
A Formally Verified Single Transferable Vote
Scheme with Fractional Values

Milad Ghale, Rajeev Goré, Dirk Pattinson

Rajeev.Gore@anu.edu.au

September 16, 2021

Rajeev.Gore@anu.edu.au

Overview

E2E Verifiabiity Needs Program Verification

Single Transferable Voting (STV) scheme ?

Why is it hard to tally ballots according to STV?

Current computer counting in Australia

Where is the scrutiny and trust ?

Interactive Synthesis of Vote Counting Programs

Results, Features, Further Work, Caveats and Conclusion

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct

Recorded as cast: ballot was not tampered with in transit

Tallied as recorded: voter can verify that ballot was tallied

But ... what if the vote-counting program contains bugs?

Software independence:

Idea 1: vote-counting programs must produce a tallying script

Idea 2: if the tallying script is correct then the result is correct

Idea 3: it is trivial to write a program to check tallying script

That is: provide easily-checkable evidence that this run is correct

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct

Recorded as cast: ballot was not tampered with in transit

Tallied as recorded: voter can verify that ballot was tallied

But ... what if the vote-counting program contains bugs?

Software independence:

Idea 1: vote-counting programs must produce a tallying script

Idea 2: if the tallying script is correct then the result is correct

Idea 3: it is trivial to write a program to check tallying script

That is: provide easily-checkable evidence that this run is correct

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct

Recorded as cast: ballot was not tampered with in transit

Tallied as recorded: voter can verify that ballot was tallied

But ... what if the vote-counting program contains bugs?

Software independence:

Idea 1: vote-counting programs must produce a tallying script

Idea 2: if the tallying script is correct then the result is correct

Idea 3: it is trivial to write a program to check tallying script

That is: provide easily-checkable evidence that this run is correct

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct

Recorded as cast: ballot was not tampered with in transit

Tallied as recorded: voter can verify that ballot was tallied

But ... what if the vote-counting program contains bugs?

Software independence:

Idea 1: vote-counting programs must produce a tallying script

Idea 2: if the tallying script is correct then the result is correct

Idea 3: it is trivial to write a program to check tallying script

That is: provide easily-checkable evidence that this run is correct

What do we mean by voting scheme?

A method for setting out, filling in and counting ballots

STV Ballot Form
Rank any number of candidates

in order of preference.

Alice

Bob

Charlie

Dave

1
2

3

Setting out: order of candidates fixed or
Robson rotated ?

Filling in: write all numbers from 1 to N
or only ones you want ?

Counting: quota required to be elected;
who is weakest candidate ;
how to break ties;
how to transfer a vote;
when to stop counting

Nothing to do with electronic voting . . . yet

In particular, nothing to do with security aspects of e-voting

Single Transferable Vote Counting is Non-trivial

Vacancies: number of candidates that we need to elect
Candidates: number of people standing for election
Quota: how many votes are required to elect a candidate
Ballot: is a vote for highest ranked continuing candidate
Counting: proceeds in rounds
Surplus: ballots are transferred to next continuing candidate
Transfer Value: current value of ballot (possibly ≤ 1)
Eliminate Weakest: but how to break ties

STV Ballot Form
Rank any number of candidates

in order of preference.

Alice

Bob

Charlie

Dave

1
2

3

Rounds: repeat until all seats filled
Tally: all highest preferences
Elected: All candidates with “quota” are

elected
Eliminated: If nobody elected this round then

eliminate weakest candidate
Transfer: compute new transfer values
Autofill: If can seat all remaining cands., do so

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D

Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

A > B > D

votes(A) = 1

A > B > D

votes(A) = 2

A > B > D
D > C

votes(D) = 1

C > D

votes(C) = 1

Elected: A, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

A > B > D

votes(A) = 1

A > B > D

votes(A) = 2

A > B > D
D > C

votes(D) = 1

C > D

votes(C) = 1

Elected: A, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

A > B > D votes(A) = 1
A > B > D votes(A) = 2
A > B > D votes(A) = 3
D > C votes(D) = 1
C > D votes(C) = 1

