
And-Or Tableaux for Fixpoint Logics with
Converse: LTL, CTL, PDL, CPDL

Rajeev Goré
(Pietro Abate, Ling Anh Nguyen, Linda Postniece,

Jimmy Thomson, Florian Widmann)

Logic and Computation Group
College of Engineering and Computer Science

The Australian National University
rajeev.gore@anu.edu.au

IJCAR 2014 Vienna

rajeev.gore@anu.edu.au

A Motivating Example from Business Process Modelling

Banking: rules for ensuring processes meet anti-fraud legislation

Example: rules for granting a request to open a bank account

Rule 1: A risk assessment (ra) must eventually be carried out for each
request to open a bank account (ro)

Rule 2: A request to open a bank account (ro) is granted (rog) only if
the risk is assessed as low (ral)

Rule 3: A due diligence assessment (dd) must eventually be carried
out for each request to open a bank account (ro)

Rule 4: If a person fails due diligence (ddf) then he or she must be
blacklisted (bl)

Question: how to check these rules for consistency and sanity?

Need: a logic which captures temporal notions like “eventually”, “after”,
“before” as well as “if then”, “only if” etc.

A Motivating Example from Business Process Modelling

Banking: rules for ensuring processes meet anti-fraud legislation

Example: rules for granting a request to open a bank account

Rule 1: A risk assessment (ra) must eventually be carried out for each
request to open a bank account (ro)

Rule 2: A request to open a bank account (ro) is granted (rog) only if
the risk is assessed as low (ral)

Rule 3: A due diligence assessment (dd) must eventually be carried
out for each request to open a bank account (ro)

Rule 4: If a person fails due diligence (ddf) then he or she must be
blacklisted (bl)

Question: how to check these rules for consistency and sanity?

Need: a logic which captures temporal notions like “eventually”, “after”,
“before” as well as “if then”, “only if” etc.

Fixpoint Logics: Linear Temporal Logic

Syntax: CPL plus “next”, “until”, “before”, “always”, “eventually”

atom ::= p | q | r | · · ·
ϕ,ψ ::= atom | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ

| ©ϕ | ϕU ψ | ϕB ψ | [F]ϕ | 〈F 〉ϕ

Semantics: infinite linear discrete sequence of points s0, s1, s2, · · ·
Model: truth value t exor f to each atomic formula at each state si

Evaluate CPL formula: at state si using truth tables

Evaluate “temporal” formula: using relative order of states

Satisfiable: true at some state in some sequence

Valid: true in all states of every sequence

Lemma: ϕ is valid if and only if ¬ϕ is unsatisfiable

Fixpoint Logics: Linear Temporal Logic

Syntax: CPL plus “next”, “until”, “before”, “always”, “eventually”

atom ::= p | q | r | · · ·
ϕ,ψ ::= atom | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ

| ©ϕ | ϕU ψ | ϕB ψ | [F]ϕ | 〈F 〉ϕ

Semantics: infinite linear discrete sequence of points s0, s1, s2, · · ·
Model: truth value t exor f to each atomic formula at each state si

Evaluate CPL formula: at state si using truth tables

Evaluate “temporal” formula: using relative order of states

Satisfiable: true at some state in some sequence

Valid: true in all states of every sequence

Lemma: ϕ is valid if and only if ¬ϕ is unsatisfiable

Fixpoint Logics: Linear Temporal Logic

Syntax: CPL plus “next”, “until”, “before”, “always”, “eventually”

atom ::= p | q | r | · · ·
ϕ,ψ ::= atom | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ

| ©ϕ | ϕU ψ | ϕB ψ | [F]ϕ | 〈F 〉ϕ

Semantics: infinite linear discrete sequence of points s0, s1, s2, · · ·
Model: truth value t exor f to each atomic formula at each state si

Evaluate CPL formula: at state si using truth tables

Evaluate “temporal” formula: using relative order of states

Satisfiable: true at some state in some sequence

Valid: true in all states of every sequence

Lemma: ϕ is valid if and only if ¬ϕ is unsatisfiable

LTL: Kripke Semantics for Assigning t at State si

Connective si si+1 · · · sj · · · sk sk+1 · · ·

next ©p p

Until p U q p · · · p · · · q

Before p B q,¬q ¬q · · · ¬q · · · ¬q ¬q · · ·

Before p B q,¬q ¬q · · · p,¬q · · · q

U : is “strong” and demands that eventually q is true at some sk

U : sk is the first state after or equal to si where q is true

B : is “weak” since it does not demand eventually q

B : is “strictly before” since q at si is forbidden

LTL: Defined Connectives

Defn si si+1 si+2 sj · · · sk

> := (p ∨ ¬p) > > > > · · · >

⊥ := ¬> never true

〈F 〉ψ := (>U ψ) 〈F 〉ψ > > > · · · ψ

¬ 〈F 〉ψ ¬ψ ¬ψ ¬ψ · · · ¬ψ

[F]ϕ := (¬ 〈F 〉 ¬ϕ) [F]ϕ,ϕ ϕ · · · ϕ · · · ϕ

〈F 〉ψ: captures “eventually in the Future ψ”

