) 514–519

[4] Shapiro, S.C.: Encyclopedia of Artificial Intelligence. John Wiley & Sons, Inc., New
York (1992)

[5] Ferrández, A., Vicedo, J.L.: Coreference In Q&A. In Strzalkowski, T., Harabagiu,
S.M., eds.: Advances in Open Domain Question Answering (Text, Speech and Lan-
guage Technology). Springer Netherlands (2007) 71–96

[6] Ferrucci, D.A., Brown, E., Chu-carroll, J., Fan, J., Gondek, D., Kalyanpur, A.A.,
Lally, A., Murdock, J.W., Nyberg, E., Prager, J., Schlaefer, N., Welty, C.: Building
Watson: An Overview of the DeepQA Project. AI Magazine 31(3) (2010) 59–79

[7] Dang, H.T., Kelly, D., Lin, J.: Overview of the TREC 2007 Question Answering
track. In: Proceedings of The Sixteenth Text REtrieval Conference, TREC 2007.
(2007)

[8] Dang, H.T.: Overview of the TAC 2008 Opinion Question Answering and Summa-
rization Tasks. In: Proceedings of Text Analysis Conference (TAC 2009). (2008)



16 Piotr Przybyła

[9] Peñas, A., Hovy, E.: QA4MRE: Question Answering for Machine Reading Evaluation
at CLEF 2012 (2012)

[10] Sasaki, Y., Lin, C.j., Chen, K.h., Chen, H.h.: Overview of the NTCIR-6 Cross-
Lingual Question Answering (CLQA) Task. In: Proceedings of NTCIR-6 Workshop
Meeting. (2007)

[11] Ferrucci, D.A., Nyberg, E., Allan, J., Barker, K., Brown, E., Chu-Carroll, J., Ciccolo,
A., Duboue, P., Fan, J., Gondek, D., Hovy, E., Katz, B., Lally, A., Mccord, M.,
Morarescu, P., Murdock, B., Porter, B., Prager, J., Heights, Y.: Towards the Open
Advancement of Question Answering Systems. Technical report, IBM (2009)

[12] Simmons, R.F.: Natural Language Question-Answering Systems: 1969. Communi-
cations of the ACM 13(1) (1970) 15–30

[13] Katz, B.: Annotating the World Wide Web Using Natural Language. In: Proceedings
of the 5th RIAO Conference on Computer Assisted Information Searching on the
Internet RIAO 97. (1997)

[14] Voorhees, E.M.: The TREC-8 Question Answering Track Report. In: Proceedings of
The Eight Text REtrieval Conference (TREC 2000). Volume 7., National Institute
of Standards and Technology (1999)

[15] Voorhees, E.M.: Overview of the TREC-9 Question Answering Track. In: Proceed-
ings of The Ninth Text REtrieval Conference (TREC 2000). (2000)

[16] Voorhees, E.M.: Overview of the TREC 2001 Question Answering Track. In: Pro-
ceedings of the Tenth Text Retrieval Conference (TREC 2001). (2001)

[17] Voorhees, E.M.: Overview of the TREC 2002 Question Answering Track. In: Pro-
ceedings of The Eleventh Text REtrieval Conference (TREC 2002). (2002)

[18] Voorhees, E.M.: Overview of the TREC 2003 Question Answering Track. In:
Proceedings of the Twelfth Text REtrieval Conference (TREC 2003). Volume 142.
(2003)

[19] Voorhees, E.M.: Overview of the TREC 2004 Question Answering Track. In: Pro-
ceedings of The Thirteenth Text REtrieval Conference (TREC 2004). (2004)

[20] Voorhees, E.M., Dang, H.T.: Overview of the TREC 2005 Question Answering
Track. In: Proceedings of The Fourteenth Text REtrieval Conference (TREC 2005).
(2005)

[21] Dang, H.T., Lin, J., Kelly, D.: Overview of the TREC 2006 Question Answering
Track. In: Proceedings of The Fifteenth Text REtrieval Conference (TREC 2006).
Volume 2004. (2006)

