
FIRST-ORDER SPECIFICATIONS
OF PROGRAMMABLE DATA TYPES∗

GRAŻYNA MIRKOWSKA† , ANDRZEJ SALWICKI† , MARIAN SREBRNY‡ , AND

ANDRZEJ TARLECKI§

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 30, No. 6, pp. 2084–2096

Abstract. We consider first-order specifications together with the restriction to accept only
programmable algebras as models. We provide a criterion which links this approach with the “gen-
eration principle”: all programmable models of any specification SP that meets this criterion are
reachable. We also show an example of a specification which does not satisfy the criterion and admits
a programmable yet nonreachable model. Moreover, a general method of showing the existence of
programmable but nonreachable models for a class of first-order specifications is given.

Key words. algebraic specification, reachable algebra, data types

AMS subject classifications. 68Q60, 68Q65, 68P05

PII. S0097539797322528

1. Introduction. The problem of characterizing intended algebras is important
in various areas of computer science. In the areas of specification, development, and
validation of software systems one needs to describe the intended models—typically
“no junk” algebras—modelling (representing) possible or actual implementations of
software systems being specified.

In this paper we make use of intrinsic conceptual parallelism between software
engineering and metamathematics. Some software modules—classes, libraries, pack-
ets, etc.—can be conveniently viewed as algebraic structures. The goal of specifying
software modules then finds its formal counterpart: specification of algebraic struc-
tures. In the terminology of computer scientists one sometimes also says specification
of data types. A formal specification may (and should) serve as the only source of
information on a data structure A when one constructs and/or analyzes a program P
which uses the data structure A. Suppose that such a data structure A is described
by a specification SP . Is the specification SP sufficiently rich in order to ensure that
any proof of a valid semantical property of the program P (such as correctness, termi-
nation, etc.) can rely only on the axioms listed in SP? Or should one add some extra
constraints—or further information—on data structure A beyond those contained in
the specification SP?

Typically, the answer to the latter question is affirmative: first-order logic is
not strong enough to exclude all nonintended models of a specification, and hence
nonintended implementations of the specified module. Similar problems arise also
with specifications intended to be loose though not “too loose.”

Various authors introduce some special strong additional requirements to cope
with this problem. For instance, the category-theoretic initial (also, terminal) alge-

∗Received by the editors June 10, 1997; accepted for publication (in revised form) August 23,
2000; published electronically May 16, 2001.

http://www.siam.org/journals/sicomp/30-6/32252.html
†LITA, Université de Pau, France, and Institute of Informatics, Bia lystok University of Technol-

ogy, Bia lystok, Poland (mirkowska@pjwstk.waw.pl, salwicki@mimuw.edu.pl).
‡Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland (marians@ipipan.

waw.pl). The work of the third author was partially supported by Poland’s Scientific Research
Committee under grant 2 P301 007 04.

§Institute of Informatics, Warsaw University, and Institute of Computer Science PAS, Warsaw,
Poland (tarlecki@mimuw.edu.pl).

2084



PROGRAMMABLE DATA TYPES 2085

bra semantics approach has attracted a lot of attention. In these approaches, one
selects as the semantics of a specification only initial (respectively, terminal) objects
in the category of all algebras that satisfy given specification axioms; see, e.g., [4],
[2], [18]. Another option is to require the algebras to be reachable (generated by the
empty set, or standard—see the “generation principle” of [1]). Reachable algebras
cannot be characterized by any set of first-order axioms, since every reachable alge-
bra has an elementary extension that is not reachable, by direct application of the
Skolem–Löwenheim theorem. None of these extra requirements (initiality, terminal-
ity, reachability) is expressible in first-order logic or its fragments (e.g., equational
logic) often used in algebraic specifications. They can, however, be expressed in some
stronger logics, for instance, in various versions of algorithmic logic (see [12]) or in-
finitary logics with proof systems involving infinitary proof rules (e.g., a version of the
ω-rule) or in the second-order logic with the semantics where second-order variables
range either over all subsets of the universe or only over finite subsets (weak second-
order logic). Nevertheless, the classical first-order logic is of special interest here, at
least because of its familiarity and since most of the contemporary mathematics has
been done in it.

There are two possible ways to proceed: either we can restrict the class of models
considered to some special structures only, characterized by some extralogical means,
or we can work with a stronger logic. In this paper we promote and advocate the first
possibility. However, we propose a “new” natural requirement of programmability
(computability) of the models as the extralogical selection criterion. This seems more
natural and friendly to programmers and to programming environment than other
approaches proposed so far. By the Church thesis all possible implementations of any
specification are programmable. Therefore, selecting programmable algebras as the
only models considered is kind of a “minimal” requirement. It is perhaps surpris-
ing that this natural possibility has not been properly exploited in the theory and
practice of algebraic specifications. The surprise is even more evident in light of a
whole line of interesting results by Bergstra and Tucker [2] on the interplay between
computability and equational specifications and on the expressive power of the initial
algebra specifications.

To reiterate, we propose the classical first-order logic with the programmable
(recursive) algebra semantics to be used for algebraic specifications.

