A Formally Verified Single Transferable Vote Scheme with Fractional Values

Milad Ghale, Rajeev Goré, Dirk Pattinson

Rajeev.Gore@anu.edu.au

September 16, 2021

Overview

E2E Verifiabiity Needs Program Verification
Single Transferable Voting (STV) scheme ?
Why is it hard to tally ballots according to STV?
Current computer counting in Australia
Where is the scrutiny and trust?
Interactive Synthesis of Vote Counting Programs
Results, Features, Further Work, Caveats and Conclusion

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct Recorded as cast: ballot was not tampered with in transit Tallied as recorded: voter can verify that ballot was tallied

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct Recorded as cast: ballot was not tampered with in transit Tallied as recorded: voter can verify that ballot was tallied But ... what if the vote-counting program contains bugs?

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct Recorded as cast: ballot was not tampered with in transit Tallied as recorded: voter can verify that ballot was tallied But ... what if the vote-counting program contains bugs?

Software independence:
Idea 1: vote-counting programs must produce a tallying script Idea 2: if the tallying script is correct then the result is correct Idea 3: it is trivial to write a program to check tallying script

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct Recorded as cast: ballot was not tampered with in transit Tallied as recorded: voter can verify that ballot was tallied But ... what if the vote-counting program contains bugs?

Software independence:
Idea 1: vote-counting programs must produce a tallying script Idea 2: if the tallying script is correct then the result is correct Idea 3: it is trivial to write a program to check tallying script That is: provide easily-checkable evidence that this run is correct

What do we mean by voting scheme?

A method for setting out, filling in and counting ballots

Setting out: order of candidates fixed or Robson rotated ?

Filling in: write all numbers from 1 to N or only ones you want ?
Counting: quota required to be elected; who is weakest candidate ; how to break ties; how to transfer a vote; when to stop counting

Nothing to do with electronic voting ... yet
In particular, nothing to do with security aspects of e-voting

Single Transferable Vote Counting is Non-trivial

Vacancies: number of candidates that we need to elect Candidates: number of people standing for election Quota: how many votes are required to elect a candidate Ballot: is a vote for highest ranked continuing candidate Counting: proceeds in rounds
Surplus: ballots are transferred to next continuing candidate
Transfer Value: current value of ballot (possibly ≤ 1)
Eliminate Weakest: but how to break ties

Rounds: repeat until all seats filled Tally: all highest preferences
Elected: All candidates with "quota" are elected
Eliminated: If nobody elected this round then
eliminate weakest candidate
Transfer: compute new transfer values
Autofill: If can seat all remaining cands., do so

Example \quad Droop Quota: $Q=\left\lfloor\frac{\text { totalnumberoflallots }}{\text { seats }+1}\right\rfloor+1$

Candidates: A, B, C, D
Seats: 2
Ballots: 5

$$
\begin{aligned}
& A>B>D \\
& A>B>D \\
& A>B>D \\
& D>C \\
& C>D
\end{aligned}
$$

Assume no fractional transfers and no autofill

Example \quad Droop Quota: $Q=\left\lfloor\frac{\lfloor\text { totalnumberofballots }}{\text { seats }+1}\right\rfloor+1$

Candidates: A, B, C, D

$$
Q=\left\lfloor\frac{5}{2+1}\right\rfloor+1=2
$$

Seats: 2
Ballots: 5

$$
\begin{aligned}
& A>B>D \\
& A>B>D \\
& A>B>D \\
& D>C \\
& C>D
\end{aligned}
$$

Example \quad Droop Quota: $Q=\left\lfloor\frac{\text { totalnumberoflallots }}{\text { seats }+1}\right\rfloor+1$