[22] Hartrumpf, S.: Question Answering using Sentence Parsing and Semantic Net-
work Matching. In: Proceedings of the 5th conference on Cross-Language Eval-
uation Forum: Multilingual Information Access for Text, Speech and Images
CLEF’04ultilingual Information Access for Text, Speech and Images CLEF’04.
(2004) 512–521

[23] Hovy, E., Hermjakob, U., Lin, C.Y.: The Use of External Knowledge in Factoid QA.
In: Proceedings of the Tenth Text Retrieval Conference (TREC 2001). (2001)

[24] Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R.,
Gı̂rju, R., Rus, V., Morarescu, P.: The role of lexico-semantic feedback in open-
domain textual question-answering. In: Proceedings of the 39th Annual Meeting on
Association for Computational Linguistics - ACL ’01. (July 2001) 282–289



Issues of Polish Question Answering 17

[25] Hovy, E., Gerber, L., Hermjakob, U., Lin, C.Y., Ravichandran, D.: Toward
Semantics-Based Answer Pinpointing. In: Proceedings of the first international con-
ference on Human Language Technology research (HLT). (2001)

[26] Fellbaum, C.: WordNet: An Electronic Lexical Database. The MIT Press (1998)

[27] Ahn, D., Jijkoun, V., Mishne, G., Müller, K., De Rijke, M., Schlobach, S.: Us-
ing Wikipedia at the TREC QA Track. In Voorhees, E.M., Buckland, L.P., eds.:
Proceedings of The Thirteenth Text REtrieval Conference (TREC 2004). (2004)

[28] Li, X., Roth, D.: Learning Question Classifiers. In: Proceedings of the 19th In-
ternational Conference on Computational Linguistics (COLING-2002). Volume 1 of
COLING ’02. (2002)

[29] Buchholz, S., Daelemans, W.: SHAPAQA: Shallow Parsing for Question Answering
on the World Wide Web. In: Proceedings of Euroconference on Recent Advances in
Natural Language Processing RANLP2001. (2001)

[30] Ravichandran, D., Hovy, E.: Learning surface text patterns for a Question An-
swering system. In: Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics - ACL ’02. (2002) 41–47

[31] Duclaye, F., Yvon, F., Collin, O.: Learning paraphrases to improve a question-
answering system. In: Proceedings of the 10th Conference of EACL Workshop Nat-
ural Language Processing for Question-Answering. (2003)

[32] Miliaraki, S., Androutsopoulos, I.: Learning to identify single-snippet answers to
definition questions. In: Proceedings of the 20th international conference on Com-
putational Linguistics - COLING ’04. (August 2004)

[33] Moldovan, D., Novischi, A.: Lexical chains for question answering. In: Proceedings
of the 19th International Conference on Computational Linguistics (COLING-2002).
(2002)

[34] Boni, M.D., Manandhar, S.: The Use of Sentence Similarity as a Semantic Relevance
Metric for Question Answering. In: Proceedings of the AAAI Symposium on New
Directions in Question Answering. (2003)

[35] Ko, J., Si, L., Nyberg, E.: A Probabilistic Framework for Answer Selection in
Question Answering. In: Proceedings of the 2007 Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics HLT-NAACL 2007, Association for Computational Linguistics (2007)
524–531

[36] Ittycheriah, A.: A statistical approach for open domain question answering. In
Strzalkowski, T., Harabagiu, S.M., eds.: Advances in Open Domain Question An-
swering (Text, Speech and Language Technology). Volume 32 of Text, Speech and
Language Technology. Springer Netherlands (2007) 35–69

[37] Moldovan, D., Paşca, M., Surdeanu, M.: Some Advanced Features of LCC’s Pow-
erAnswer. In Strzalkowski, T., Harabagiu, S.M., eds.: Advances in Open Domain
Question Answering (Text, Speech and Language Technology). Volume 32. Springer
Netherlands (2006) 3 – 34