It should be emphasized here with no need of any further details that the pro-
grammability requirement is natural and comprehensible to potential software devel-
opers, specifiers, and validators, as perhaps opposed to the abstract category-theoretic
initiality or terminality criteria. A serious demand for detailed study of this kind of re-
quirements follows, for instance, from a work of Sannella and Tarlecki [14] on a “gap”
between the usual viewpoint of algebraic specification based on arbitrary models and
that of programming frameworks (such as Extended ML [8]) more realistically based
on programmable models. Traditionally in the area, abstract many-sorted algebras
are used to model programs: the representation of data is arbitrary and operations are
modelled as functions. Formal development of software systems from specifications
calls for restriction of these general concepts to the kind of models that underlie se-
mantics of programming languages. For example, the semantics of Standard ML [10]
uses rather concrete models, where data values are represented as closed constructor
terms and operations are represented as “closures.”

We believe that the programmable reachable algebras provide an interesting gen-
eral framework for algebraic specifications. In this note we present some technical



2086 MIRKOWSKA, SALWICKI, SREBRNY, AND TARLECKI

results to justify this belief and to start a proper investigation of such a framework.

2. Terminology and notation. In this paper we consider specifications as clas-
sical first-order (or elementary) theories. Unlike in the classical model-theory, we work
with many-sorted algebras; a many-sorted algebra consists of a carrier set split into
a family of nonempty carriers named by sorts with (a finite number of) operations
on them. The carriers and operations of an algebra are named in the algebra’s signa-
ture. Zero-ary operations are just the distinguished elements, interpreting constants
of the language according to the algebra’s signature. In general, the operations may
be partial functions on their sorts. Throughout the paper we work with first-order
logic with equality, i.e., formulas include equalities between terms of the same sort (for
each sort) interpreted as the identity of the denotations of the terms. Occasionally we
simplify the exposition by leaving the reader with many details of rigorous “sorting”
of the formal expressions whose content is sketched only informally.

Definition 2.1. An algebra (in general, a relational structure) is called pro-
grammable (or recursive, or computable) whenever all of its carriers are computable
sets and all of its operations (in the general case, relations) are computable functions
defined on computable domains.

We will be talking only about countable algebras. Therefore we can always con-
sider beforehand an isomorphic copy of a given algebra built on the natural num-
bers and then define the algebra to be recursive whenever this copy is recursive.
For example, the natural numbers with the usual arithmetic operations form a pro-
grammable algebra (N ; 0, suc,+,×). Given a nonrecursive function f , the algebra
(N ; 0, suc,+,×, f) is not programmable.

We illustrate the ideas and results of this paper with various data types of stacks
and their first-order specifications. We focus on the stacks because of their relevance
for implementing recursive computations and modelling recursively defined collections
of data, and because they provide a convenient example that we hope should be
familiar to the reader. Stack theory can be formalized in various forms, essentially
different in many ways from the metamathematical viewpoint. All of them share in
their signature two sorts (one for elements and another for stacks) and the usual stack
operations.

Given a finite or infinite set E, by the true stack theory on E we mean the first-
order theory of the model with two-sorted carrier set E,E∗, where E∗ is the set of
all finite sequences of the members of E, and the usual operations top, pop, push,
the distinguished empty sequence, and with all the elements of E as constants in
the signature. In this paper we typically consider at most countably infinite E. The
operations top and pop are undefined on empty. Here are the usual definitions for
each e ∈ E and s = (e0, . . . , en) ∈ E∗:

push(e, s) = (e0, . . . , en, e),
top(s) = en for nonempty s,
pop(s) = (e0, . . . , en−1) for nonempty s.

This yields a family of different true stack theories, one for each E. Modulo the names
of the constants used, we in fact consider here one such theory for each (finite or
infinite) cardinality of E. Each of them is formally a theory over a different signature
(following the usual terminology in mathematical logic, we will say a language of a
theory, rather than its signature).



PROGRAMMABLE DATA TYPES 2087

In the countably infinite case, one can think of E as of the set of natural numbers.
However, the members of E need not be the natural numbers, since the signature of
the model does not contain any arithmetic operations.

By the axiomatic theory of stacks on E we mean the (classical first-order) conse-
quences of the universal closure of the following axioms in the (first-order) language
corresponding to the above model:

(Ax1) push(x, s) 6= empty,
(Ax2) top(push(x, s)) = x,
(Ax3) pop(push(x, s)) = s,
(Ax4) s 6= empty → push(top(s), pop(s)) = s.

This theory is a proper subtheory of the true stack theory on E. In particular,
the true stack theory, but not the axiomatic stack theory, admits the following scheme
of structural induction for every first-order formula ϕ:

[ϕ(empty) ∧ ∀x∀s (ϕ(s) → ϕ(push(x, s)))] → ∀sϕ(s).

By the true theory of stacks on the natural numbers we mean the first-order theory
of the model (N,N∗; 0, suc,+,×, top, pop, push, empty) with the usual meaning of the
arithmetic operations on the set N of natural numbers. The Peano axioms for the
sort of elements and axioms (Ax1–Ax4) for stacks form yet another formalization,
which we will call the axiomatic stack theory on the natural numbers.