Elected: A, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

A > B > D

votes(A) = 1

A > B > D

votes(A) = 2

A > B > D
D > C votes(D) = 1
C > D votes(C) = 1

Elected: A

, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

(((
(((hhhhhhA > B > D

votes(A) = 1

(((
(((hhhhhhA > B > D

votes(A) = 2

A > B > D
D > C votes(D) = 1
C > D votes(C) = 1

Elected: A

, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

(((
(((hhhhhhA > B > D

votes(A) = 1

(((
(((hhhhhhA > B > D

votes(A) = 2

�SA > B > D votes(B) = 1
D > C votes(D) = 1
C > D votes(C) = 1

Elected: A

, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

(((
(((hhhhhhA > B > D

votes(A) = 1

(((
(((hhhhhhA > B > D

votes(A) = 2

�SA >��@@B > D votes(D) = 2
D > C

votes(D) = 1

C > D votes(C) = 1

Elected: A

, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

(((
(((hhhhhhA > B > D

votes(A) = 1

(((
(((hhhhhhA > B > D

votes(A) = 2

�SA >��@@B > D votes(D) = 2
D > C

votes(D) = 1

C > D votes(C) = 1

Elected: A, D

Eliminated: B

Assume no fractional transfers and no autofill

Existing Electronic Vote-counting in Australia

Australian Electoral Commission: proprietary code; not available
for scrutiny; FOI request to publish code denied on grounds of
“security” and “commercial in confidence”

Victorian Electoral Commission: proprietary code; available for
scrutiny; no formal scrutiny to my knowledge

Australian Capital Territory: eVACSTM

I developed by Software Improvements Pty Ltd. using C++
I used since 2001 to count four elections
I counting code used to be available from ACTEC website
I complete rewrite of code for 2020 but no longer available
I full code available if you sign a non-disclosure agreement

New South Wales Electoral Commission: detailed functional
requirements publicly available; found to comply with legislation
by legal expert from QUT; certified by Birlasoft as passing all
tests; proprietary code; code not available for scrutiny

TMeVACS is a trademark of Software Improvements Pty Ltd.

ACTEC and SoftImp Approach

scrutiny artefacts trust

published legal text

ACTEC SoftImp

��

published?
functional specs

using UML

))
SoftImp

��

ACTEC & SoftImp

evidence? “audited” by BMM: all okay

semi-published computer code

44

NSWEC Approach

scrutiny artefacts trust

published legal text

++

NSWEC

��

legal expert (QUT)

published
47 pages of functional
specs with flow chart

44

))

Vendor

��

evidence?
audited by Birlasoft:

passed all tests

proprietary computer code

44

Bugs in ACT and NSW Counting Modules

ANU logic group: found three bugs in (old) eVACS

programming error: simple for-loop bounds error
ambiguous legal text: break weakest candidate ties by

inspecting previous round where “all candidates have an
unequal number of votes”

programming error: un-initialised boolean: different compilers
give different results

how bad: for every bug, we could generate an election in which
the code gave the wrong result

UniMelb group: found bug in NSWEC code whereby one
candidate’s chances of winning were reduced from 90% to 10%
and she lost the 2015 election! No recourse as the three month
period for a legal challenge had passed.

“Simplifications” in ACT Legislation Are Harmful

ANU logic group: we showed that

Rounding (fractions): errors can become significant
Point of declaring winners: can be significant
“Last parcel” simplication: is just silly
How bad: for every “simplification”, there is an election where

legislation gave the wrong result w.r.t. Vanilla STV
And ... these cases do happen in real elections e.g. Brindabella

Conway and Teague : problems in the new 2020 eVACS
threatpost.com/e-voting-security-flaws/166110/

Rounding: to six decimal places not implemented correctly
Privacy: system recorded place and time of voting!
Enquiry: the ACT is current conducting an enquiry!

threatpost.com/e-voting-security-flaws/166110/

Efficient Interactive Synthesis Via Mathematical Proof
scrutiny artefacts trust

published legal text
,,

manual

��
manual

""

(your)
elections expert

published
rules capturing
state transitions

of counting process
manual

//

Coq proof:
correct certificate
implies
correct count

published
functional specs as
formula of typed

higher-order intuitionistic logic

manual 55

automatic!