[38] Przepiórkowski, A.: Slavonic information extraction and partial parsing. In: Proceed-
ings of the Workshop on Balto-Slavonic Natural Language Processing Information
Extraction and Enabling Technologies - ACL ’07. (2007)

[39] Vetulani, Z.: PROLOG Implementation of an Access in Polish to a Data Base. In:
Studia z automatyki, XII. (1988) 5–23



18 Piotr Przybyła

[40] Vetulani, Z.: Question answering system for Polish (POLINT) and its language
resources. In: Proceedings of the Question Answering - Strategy and Resources
Workshop, Las Palmas de Grand Ganaria, 28th May, Paris, ELRA (2002) 51–55

[41] Duclaye, F., Sitko, J., Filoche, P., Collin, O.: A Polish Question-Answering System
for Business Information. In: BIS 2002, 5th International Conference on Business
Information Systems, Poznań, Poland, 24-25 April 2002. (2002) 209–212

[42] Walas, M.: How to answer yes/no spatial questions using qualitative reasoning? In
Gelbukh, A., ed.: 13th International Conference on Computational Linguistics and
Intelligent Text Processing. (2012) 330–341

[43] Piechociński, D., Mykowiecka, A.: Question answering in Polish using shallow pars-
ing. In Garab́ık, R., ed.: Computer Treatment of Slavic and East European Lan-
guages: Proceedings of the Third International Seminar, Bratislava, Slovakia, VEDA:
Vydava- tel’stvo Slovenskej akadéme vied (2005) 167–173

[44] Weiss, D.: A Survey of Freely Available Polish Stemmers and Evaluation of Their
Applicability in Information Retrieval. In: 2nd Language and Technology Confer-
ence, Poznań, Poland. (2005) 216–221

[45] Woliński, M.: Morfeusz — a Practical Tool for the Morphological Analysis of Pol-
ish. In Kłopotek, M., Wierzchoń, S., Trojanowski, K., eds.: Intelligent Information
Processing and Web Mining. (2006) 511–520

[46] Woliński, M., Miłkowski, M., Ogrodniczuk, M., Przepiórkowski, A., Szałkiewicz, L.:
PoliMorf: a (not so) new open morphological dictionary for Polish. In: Proceedings of
the Eighth International Conference on Language Resources and Evaluation, LREC
2012. (2012) 860–864

[47] Acedański, S.: A morphosyntactic Brill Tagger for inflectional languages. In: Pro-
ceedings of the 7th international conference on Advances in Natural Language Pro-
cessing (IceTAL’10 ). (August 2010) 3–14

[48] Piasecki, M.: Polish Tagger TaKIPI: Rule Based Construction and Optimisation.
Task Quarterly 11(1-2) (2007) 151–167

[49] Przepiórkowski, A.: Powierzchniowe przetwarzanie języka polskiego. Akademicka
Oficyna Wydawnicza EXIT, Warszawa (2008)

[50] Woliński, M.: An efficient implementation of a large grammar of Polish. Archives
of Control Sciences 15 (2005) 251–258

[51] Savary, A., Waszczuk, J.: Narzędzia do anotacji jednostek nazewniczych. In: Naro-
dowy Korpus Języka Polskiego [Eng.: National Corpus of Polish]. (2012) 225–252

[52] Marcińczuk, M., Janicki, M.: Optimizing CRF-based Model for Proper Name Recog-
nition in Polish Texts. In: CICLing 2012, Part I. (2012) 258–269

[53] Maziarz, M., Piasecki, M., Szpakowicz, S.: Approaching plWordNet 2.0. In: Pro-
ceedings of the 6th Global Wordnet Conference. (2012)

[54] Vetulani, Z., Kubis, M., Obrębski, T.: PolNet – Polish WordNet: Data and Tools.
In: Proceedings of the seventh International conference on Language Resources and
Evaluation (LREC 2010). (2010)

[55] Kopeć, M., Ogrodniczuk, M.: Creating a Coreference Resolution System for Pol-
ish. In: The eighth international conference on Language Resources and Evaluation
(LREC). (2012)