Let us point out that here we mean the Peano axioms with the scheme of elemen-
tary induction

[ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))] → ∀xϕ(x)

for every first-order formula ϕ. By Peano Arithmetic we mean the (classical) first-
order consequences of the usual axioms for 0, suc,+,× with the scheme of elementary
induction.

3. Reachable algebras.
Definition 3.1. An algebra is called reachable if it is generated from it’s under-

lying constants by finitely many successive applications of the algebra’s operations.
An algebra A is generated by a subset X of the carrier of A (a set of generators)

if all the elements of A are the values of Σ-terms under some valuation of variables
into X. Σ is the signature of A. Now A is reachable iff it is generated by the empty
set of generators.

Equivalently, an algebra is reachable if each element of its universe (carrier sets)
is the denotation of a closed (ground) term in the (first-order) signature of the algebra
(cf. the notion of a Herbrand model in model-theory). The reachable algebra of natural
numbers, the only reachable model of Peano Arithmetic, is usually called the standard
model. One says the reachable algebras have “no junk” property: they contain all data
you can talk about in the algebra’s formal language and nothing more. This does not
imply, of course, another useful property of “no confusion” (or “unambiguity,” or “the
unique name”) that different terms denote distinct data items, unless those terms are
forced to be identified by the specification axioms.

Of course, reachable algebras need not be programmable in general. For instance,
the nonprogrammable algebra (N, 0, suc, f) with nonrecursive f mentioned above is
reachable. In this paper we show that for a sufficiently rich theory its reachable



2088 MIRKOWSKA, SALWICKI, SREBRNY, AND TARLECKI

models can be distinguished in the class of programmable models by a single first-
order axiom. This is based on a deep result of Tennenbaum [17] that every recursive
model of Peano Arithmetic (with the first-order induction scheme) is standard.

Roughly, a first-order theory T is sufficiently rich in this context if Peano Arith-
metic can be recursively interpreted in T and T has the finite sequence coding prop-
erty. Let us recall the necessary notions of mathematical logic.

For the concept of an interpretation we refer, for instance, to Shoenfield [15]. We
say that Peano Arithmetic can be interpreted in T whenever there are formulas IN (·),
I0(·), IS(·, ·), IAdd(·, ·, ·), and IMult(·, ·, ·) in the language of T such that T proves
all the Peano axioms relativized to the interpretation I. An interpretation defines a
model of Peano Arithmetic within every model of T : IN defines its carrier, while the
other formulas define the operations (or their graphs) of arithmetic, respectively. An
interpretation is recursive if it defines a recursive model of Peano Arithmetic within
every recursive model of T .

Given a theory with an interpretation of (enough of) arithmetic, one can think of
sequences indexed by the natural numbers of the interpretation, i.e., by the elements
of the carrier of the interpretation. Then one can talk about possible coding of initial
segments of such sequences by single elements. In the following definition, intuitively,
BETA is a uniform projection (decoding) function: for a sequence a0, a1, . . . , al, there
is a code u such that BETA(u, j) = aj for each j ≤ l. Let us stress once more though
that the “length” of the sequence and the “indexing subscripts” are numbers only in
the sense of the interpretation of arithmetic.

Definition 3.2. We say that a theory T with an interpretation of arithmetic has
the finite sequence coding property if there is a binary function BETA definable in T
such that

for every formula A(x, y, parameters) in the language of T , if Tproves
“for each x of the arithmetic interpretation universe IN , there exists exactly one y

such that A(x, y, parameters),”
then Talso proves the following:

“for each l of IN , there exists a u such that for each j ≤ l,
A(j,BETA(u, j), parameters).”

Models of a theory with the finite sequence coding property should be compared
with the concept of arithmetical universes of Harel [6]. Harel’s arithmetical universes
are equipped with a copy of the standard model of arithmetic, whereas we consider
algebras equipped with a copy of just a model of Peano Arithmetic. The latter turns
out to be standard under the assumptions of the following theorem.

Theorem 3.3. Let T be a first-order theory over a finite language such that
1. Peano Arithmetic can be recursively interpreted in T and
2. T has the finite sequence coding property.

Then there is a single sentence σreach in the language of T such that every recur-
sive model of T satisfying σreach is reachable.

Proof. To prove the above theorem we take the following sentence as σreach:

∀x∃u (u codes a path of reaching x from the generators).

More precisely, though still informally, the formula under the two quantifiers says the
following: u codes a sequence of values in a given model M such that x is the last
element of the sequence and each element in the sequence is either a denotation of a
constant in M or can be obtained from earlier values in the sequence by application
of one of the operations of M . Then consider a recursive model M of T . M contains a



PROGRAMMABLE DATA TYPES 2089

recursive model of Peano Arithmetic. The latter has to be standard by Tennenbaum’s
result [17]. Therefore, if σreach holds in M , then M is reachable.

Since the above sentence σreach holds in the standard model of the theory of
stacks on the natural numbers (which contains Peano Arithmetic and clearly has the
sequence coding property) the above theorem gives us the following corollary.

Corollary 3.4. Every recursive model of the true theory of stacks on natural
numbers is reachable.

It now follows easily that every programmable model of the true stack theory
on natural numbers is isomorphic to (N,N∗; 0, suc,+,×; top, pop, push, empty). Can
anyone supply a better, while so friendly, specification of this data type?