��

published
Coq

certificate

published
certificate producing

computer code

Minimal STV: Abstract Machine

Three types of states: initial states (all ballots uncounted); final
states (election winners are declared); intermediate states

Data “carried” by non-initial states: 7 items

1 list of currently uncounted ballots;
2-3 tally t and pile p of ballots “for” each candidate;
4-5 elected/eliminated candidate lists (bl1, bl2) requiring

transfer;
6-7 lists of elected e and continuing h candidates

State Transitions: correspond to counting, eliminating,
transferring, electing, and declaring winners as formal rules that
relate a pre-state and a post-state via conditions

Variations: so minimal STV does not define the rules, but rather
postulates minimal conditions that every rule needs to satisfy

Inductive definition of STV machine states in Coq

Inductive mynat : Set :=

| O : mynat (* O is a mynat *)

| S : mynat -> mynat. (* S of a mynat is a mynat *)

Inductive STV_States :=

| initial: list ballot -> STV_States

| state: list ballot

* list (cand -> Q)

* (cand -> list (list ballot))

* (list cand) * (list cand)

* {elected: list cand | length elected <= st}

* {hopeful: list cand | NoDup hopeful}

-> STV_States

| winners: list cand -> STV_States.

Inductive definition of STV machine states in Coq

Inductive mynat : Set :=

| O : mynat (* O is a mynat *)

| S : mynat -> mynat. (* S of a mynat is a mynat *)

Inductive STV_States :=

| initial: list ballot -> STV_States

| state: list ballot

* list (cand -> Q)

* (cand -> list (list ballot))

* (list cand) * (list cand)

* {elected: list cand | length elected <= st}

* {hopeful: list cand | NoDup hopeful}

-> STV_States

| winners: list cand -> STV_States.

Minimal STV: an instance

An instance: of STV is then given by

definitions: rules for counting, electing, eliminating, transfering
proofs: that rules satisfy the respective conditions

Conditions: consist of two parts

applicability: conditions for when the rule is applicable
progress: how the rule changes the state

Prove: three theorems

reduction: every applicable transition reduces “complexity”
liveness: at least one transition from each non-final state
termination: minimal STV terminates

Code Extraction and Certificates

Encoding: into Coq which is based on intuitionistic logic

Constructive proofs: of theorems of the form ∀x∃y , ϕ(x , y)
correspond to lambda-terms

Code Extraction: automatically extract Haskell code

Certificates: the theorems stated so the extracted code produces a
run of the state machine as evidence that the result is correct

Claim: it is easy to write a program to check that the certificate is
correct wrt the rules

Code Extraction and Certificates

Encoding: into Coq which is based on intuitionistic logic

Constructive proofs: of theorems of the form ∀x∃y , ϕ(x , y)
correspond to lambda-terms

Code Extraction: automatically extract Haskell code

Certificates: the theorems stated so the extracted code produces a
run of the state machine as evidence that the result is correct

Claim: it is easy to write a program to check that the certificate is
correct wrt the rules

Example: certificates and checking

Inductive add: mynat -> mynat -> mynat -> Prop :=

| addO: forall n, (add n O n)

| addS: forall n m r, add n m r -> add n (S m) (S r).

addO
add (S O) O (S O)

addS
add (S O) (S O) (S S O)

addS
add (S O) (S S O) (S S S O)

addS
add (S O) (S S S O) (S S S S O)

initial [([a,c,b],1/1),([b,c,a],1/1),([c,a],1/1),([c,b,a],1/1)]
start

state [([a,c,b],1/1),([b,c,a],1/1),([c,a],1/1),([c,b,a],1/1)]; a[0/1] b[0/1] c[0/1]; a[] b[] c[]; ([],[]); []; [a,b,c]
count

state []; a[1/1] b[1/1] c[2/1]; a[[([a,c,b],1/1)]] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[]); []; [a,b,c]
eliminate

state []; a[1/1] b[1/1] c[2/1]; a[[(a,c,b],1/1)]] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[a]); []; [b,c]
transfer-removed

state [([a,c,b],1/1)]; a[1/1] b[1/1] c[2/1]; a[] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[a]); []; [b,c]
count

state []; a[1/1] b[1/1] c[3/1], a[] b[[([b,c,a],1/1)]] c[[(a,c,b],0/1)]]; ([c],[a]); [c]; [b]
elect win

winners [c]