Candidates: A, B, C, D

$$
Q=\left\lfloor\frac{5}{2+1}\right\rfloor+1=2
$$

Seats: 2
Ballots: 5

$$
\begin{array}{ll}
A>B>D & \operatorname{votes}(A)=1 \\
A>B>D & \operatorname{votes}(A)=2 \\
A>B>D & \operatorname{votes}(A)=3 \\
D>C & \operatorname{votes}(D)=1 \\
C>D & \operatorname{votes}(C)=1
\end{array}
$$

Example \quad Droop Quota: $Q=\left\lfloor\frac{\text { totalnumberoflallots }}{\text { seats }+1}\right\rfloor+1$

Candidates: A, B, C, D

$$
Q=\left\lfloor\frac{5}{2+1}\right\rfloor+1=2
$$

Seats: 2
Ballots: 5

$$
\begin{array}{ll}
A>B>D & \\
A>B>D & \\
A>B>D & \\
D>C & \operatorname{votes}(D)=1 \\
C>D & \operatorname{votes}(C)=1
\end{array}
$$

Elected: A

Example \quad Droop Quota: $Q=\left\lfloor\frac{\text { totalnumberoflallots }}{\text { seats }+1}\right\rfloor+1$

Candidates: A, B, C, D

$$
Q=\left\lfloor\frac{5}{2+1}\right\rfloor+1=2
$$

Seats: 2
Ballots: 5

Elected: A

Example \quad Droop Quota: $Q=\left\lfloor\frac{\text { totalnumberoflallots }}{\text { seats }+1}\right\rfloor+1$

Candidates: A, B, C, D

$$
Q=\left\lfloor\frac{5}{2+1}\right\rfloor+1=2
$$

Seats: 2
Ballots: 5

$$
\begin{array}{ll}
A>B>D & \operatorname{votes}(B)=1 \\
D>C & \operatorname{votes}(D)=1 \\
C>D & \operatorname{votes}(C)=1
\end{array}
$$

Elected: A

Example \quad Droop Quota: $Q=\left\lfloor\frac{\text { totalnumberoflallots }}{\text { seats }+1}\right\rfloor+1$

Candidates: A, B, C, D

$$
Q=\left\lfloor\frac{5}{2+1}\right\rfloor+1=2
$$

Seats: 2
Ballots: 5

$$
\begin{array}{ll}
A>X>D & \operatorname{votes}(D)=2 \\
D>C & \\
C>D & \operatorname{votes}(C)=1
\end{array}
$$

Elected: A
Eliminated: B

Example \quad Droop Quota: $Q=\left\lfloor\frac{\text { totalnumberoflallots }}{\text { seats }+1}\right\rfloor+1$

Candidates: A, B, C, D

$$
Q=\left\lfloor\frac{5}{2+1}\right\rfloor+1=2
$$

Seats: 2
Ballots: 5

$$
\begin{array}{ll}
& \operatorname{votes}(D)=2 \\
D>C & \\
C>D & \operatorname{votes}(C)=1
\end{array}
$$

Elected: A, D
Eliminated: B

Existing Electronic Vote-counting in Australia

Australian Electoral Commission: proprietary code; not available for scrutiny; FOI request to publish code denied on grounds of "security" and "commercial in confidence"
Victorian Electoral Commission: proprietary code; available for scrutiny; no formal scrutiny to my knowledge
Australian Capital Territory: eVACS ${ }^{T M}$

- developed by Software Improvements Pty Ltd. using C++
- used since 2001 to count four elections
- counting code used to be available from ACTEC website
- complete rewrite of code for 2020 but no longer available
- full code available if you sign a non-disclosure agreement

New South Wales Electoral Commission: detailed functional requirements publicly available; found to comply with legislation by legal expert from QUT; certified by Birlasoft as passing all tests; proprietary code; code not available for scrutiny
${ }^{T M}$ eVACS is a trademark of Software Improvements Pty Ltd.