The message can now be put forward as follows. For any sufficiently rich spec-
ification, if one restricts its semantics to programmable models only, then in order
to ensure reachability, which in many cases means uniqueness, one simply needs to
throw implicitly or explicitly the appropriate σreach into the specification. Given a
sufficiently rich specification, in order to verify that all its programmable models are
reachable it is necessary and sufficient to check whether the appropriate σreach is
derivable from this specification. We have just applied this result to the true stack
theory on natural numbers.

4. Nonreachable programmable algebras. Theorem 3.3 indicates that com-
putability of a model of a sufficiently rich specification implies its reachability. In this
section we provide examples of specifications (theories) that are not rich enough and
admit recursive nonreachable models.

As an easy warm-up example consider the usual specification axioms for successor:

succ(x) 6= 0,
succ(x) = succ(y) → x = y.

Any linear order of type ω+(ω∗ +ω) provides a model of these axioms in the obvious
way (with no claim of induction). Clearly, this model is recursive but nonreachable.

There are several ways of constructing a recursive nonreachable model of the true
stack theory (as well as of its axiomatic mutations) on a finite set of elements. The
present research has evolved from a definition of such a model written as a program
in [11].

Here we give details of one possible construction of a recursive nonreachable model
of the axiomatic stack theory on a finite E.

Let us first recall the Gödel’s recursive function β such that for any natural
numbers a1, . . . , an, there exists an a ∈ N with β(a, i) = ai, for each i = 1, . . . , n,
and with β(a, 0) = n. Moreover, β(a, i) ≤ a −̇ 1. One can introduce the following
sequence coding function:

SC(a1, . . . , an)
df
= µx (β(x, 0) = n ∧ β(x, 1) = a1 ∧ · · · ∧ β(x, n) = an).

Define also the length function lh(a) = β(a, 0), and the projection functions
(a)i = β(a, i), for i = 1, . . . , lh(a). For n = 0, β(0, i) = 0, and so for the empty
sequence ε we have SC(ε) = 0. We also need

Seq(a)
df
≡ a is a code of a sequence of length lh(a).

The reader is referred to [15] for further details.



2090 MIRKOWSKA, SALWICKI, SREBRNY, AND TARLECKI

Now we define the model. Let {0, 1} be its carrier set of the element sort. The
reader can easily modify this construction to any finite set of elements. Let its stack
carrier be the union S ∪ S0 ∪ S1 of the following three sets of 0–1 sequences (finite or
infinite):

• S is the set of all the finite 0–1 sequences;
• S0 is the set of all the infinite 0–1 sequences stabilizing on 0;
• S1 is the set of all the infinite 0–1 sequences stabilizing on 1.

Their union is recursive since they can be viewed as copies of the following sets
of finite 0–1 sequences preceded by one of the markers 0, 1, or 2 and by their lengths.
We use 0 as a marker for S0, 1 for S1, and 2 for S. Look at S0 as the set of all
finite sequences with 1 at the end, followed by infinitely many 0’s. Allow the empty
sequence there too—although it has no 1 at the end, it is needed to cover the case
of the infinite sequence consisting only of 0’s. Such infinite sequences can be coded
up by pairs 〈0, a〉 with sequence numbers a. The length lh(a) indicates the position
of the last 1. lh(a) = 0 indicates that there is no 1 at all. Similarly, deal with S1 by
indicating the position of the last 0 or indicating there is no 0 at all. Formally:

S ∪ S0 ∪ S1 = {〈δ, a〉 | δ = 0, 1, 2 ∧ Seq(a) ∧ ∀1 ≤ i ≤ lh(a) ((a)i = 0 ∨ (a)i = 1)

∧ (lh(a) > 0 → (a)lh(a) 6= δ)}.

Define empty = 〈2, SC(ε)〉, and for each δ = 0, 1, 2 and each sequence code a of
(a1, a2, . . . , alh(a)) define the operations

• top(〈δ, a〉) =







a1 if lh(a) > 0,
0 if lh(a) = 0 and δ = 0,
1 if lh(a) = 0 and δ = 1,
undefined otherwise.

• pop(〈δ, a〉) =







〈δ, SC(a2, . . . , alh(a))〉 if lh(a) > 0,
〈δ, a〉 if lh(a) = 0 and δ 6= 2,
undefined otherwise.

• push(e, 〈δ, a〉) =

{
〈δ, SC(e, a1, . . . , alh(a))〉 if lh(a) > 0 or δ 6= e,
〈δ, a〉 if lh(a) = 0 and δ = e.

Lemma 4.1. ({0, 1}, S∪S0∪S1; top, pop, push, empty, 0, 1) is a recursive nonreach-
able model of the axiomatic stack theory.

Proof. The proof has an easy verification.

5. Nonreachable programmable models of decidable theories. In this
section we show that there exists a nonreachable recursive model of the true stack
theory on any given finite set E. We get it as an application of a general method
(Corollary 5.4). The argument below relies heavily on the following theorem (known
in the folklore of the field).

Theorem 5.1 (the computable model existence theorem). Every consistent de-
cidable theory has a recursive model.