Checking: simple pattern matching on rule definitions

Example: certificates and checking

Inductive add: mynat -> mynat -> mynat -> Prop :=

| addO: forall n, (add n O n)

| addS: forall n m r, add n m r -> add n (S m) (S r).

addO
add (S O) O (S O)

addS
add (S O) (S O) (S S O)

addS
add (S O) (S S O) (S S S O)

addS
add (S O) (S S S O) (S S S S O)

initial [([a,c,b],1/1),([b,c,a],1/1),([c,a],1/1),([c,b,a],1/1)]
start

state [([a,c,b],1/1),([b,c,a],1/1),([c,a],1/1),([c,b,a],1/1)]; a[0/1] b[0/1] c[0/1]; a[] b[] c[]; ([],[]); []; [a,b,c]
count

state []; a[1/1] b[1/1] c[2/1]; a[[([a,c,b],1/1)]] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[]); []; [a,b,c]
eliminate

state []; a[1/1] b[1/1] c[2/1]; a[[(a,c,b],1/1)]] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[a]); []; [b,c]
transfer-removed

state [([a,c,b],1/1)]; a[1/1] b[1/1] c[2/1]; a[] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[a]); []; [b,c]
count

state []; a[1/1] b[1/1] c[3/1], a[] b[[([b,c,a],1/1)]] c[[(a,c,b],0/1)]]; ([c],[a]); [c]; [b]
elect win

winners [c]

Checking: simple pattern matching on rule definitions

Features and Further Work

Completed: STV vote-counting and Schulze Method

Exact fractions: our code for STV manipulates fractions exactly

Efficiency: can (STV) count up to 10 million votes with 40
candidates and 20 vacancies in 20 minutes

Certificate: our code produces a (plain text) certificate that
vouches for the correctness of the count

Scrutiny: program to check the certificate is correct w.r.t.
published rules and published ballots is just pattern matching

Trust: you don’t even need to trust the hardware or software since
a correct certificate implies a correct count

Caveat: have to publish all ballots

Further Work: can we extend to STV counting of encrypted ballots

Features and Further Work

Completed: STV vote-counting and Schulze Method

Exact fractions: our code for STV manipulates fractions exactly

Efficiency: can (STV) count up to 10 million votes with 40
candidates and 20 vacancies in 20 minutes

Certificate: our code produces a (plain text) certificate that
vouches for the correctness of the count

Scrutiny: program to check the certificate is correct w.r.t.
published rules and published ballots is just pattern matching

Trust: you don’t even need to trust the hardware or software since
a correct certificate implies a correct count

Caveat: have to publish all ballots

Further Work: can we extend to STV counting of encrypted ballots

Features and Further Work

Completed: STV vote-counting and Schulze Method

Exact fractions: our code for STV manipulates fractions exactly

Efficiency: can (STV) count up to 10 million votes with 40
candidates and 20 vacancies in 20 minutes

Certificate: our code produces a (plain text) certificate that
vouches for the correctness of the count

Scrutiny: program to check the certificate is correct w.r.t.
published rules and published ballots is just pattern matching

Trust: you don’t even need to trust the hardware or software since
a correct certificate implies a correct count

Caveat: have to publish all ballots

Further Work: can we extend to STV counting of encrypted ballots

Why Should We Trust Machine-checked Proof?

scrutiny artefacts trust

published
1930s Alonzo Church’s

typed λ-calculus

INRIA

��

**

peer review

logic community

published
Coq theorem prover:

50K lines of OCaml code

44

person

��

Coq development
team

published
proof checked

by Coq

OO

OCaml compiler
and hardware

Further Work, Caveats and Conclusions:

Verified Certificate Checker: using CakeML to verify our certificate
checker against a formal model of the semantics of C

Other flavours of STV: cover all STV schemes used in Australia

Effort: approximately 4 person-months of work by a Coq novice

Caveat: relies on EMB publishing the ballots in clear text so it is
vulnerable to the Sicilian Attack

Shufflesum: currently trying to synthesise the code

Conclusion: verified synthesis possible for complex e-counting