ACTEC and Softlmp Approach

scrutiny

artefacts
trust

legal text
ACTEC ${ }_{\downarrow}$ Softmp
functional specs using UML

ACTEC \& SoftImp

evidence?

computer code

NSWEC Approach

scrutiny

artefacts
trust

Bugs in ACT and NSW Counting Modules

ANU logic group: found three bugs in (old) eVACS
programming error: simple for-loop bounds error
ambiguous legal text: break weakest candidate ties by
inspecting previous round where "all candidates have an
unequal number of votes"
programming error: un-initialised boolean: different compilers give different results
how bad: for every bug, we could generate an election in which the code gave the wrong result

UniMelb group: found bug in NSWEC code whereby one candidate's chances of winning were reduced from 90% to 10% and she lost the 2015 election! No recourse as the three month period for a legal challenge had passed.

"Simplifications" in ACT Legislation Are Harmful

ANU logic group: we showed that
Rounding (fractions): errors can become significant
Point of declaring winners: can be significant
"Last parcel" simplication: is just silly
How bad: for every "simplification", there is an election where legislation gave the wrong result w.r.t. Vanilla STV
And ... these cases do happen in real elections e.g. Brindabella

Conway and Teague : problems in the new 2020 eVACS
threatpost.com/e-voting-security-flaws/166110/
Rounding: to six decimal places not implemented correctly
Privacy: system recorded place and time of voting!
Enquiry: the ACT is current conducting an enquiry!

Efficient Interactive Synthesis Via Mathematical Proof

scrutiny
published
published
published
higher-order intuitionistic logic
artefacts
legal text
functional specs as
formula of typed
automatic! \downarrow
certificate producing computer code
trust
(your)
elections expert
Coq proof: correct certificate implies
manual Correct count

Minimal STV: Abstract Machine

Three types of states: initial states (all ballots uncounted); final states (election winners are declared); intermediate states
Data "carried" by non-initial states: 7 items
1 list of currently uncounted ballots;
2-3 tally t and pile p of ballots "for" each candidate;
4-5 elected/eliminated candidate lists ($b l_{1}, b l_{2}$) requiring transfer;
6-7 lists of elected e and continuing h candidates
State Transitions: correspond to counting, eliminating, transferring, electing, and declaring winners as formal rules that relate a pre-state and a post-state via conditions
Variations: so minimal STV does not define the rules, but rather postulates minimal conditions that every rule needs to satisfy

Inductive definition of STV machine states in Coq

```
Inductive mynat : Set :=
    | O : mynat
    (* O is a mynat *)
    | S : mynat -> mynat. (* S of a mynat is a mynat *)
Inductive STV_States :=
    | initial: list ballot -> STV_States
    state: list ballot
    * list (cand -> Q)
    * (cand -> list (list ballot))
    * (list cand) * (list cand)
    * {elected: list cand | length elected <= st}
    * {hopeful: list cand | NoDup hopeful}
```

 -> STV_States
 | winners: list cand -> STV_States.

Inductive definition of STV machine states in Coq

Inductive mynat : Set :=
$\mid 0$: mynat (* 0 is a mynat *)
| S : mynat -> mynat. (* S of a mynat is a mynat *)
Inductive STV_States :=
| initial: list ballot -> STV_States
| state: list ballot

* list (cand -> Q)
* (cand -> list (list ballot))
* (list cand) * (list cand)
* \{elected: list cand | length elected <= st\}
* \{hopeful: list cand | NoDup hopeful\}
-> STV_States
| winners: list cand -> STV_States.