Proof. One can “effectivize” Henkin’s proof of the completeness theorem for the
classical first-order logic. Some details are given in [7] and related results in [9]—
for the reader’s convenience we sketch a full proof in the appendix. The key step is
an effective version of the celebrated Lindenbaum–Tarski theorem: every decidable
consistent theory has a decidable complete extension in the same language.



PROGRAMMABLE DATA TYPES 2091

Definition 5.2. A theory is reachably unambiguous if all its reachable models
are elementarily equivalent.

It is easy to see that many interesting and useful theories are reachably unam-
biguous, e.g., Peano Arithmetic and Presburger Arithmetic. This is also the case for
the stack theory in any of the above formalizations. In all these cases the theory has
just one reachable model up to an isomorphism.

Corollary 5.3. If T is a reachably unambiguous, incomplete, and decidable
theory, then T has a recursive nonreachable model.

Proof. In the algorithm of completion of T following Tarski [16], one can keep
control on which of either σ or its negation ¬σ gets into the completion, for a sen-
tence σ such that neither T ⊢ σ nor T ⊢ ¬σ. Since T is incomplete and reachably
unambiguous, there is a sentence σ0 such that neither T ⊢ σ0 nor T ⊢ ¬σ0, although
σ0 holds in every reachable model of T . Thus, a recursive model of the completion of
T with ¬σ0, built as in the proof of Theorem 5.1 above, cannot be reachable.

Corollary 5.4. Suppose T is a first-order theory. Let c0, c1, c2, . . . be all the
closed terms of the language of T , and let c be a new individual constant. If T ∪{ c 6=
cn | n natural} is a consistent decidable theory, then T has a recursive nonreachable
model.

Proof. The proof is obvious by Theorem 5.1.

We establish some results concerning decidability of the true stack theory in order
to apply Corollary 5.4.

Theorem 5.5. Given a finite set E, the true stack theory on E is decidable.

Proof. We show an interpretation of the true stack theory on E in Presburger
Arithmetic (the first-order theory of (N, suc,+, 0)) which is well known to be decid-
able; see [13]. In fact, we show a somewhat stronger result by defining in (N, suc,+, 0)
an isomorphic copy of the model (E,E∗; top, pop, push, empty, {e}e∈E).

Let k be the cardinality of E. We define the two-sorted carrier of our interpreta-
tion and its operations as follows with the usual notation for operations and relations
definable in Presburger Arithmetic. (k denotes the kth numeral, i.e., k abbreviates
suc(. . . suc(
︸ ︷︷ ︸

k times

0) . . .)).

• U I
E(e)

df
≡ e = 0 ∨ e = suc(0) ∨ · · · ∨ e = k − 1;

• U I
S(s)

df
≡ s ≥ k;

• emptyI df
= k;

• pushI(e, s)
df
= k × (s− k) + e + k + 1;

• topI(s)
df
= (s− k − 1) mod k, for s > k;

• popI(s)
df
= [(s− k − 1) div k] + k, for s > k.

The idea behind this construction is that the stacks are coded up by numbers
in their k-adic expansions, shifted up by adding k + 1 to make disjoint room for the
elements and for the empty stack. The topI operation returns the last digit of the
expansion which is just the remainder of dividing by k. Similarly, popI cuts off the last
digit. This is legal here since division by a given numeral is expressible in Presburger
Arithmetic. Consequently, the decidability procedure for Presburger Arithmetic does
the job for the true stack theory on E.

The above proof gives immediately the following complexity results inherited from
Presburger Arithmetic. The double exponential upper bound is due to Ferrante and
Rackoff [3]. There exists a decision procedure and a constant c such that it takes



2092 MIRKOWSKA, SALWICKI, SREBRNY, AND TARLECKI

at most 22cn

deterministic single-tape Turing machine space to decide a sentence of

length n. This gives deterministic time upper bound 222
dn

; see also Fischer and Rabin
[5]. Precise complexity bounds for the true theory of stacks, which we have established
recently beyond the scope of the present paper, will appear elsewhere.

Lemma 5.6. Let TSTdenote the true stack theory on a given finite set E. Then
the theory TST ∪ {c 6= cn | n natural} is decidable, where c0, c1, c2, . . . are all the
closed terms of the stack sort of the language of TST , and c is a new individual
constant of the stack sort.

Proof. We reduce the decidability problem for this theory to the decidability of
Presburger Arithmetic (denoted by PrA below). Let T denote the extended theory
TST ∪ {c 6= cn | n natural}. By a reduction we mean an effective mapping f
associating to each sentence σ of the language L(T ) a sentence f(σ) of the language
L(PrA) such that T ⊢ σ iffPrA ⊢ f(σ). Thus a decision procedure whether σ is a
theorem of T will be reduced to whether f(σ) is a theorem of Presburger Arithmetic.
This will imply the decidability of T since Presburger Arithmetic is decidable.

For each σ of L(T ), we define f(σ) = ∃y∀x[x > y −→ Iσ(x/c)], where Iσ is the
interpretation of σ in Presburger Arithmetic as introduced in the proof of Theorem 5.5,
separately for each E, and Iσ(x/c) is the substitution of x for c in Iσ. We show that
f is a reduction, i.e., T ⊢ σ iff PrA ⊢ f(σ).