[F]ϕ: captures “always in the Future ϕ”

Encoding Our Example from Business Process Modelling

Rule 1: A risk assessment (ra) must eventually be carried out for each
request to open a bank account (ro)

[F] (ro → 〈F 〉 ra)

Rule 2: A request to open a bank account (ro) is granted (rog) only if
the risk is low (ral)

[F] (rog → ral)

Rule 3: A due diligence assessment (dd) must eventually be carried out
for each request to open a bank account (ro)

[F] (ro → 〈F 〉 dd)

Rule 4: If a person fails due diligence (ddf) then he or she must be
blacklisted (bl)

[F] ((dd ∧ ddf)→ 〈F 〉 bl)

Awad et al: An iterative approach to synthesize business process
templates from compliance rules. Inf. Syst. 37(8): 714-736 (2012)

Fixpoint Logics: PLTL, CTL, LCK, PDL, CTL*, µ-calculus

PLTL: ϕ U ψ ↔ ψ ∨©(ϕ U ψ)

CTL: E (ϕ U ψ) ↔ ψ ∨ EXE (ϕ U ψ)

LCK: 〈C 〉ψ ↔ 〈E 〉ψ ∨ 〈E 〉〈C 〉ψ

PDL: 〈α∗〉ψ ↔ ψ ∨ 〈α〉〈α∗〉ψ

Kripke semantics: involve a base “step-relation” e.g. “next”

Least Fixpoints: “now or after one step”

〈F 〉ϕ: is least fixpoint µZ .(ϕ ∨©Z)

[F]ϕ: is greatest fixpoint νZ .(ϕ ∧©Z)

Standard Translation: none are first-order definable

Fragments: of monadic second order logic of one successor S1S

The main logical problems and their complexity

Given:

I a logic L ∈ {LTL,CTL,PDL, . . .}
I a finite set T of global assumption (TBox) L-formulae
I a single L-formula ϕ

Satisfiability: is there an L-model that makes T true everywhere and
makes ϕ true somewhere

Global logical consequence: for every L-model M, if M makes T true
everywhere then M makes ϕ true everywhere (glc)

Validity: put T = ∅

Counter-models: if ϕ not a glc of T then output a model which makes T
true everywhere and ϕ false somewhere

Complexity: deciding glc is exptime-complete

Why Tableaux?

Tableaux algorithms provide some of the most efficient methods for
automated reasoning in non-classical logics

Long history (1979-2010) of attempts to devise tableau algorithms for
fixpoint logics without much success

This talks summarises almost seven years of work from 2003-2010 with
various people

Modal Tableaux as And-Or Trees (Using NNF)

(id)
p;¬p;X

(∧)
ϕ ∧ ψ;X

ϕ;ψ;X
(∨)

ϕ ∨ ψ;X

ϕ;X | ψ;X

(K)
〈〉ϕ1 ; 〈〉ϕ2 ; · · · ; 〈〉ϕk ; []X ; Z

T ;ϕ1;X || T ;ϕ2;X || · · · || T ;ϕk ;X
†

T is a given finite set of global assumption formulae

X ,Y ,Z are finite possibly empty sets of formulae

ϕ;X stands for a partition of the non-empty set {ϕ} ∪ X

†: Z is saturated (contains no top level ∧,∨, [] formulae)

A K-tableau for Y given global assumptions T
is an inverted (or-branching) tree of nodes with:

1. a root node nnf (T ;Y)

2. and such that all children nodes are obtained from their parent node
by instantiating a rule of inference

Propagation: Determining the status of nodes

(id)
p;¬p;X

(∧)
ϕ ∧ ψ;X

ϕ;ψ;X
(∨)

ϕ ∨ ψ;X

ϕ;X | ψ;X

(K)
〈〉ϕ1 ; 〈〉ϕ2 ; · · · ; 〈〉ϕk ; []X ; Z

T ;ϕ1;X || T ;ϕ2;X || · · · || T ;ϕk ;X
†

Status of every node is initially unexpanded

Status sat if we can apply no rule

Status unsat if we apply (id)

Status changes to open for other rule applications

or-node: becomes sat if any child becomes sat and becomes unsat if
all children become unsat

and-node: becomes unsat if any child becomes unsat and becomes sat
if all children become sat

Example: the And-branching (K)-rule

(K)
〈〉ϕ1 ; 〈〉ϕ2 ; · · · ; 〈〉ϕk ; []X ;Z

T ;ϕ1;X || T ;ϕ2;X || · · · || T ;ϕk ;X
† (Z saturated)