Minimal STV: an instance

An instance: of STV is then given by
definitions: rules for counting, electing, eliminating, transfering proofs: that rules satisfy the respective conditions

Conditions: consist of two parts applicability: conditions for when the rule is applicable progress: how the rule changes the state

Prove: three theorems
reduction: every applicable transition reduces "complexity" liveness: at least one transition from each non-final state termination: minimal STV terminates

Code Extraction and Certificates

Encoding: into Coq which is based on intuitionistic logic
Constructive proofs: of theorems of the form $\forall x \exists y, \varphi(x, y)$ correspond to lambda-terms
Code Extraction: automatically extract Haskell code
Certificates: the theorems stated so the extracted code produces a run of the state machine as evidence that the result is correct

Claim: it is easy to write a program to check that the certificate is correct wrt the rules

Code Extraction and Certificates

Encoding: into Coq which is based on intuitionistic logic
Constructive proofs: of theorems of the form $\forall x \exists y, \varphi(x, y)$ correspond to lambda-terms
Code Extraction: automatically extract Haskell code
Certificates: the theorems stated so the extracted code produces a run of the state machine as evidence that the result is correct
Claim: it is easy to write a program to check that the certificate is correct wrt the rules

Example: certificates and checking

Inductive add: mynat -> mynat -> mynat -> Prop := | addO: forall n, (add $n 0 n$)
| addS: forall n m r , add $\mathrm{n} \mathrm{m} \mathrm{r} \rightarrow$ add n (S m) (S r).
initial $[([a, c, b], 1 / 1),([b, c, a], 1 / 1),([c, a], 1 / 1),([c, b, a], 1 / 1)]$
\qquad

Example: certificates and checking

Inductive add: mynat -> mynat -> mynat -> Prop :=
| addO: forall n, (add n O n)
| addS: forall $n \mathrm{~m} r$, add $\mathrm{n} m \mathrm{r} \rightarrow$ add n (S m) (S r).

initial [([a,c, b],1/1),([b,c,a],1/1),([c,a],1/1),([c, b,a],1/1)]	

Checking: simple pattern matching on rule definitions

Features and Further Work

Completed: STV vote-counting and Schulze Method
Exact fractions: our code for STV manipulates fractions exactly Efficiency: can (STV) count up to 10 million votes with 40 candidates and 20 vacancies in 20 minutes

Scrutiny: program to check the certificate is correct w.r.t. published rules and published ballots is just pattern matching

Trust: you don't even need to trust the hardware or software since
a correct certificate implies a correct count
\square
Caveat: have to publish all ballots
Further Work: can we extend to STV counting of encrypted ballots

Features and Further Work

Completed: STV vote-counting and Schulze Method
Exact fractions: our code for STV manipulates fractions exactly
Efficiency: can (STV) count up to 10 million votes with 40 candidates and 20 vacancies in 20 minutes
Certificate: our code produces a (plain text) certificate that vouches for the correctness of the count
Scrutiny: program to check the certificate is correct w.r.t. published rules and published ballots is just pattern matching
Trust: you don't even need to trust the hardware or software since a correct certificate implies a correct count
Caveat: have to publish all ballots

Features and Further Work

Completed: STV vote-counting and Schulze Method
Exact fractions: our code for STV manipulates fractions exactly
Efficiency: can (STV) count up to 10 million votes with 40 candidates and 20 vacancies in 20 minutes
Certificate: our code produces a (plain text) certificate that vouches for the correctness of the count
Scrutiny: program to check the certificate is correct w.r.t. published rules and published ballots is just pattern matching
Trust: you don't even need to trust the hardware or software since a correct certificate implies a correct count
Caveat: have to publish all ballots
Further Work: can we extend to STV counting of encrypted ballots

Why Should We Trust Machine-checked Proof?

scrutiny
published artefacts trust

published \begin{tabular}{c}
1930s Alonzo Church's

typed λ-calculus

published

Coq theorem prover:

50K lines of OCaml code

\quad

Coq development

team \uparrow
\end{tabular}

Further Work, Caveats and Conclusions:

Verified Certificate Checker: using CakeML to verify our certificate checker against a formal model of the semantics of C
Other flavours of STV: cover all STV schemes used in Australia

Effort: approximately 4 person-months of work by a Coq novice
Caveat: relies on EMB publishing the ballots in clear text so it is vulnerable to the Sicilian Attack

Shufflesum: currently trying to synthesise the code
Conclusion: verified synthesis possible for complex e-counting