(=⇒) Suppose T ⊢ σ. At most finitely many axioms of the form c 6= cn may
appear in a proof of σ in T . Let l be the greatest number (subscript) of a constant
cn appearing in this proof. Then TST ∪ {c 6= c0, c 6= c1, c 6= c2, . . . , c 6= cl} ⊢ σ. Thus

TST ⊢ [c 6= c0 ∧ c 6= c1 ∧ c 6= c2 ∧ · · · ∧ c 6= cl → σ].

Since c is a new constant, there are no axioms concerning c in TST . Therefore

TST ⊢ ∀x [x 6= c0 ∧ x 6= c1 ∧ x 6= c2 ∧ · · · ∧ x 6= cl → σ(x/c)],

and so

PrA ⊢ ∀x [x 6= Ic0 ∧ x 6= Ic1 ∧ x 6= Ic2 ∧ · · · ∧ x 6= Icl → Iσ(x/c)].

In the standard model of Presburger Arithmetic the latter implies ∀x[x > cm −→
Iσ(x/c)], where cm is the greatest of Ic0, Ic1, Ic2,. . . , Icl. Here by Ici we denote the
interpretation of the constant term ci. Hence ∃y∀x [x > y → Iσ(x/c)] holds in the
standard model of Presburger Arithmetic. By completeness of Presburger Arithmetic
we get PrA ⊢ ∃y∀x [x > y → Iσ(x/c)].

(⇐=) Suppose PrA ⊢ ∃y∀x [x > y → Iσ(x/c)]. Let m be such a number that
∀x [x > m → Iσ(x/c)] holds in the standard model of PrA. Hence,

PrA ⊢ ∀x [x ≥ k ∧ x 6= Ic0 ∧ x 6= Ic1 ∧ x 6= Ic2 ∧ · · · ∧ x 6= Icl → Iσ(x/c)],

where k is the cardinality of E and l is large enough for all the numerals from k to m
to occur among Ic0, Ic1, Ic2,. . . , Icl. Therefore

PrA ⊢ [c ≥ k ∧ c 6= Ic0 ∧ c 6= Ic1 ∧ c 6= Ic2 ∧ · · · ∧ c 6= Icl → Iσ(c)],

where c is a new constant. Hence

TST ∪ {c 6= c0 ∧ c 6= c1 ∧ c 6= c2 ∧ · · · ∧ c 6= cl} ⊢ σ(c)



PROGRAMMABLE DATA TYPES 2093

for a new constant c of the stack sort. We get T ⊢ σ(c), since T contains

TST ∪ {c 6= c0 ∧ c 6= c1 ∧ c 6= c2 ∧ · · · ∧ c 6= cl}.

Corollary 5.7. The true stack theory on a given finite set E has a recursive
nonreachable model.

Proof. The proof follows from Lemma 5.6 and Corollary 5.4.

Corollary 5.8. The axiomatic stack theory on any finite E with the (first-order)
scheme of structural induction has a recursive nonreachable model.

Proof. It follows immediately from the above, since this theory is contained in
the true stack theory on E.

Remark 5.9. Presburger Arithmetic has a recursive nonreachable model.

Proof. It follows from Corollary 5.4 by a similar argument as in the proof of
Lemma 5.6. This has been known to the experts although never published.

6. Conclusion. In general a first-order specification (axiomatization) has too
many models. There have been several approaches in order to restrict the semantics
of specifications to intended models only. The initial algebra approach proposed by [4]
in the mid 1970s has particularly attracted a lot of attention. In this paper we propose
and advocate the programmable algebra approach, i.e., to consider the programmable
algebras as the only models. That is, by a specification we mean a pair (Σ, T ), where
Σ is a signature and T is a list of axioms in the classical first-order logic (with equality)
of signature Σ, and the models of such a specification under the proposed semantics
are all computable Σ-algebras that satisfy the axioms T . Furthermore,

• we give a criterion assuring that any specification which satisfies the criterion
has only reachable models. Often this means just one model up to isomor-
phism. This is the case of the axiomatic theory of stacks on natural numbers.

• We give some examples of specifications that do not satisfy the criterion and
admit programmable models which are not reachable. This is the case of both
axiomatic and true stack theory on any given finite set E.

• We give a rather powerful method of constructing programmable nonreach-
able models.

These results can be easily generalized to provide a criterion that ensures that
computable models of a theory are generated by a set of generators whenever this
set is definable by a first-order formula. For instance, we may always indicate a
subset of sorts and consider the carriers of these sorts as such a definable set of
generators. This slightly more general version would be needed, for instance, to deal
with stack theories on infinite sets of elements, which then can be considered over a
finite signature, without constants for elements.

We also show decidability of the true stack theory on a finite set of elements, a
result of interest on its own. One can use it, for instance, to conclude that Peano
Arithmetic is not interpretable in the theory of stacks on a finite set of elements.

We do not know if the axiomatic stack theory is decidable. It remains as an
intriguing open question. We conjecture that given a set E, the true stack theory
on E is contained in the axiomatic stack theory on E with the scheme of structural
induction. (Since the other inclusion is obvious, this would mean that the true and
axiomatic theories are equivalent in this case.)