Only one and-or tableau for 〈〉 p1; 〈〉 p2; 〈〉 p3; [] p1; []¬p3

and-node
〈〉 p1; 〈〉 p2; 〈〉 p3

[] p1; []¬p3
unsat

(〈〉)

~~}}}}}}}}
(〈〉)

��

(〈〉)

 AAAAAAAA

p1;
p1;¬p3
sat

p2;
p1;¬p3
sat

p3;
p1;¬p3
unsat

Example: Termination Requires Ancestor Loops

(K)
〈〉ϕ1 ; 〈〉ϕ2 ; · · · ; 〈〉ϕk ; []X ;Z

T ;ϕ1;X || T ;ϕ2;X || · · · || T ;ϕk ;X
† (Z saturated)

The tableau for T = { 〈〉 p} and ϕ := q loops!

〈〉 p ; q

〈〉
��

p ; 〈〉 p

��
p ; 〈〉 p

Solution: check whether new node exists already on the current branch
and stop when we see the same node (loop check)

Note: looping nodes return open ... turns to sat at end of algorithm

Soundness, Completeness and Termination

Thm: every and-or tableau (with ancestor loops) is finite

Thm: any and-or tableau for T ∪ {¬ϕ0} returns unsat iff ϕ0 is glc of T
Complexity:: Worst-case is is 2exptime i.e. O(22n)

Cause: tree tableaux can explore the same node on multiple branches

Optimisations: practical implementations use many optimisations

Tableau Rules for LTL in Smullyan’s α− and β−notation

Notation captures abstract “conjunctive” and “disjunctive” notions

α α1 α2

ϕ ∧ ψ ϕ ψ
ϕB ψ ∼ψ ϕ ∨©(ϕB ψ)
[F]ϕ ϕ © [F]ϕ

β β1 β2

ϕ ∨ ψ ϕ ψ
ϕU ψ ψ ϕ ∧©(ϕU ψ)
〈F 〉ϕ ϕ ©〈F 〉ϕ

Define: ∼ψ := NNF (¬ψ)

Prop: all instances of α↔ α1 ∧α2 and β ↔ β1 ∨ β2 are valid

Assume: that all formulae are in Negation Normal Form

Tableau Rules: only applicable to non-starred formulae

(α)
Γ ; α

α∗ ; Γ ; α1 ; α2
(β)

Γ ; β

β∗ ; Γ ; β1 | β
∗ ; Γ ; β2

(©)
Λ ; ©ϕ ; ©∆

ϕ ; ∆

where Λ contains only atoms, negated atoms and starred formulae

Traditional Multipass Graph Methods (1979-1998)

Phase 1: apply rules to obtain a cyclic graph

Phase 2: using multiple passes, prune inconsistent nodes and nodes that
contain eventualities unfulfilled by the current graph

Eventuality: formulae which can be postponed for ever

LTL eventualities: ϕU ψ and 〈F 〉ϕ := (>U ϕ)

or-node
ϕU ψ ; X

fulfill now

yyssssssssss
procrastinate

((PPPPPPPPPPPPP

ψ ; X ϕ ; © (ϕU ψ) ; X

Answer unsat: if root node gets pruned

Answer sat: if no pruning possible (all eventualities fulfilled)

Example: is [F] p → [F] p LTL-valid ? Phase 1

α α1 α2

[F] ϕ ϕ © [F] ϕ
β β1 β2

〈F 〉ϕ ϕ ©〈F 〉ϕ

(©)
Λ ; ©ϕ ; ©∆

ϕ ; ∆
†

¬([F] p → [F] p)
nnf
// [F] p ; 〈F 〉 ¬p

α ��
([F] p)∗ ; 〈F 〉 ¬p

p ; © [F] p
β1

uukkkkkk β2

))TTTTTTT

([F] p)∗ ; (〈F 〉 ¬p)∗

p ; © [F] p ; ¬p
([F] p)∗ ; (〈F 〉 ¬p)∗

p ; © [F] p ; ©〈F 〉 ¬p

©

nn

Example: is [F] p → [F] p LTL-valid ? Phase 2

¬([F] p → [F] p)
nnf
// [F] p ; 〈F 〉 ¬p

α ��
[F] p ; 〈F 〉 ¬p
p ; © [F] p

β2

))TTTTTTT

[F] p ; 〈F 〉 ¬p
p ; © [F] p ; ¬p

[F] p ; 〈F 〉 ¬p
p ; © [F] p ; ©〈F 〉 ¬p

©

nn

Unstar all starred formulae

Prune the node containing {p,¬p}

Prune the root containing 〈F 〉 ¬p since no path reaches ¬p

That is, [F] p ; 〈F 〉 ¬p is not LTL-satisfiable.

Hence [F] p → [F] p is LTL-valid.