7. Appendix. In this appendix we provide a proof of Theorem 5.1: every decid-
able consistent theory has a recursive (computable) model. In view of this paper, it



2094 MIRKOWSKA, SALWICKI, SREBRNY, AND TARLECKI

seems to be of considerable revitalized interest for use in the area of algebraic specifi-
cation of software systems, their semantics, validation, and systematic development.
It provides a source of supply of programmable algebras to various purposes. The
result has been in the folklore for many years. Some variant of it was stated in [9]
without proof and another one (a bit stronger than our formulation) in [7] with a
sketch of the proof idea.

As throughout this paper, we assume the reader is familiar with the usual formal-
ization of classical first-order logic and its semantics; see, for example, [15]. All the
theories considered will be formalized in classical first-order logic with countably many
symbols. For simplicity we give the result and our proof here for the single-sorted
case.

Recall that a theory T is called decidable if T is a recursive set (of Gödel numbers)
of sentences, i.e., if there is an effective procedure deciding in a finite number of steps
whether a given sentence is a theorem of T or not. Let us recall also that a theory T
is complete if for every sentence σ exactly one of the following holds: either σ ∈ T or
¬σ ∈ T . For two theories T and T ′, we say that T ′ is an extension of T if T ′ contains
T . By L(T ) we denote the language of T .

To prove the theorem we follow Henkin’s proof of the completeness theorem for
classical first-order logic with appropriate modifications. Let T be a consistent decid-
able theory. We extend T to another theory T ′ such that T ′ is decidable, complete,
and Skolemized. The latter means it has a term witness for each existential statement
derivable in this theory. The canonical structure will be constructed on the terms of
the language of T ′. Its interpretations of relation and function symbols will be defined
according to what T ′ knows about them. We then prove the canonical structure is a
model of T ′. Thus it is a model of T too, since T is a subtheory of T ′. The model
turns out recursive because T ′ is a decidable theory. That is, the construction of the
model is described recursively by the story of T ′. To this end we need the follow-
ing two lemmas. The first of them can be thought of as an effectivized Lindenbaum
theorem.

Lemma 7.1. Every decidable consistent theory has a complete decidable and
consistent extension in the same language.

Sketch of proof (Lindenbaum–Tarski). Let T be a decidable consistent the-
ory. Let ϕ0, ϕ1, ϕ2, . . . be a recursive enumeration of all sentences of the language of
T . Let T0 be T itself. Given decidable theory Tn, define kn as the least k such that
¬ϕk is not a theorem of Tn. Then let Tn+1 be the theory that results from adding ϕkn

to Tn as a new axiom. Tn+1 is decidable, since Tn+1 proves σ iff Tn proves ϕkn
→ σ.

Now let T ′ be the theory which has as its axioms all of the axioms of these theories
Tn, n ≥ 0. One can show that T ′ is consistent, complete, and decidable.

Lemma 7.2 (Skolemization). If T is a consistent decidable theory, then there is
a consistent decidable extension T ′ of T with the language L(T ′) containing L(T ) and
such that if a sentence ∃xϕ(x) is a theorem of T , then there is a term t in L(T ′) with
ϕ(t) belonging to T ′.

Proof. Let T be a consistent decidable theory. We construct by recursion a
sequence of languages L0, L1, L2, . . . and a sequence of theories T0, T1, T2, . . .. At
each step we extend the language with a new constant and adjoin one new axiom to
the theory. First, let us enumerate recursively all the existential sentences of L(T ):
∃xϕn(x), n natural. We take off with L0 = L(T ) and T0 = T . Now suppose we are
given a consistent decidable theory Tn in L(Tn). If ∃xϕn(x) is derivable in Tn, then
we take Ln+1 to be Ln plus a new constant cn, and Tn+1 to result from Tn by adding
ϕn(cn) as an axiom. Otherwise, we take Ln+1 = Ln and Tn+1 = Tn. Clearly, new



PROGRAMMABLE DATA TYPES 2095

theory Tn+1 is consistent.
To show that in the nontrivial case Tn+1 is decidable we reduce the decidability

problem for this theory to decidability of Tn. As in the proof of Lemma 5.6, here by
a reduction we mean an effective mapping f associating with each sentence σ of the
language L(Tn+1) a sentence f(σ) of the language L(Tn) such that Tn+1 ⊢ σ iffTn ⊢
f(σ). Thus a decision procedure whether σ is a theorem of Tn+1 will be reduced to
that of whether f(σ) is a theorem of Tn. This will mean decidability of Tn+1, since

Tn is decidable, by the inductive hypothesis. We take f(σ)
df
= ∃x[ϕn(x)&σ(x/cn)].

Given a sentence σ in L(Tn+1) and a proof d of σ in Tn+1, we notice that the axiom
ϕn(cn) can occur at most finitely many times in d. We can obtain a proof d′ of
∃x[ϕn(x)&σ(x/cn)] in Tn out of d as follows. Replace each occurrence of the axiom
ϕn(cn) in d by ∃xϕn(x). Then introduce the prefix ∃x[ϕn(x)& . . .] to each member
(step) of d containing cn, possibly renaming the other variables. Finally, substitute
each occurrence of cn with x. The other way around is proved similarly. Thus f is a
reduction.

To complete the proof, let T ′ be the union of all the theories Tn, n ≥ 0. Clearly,
T ′ is consistent. It is decidable as a recursive union of recursive sets.

Proof of Theorem 5.1. Let T be a consistent decidable theory. As the first step
we construct a consistent, decidable, complete, and Skolemized extension T ∗ of T .
To this end we construct recursively a sequence L0, L1, L2, . . . of languages and a
sequence T0, T

′
0, T1, T

′
1, T2, T

′
2, . . . of theories as follows. We start off with L0 = L(T )

and T0 = T and set T ′
0 to be an extension of T provided by Lemma 7.1. Suppose

we are given a consistent and decidable theory Tn in language Ln = L(Tn). We take
Ln+1 = L(T ′) and Tn+1 = T ′ where T ′ is an extension of Tn provided by Lemma 7.2.
Clearly, Tn+1 is consistent and decidable. Now we take the union of all of them:

L∗ =
⋃

n≥0

Ln

and

T ∗ =
⋃

n≥0

Tn =
⋃

n≥0

T ′
n.

T ∗ is decidable, consistent, complete, and Skolemized.
As for the rest of the proof we only use a standard construction of the canonical

model for T ∗ (see, e.g., [15], pp. 44–46). We represent the resulting equivalence
relations on the natural numbers. Equivalence classes can be identified with their
least (number) representatives. The resulting model is computable since T ∗ is decid-
able.

Acknowledgments. The third author would like to thank Richard Kaye for a
number of inspiring conversations. Thanks to an anonymous referee who suggested
to improve the paper by including a proof of Theorem 5.1 as an appendix.

REFERENCES

[1] F. Bauer and H. Wössner, Algorithmic Language and Program Development, Springer-
Verlag, Berlin, Heidelberg, New York, 1982.

[2] J.A. Bergstra and J.V. Tucker, Initial and final algebra semantics for data type specifica-

tions: Two characterization theorems, SIAM J. Comput., 12 (1983), pp. 366–387.



2096 MIRKOWSKA, SALWICKI, SREBRNY, AND TARLECKI

[3] J. Ferrante and C. Rackoff, A decision procedure for the first order theory of real addition

with order, SIAM J. Comput., 4 (1975), pp. 69–76.
[4] J.A. Goguen, J.W. Thather, and E. Wagner, An initial algebra approach to the specification,

correctness and implementation of abstract data types, in Current Trends in Programming
Methodology, R. Yeh, ed., Prentice-Hall, Englewood Cliffs, NJ, 1978, pp. 80–149.

[5] M.J. Fischer and M.O. Rabin, Super-Exponential Complexity of Presburger Arithmetic,
SIAM-AMS Proc. 7, AMS, Providence, RI, 1974, pp. 27–41.

[6] D. Harel, First Order Dynamic Logic, Lecture Notes in Comput. Sci. 68, Springer-Verlag,
Berlin, New York, 1979.

[7] V.S. Harizanov, Pure computable model theory, in Handbook of Recursive Mathematics, Yu.
L. Ershov, S.S. Goncharov, A. Nerode, J.B. Remmel, and V.W. Marek, eds., Stud. Logic
Found. Math. 138, North-Holland, Amsterdam, 1998.

[8] S. Kahrs, D. Sannella, and A. Tarlecki, The definition of Extended ML: A gentle intro-

duction, Theoret. Comput. Sci., 173 (1997), pp. 445–484.
[9] T.S. Millar, Foundations of recursive model theory, Ann. Math. Logic, 13 (1978), pp. 45–72.

[10] R. Milner, R. Harper, and M. Tofte, The Definition of Standard ML, MIT Press, Cam-
bridge, MA, 1991.

[11] G. Mirkowska and A. Salwicki, The algebraic specifications do not have the Tennenbaum

property, Fund. Inform., 28 (1996), pp. 141–152.
[12] G. Mirkowska and A. Salwicki, Algorithmic Logic, PWN, Warsaw, Poland, and D. Reidel,

Dordrecht, the Netherlands, 1987.
[13] M. Presburger, Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen

in welchem die Addition als einzige Operation hervortritt, in Comptes Rendus du 1er
Congrès des Mathematiciens des Pays Slaves, Warszawa, 1929, pp. 92–101.

[14] D. Sannella and A. Tarlecki, Mind the Gap! Abstract Versus Concrete Models of Specifi-

cations, Lecture Notes in Comput. Sci. 1113, Springer-Verlag, Berlin, 1996, pp. 114–134.
[15] J. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, MA, 1967.
[16] A. Tarski, A. Mostowski, and R. Robinson, Undecidable Theories, North-Holland, Amster-

dam, 1953.
[17] S. Tennenbaum, Non-Archimedean models of arithmetic, Notices Amer. Math. Soc., 1959,

p. 270.
[18] M. Wirsing, Algebraic specification, in Handbook of Theoretical Computer Science, J. van

Leeuwen, ed., Elsevier, Amsterdam, 1990, pp. 676–788.