Properties of the graph multipass tableau method

Worst case complexity: is exptime

Best case complexity: can be better than exptime

Disadvantage: can do unnecessary work

Example: 〈F 〉ϕ ∧ 〈F 〉Ψ where Ψ is huge but irrelevant

Ideal: build, prune and check eventualities “on the fly”

One-pass And-Or Tree Tableaux for LTL (1998)

Use the tree-tableaux for modal logics, with ancestor loops

One pass: build a rooted and-or tree with ancestor cycles and allow
nodes to pass up a list of unfulfilled eventualities

Advantage: can explore one branch at a time

Disadvantage: suboptimal (2exptime)

ϕU ψ
fulfill

xxrrrrrrrrrrr
procrastinate

��
ψ ϕ;©(ϕU ψ)

i X

i + 1 or-node

(ev , min(j,k))

OO

i + 2

(ev , j)

66nnnnnnnnnnnn
i + 2

(ev , k)

OO

Close: any node at height h with an eventuality (ev , h + 1)

S. Schwendimann. A new one-pass tableau calculus for PLTL. In Proc.
TABLEAUX’98, LNAI 1397:277-291. Springer, 1998.

One-pass And-Or Tree Tableaux

Use the tree-tableaux for modal logics, with ancestor loops

· · ·

��

j
ϕ ; X

��i and-node
~p ; ~¬q;
©ϕ ; © X

© successor

��

· · ·

ρ

��

i + 1
ϕ ; X

uev

99

I
6

� �
u

i and-node
~p ; ~¬q;
©ϕ ; © X

© loop

::

uev :=(ϕ,j)

hh

u
�

�
6

I
P

© rule: either creates a successor or blocks on an existing ancestor

New: rules now pass back a set of pairs (ev , j) listing blocks

Tree-tableau method for LTL

Use the tree-tableaux for modal logics, with ancestor loops:

0 ¬([F] p → [F] p)

nnf ��
1 [F] p ; 〈F 〉 ¬p

α ��

(〈F〉 ¬p, 1)

11

[ZYV
� h e d c

1 [F] p ; 〈F 〉 ¬p
p ; © [F] p

β1

uukkkkkk β2

**TTTTTTT

(〈F〉 ¬p, 1)

11

ZYWT
� j g e d

1 [F] p ; 〈F 〉 ¬p
p ; © [F] p ; ¬p

unsat

HH

X a k
y

�
�

�

1 [F] p ; 〈F 〉 ¬p
p ; © [F] p ; ©〈F 〉 ¬p

©

nn

(〈F〉 ¬p, 1)

WW

e^T
I

;
6

2

Return: extra information from children to parents

(〈F 〉 ¬p, j): eventualities that are blocked from being fulfilled and the
height of their blocking ancestor exor unsat to indicate “closed”

Tree-tableau method for LTL

Use the tree-tableaux for modal logics, with ancestor loops:

0 ¬([F] p → [F] p)

nnf ��
1 [F] p ; 〈F 〉 ¬p

α ��

(〈F〉 ¬p, 1)

11

[ZYV
� h e d c

1 [F] p ; 〈F 〉 ¬p
p ; © [F] p

β1

uukkkkkk β2

**TTTTTTT

(〈F〉 ¬p, 1)

11

ZYWT
� j g e d

1 [F] p ; 〈F 〉 ¬p
p ; © [F] p ; ¬p

unsat

HH

X a k
y

�
�

�

1 [F] p ; 〈F 〉 ¬p
p ; © [F] p ; ©〈F 〉 ¬p

©

nn

(〈F〉 ¬p, 1)

WW

e^T
I

;
6

2

Closure: node at level i receives back a pair (ev , j) where j > i

Hence: node 0 closes itself, thus closing the tableau

Reason: 〈F 〉 ¬p not fulfilled by the subtree rooted at node 1

Properties of one-pass tree tableaux for LTL

Thm: ϕ is glc of T iff any one-pass tree-tableau for T ∪ ¬ϕ closes

Complexity worst-case: 2exptime close all branches

Complexity best-case: less first branch is open

Space: worst-case is expspace depth-first search

Advantage: may avoid unnecessary work

Example: 〈F 〉ϕ ∧ 〈F 〉Ψ where Ψ is huge but irrelevant

What about CTL and PDL?
How to regain optimality?

Properties of one-pass tree tableaux for LTL

Thm: ϕ is glc of T iff any one-pass tree-tableau for T ∪ ¬ϕ closes

Complexity worst-case: 2exptime close all branches

Complexity best-case: less first branch is open

Space: worst-case is expspace depth-first search

Advantage: may avoid unnecessary work

Example: 〈F 〉ϕ ∧ 〈F 〉Ψ where Ψ is huge but irrelevant

What about CTL and PDL?
How to regain optimality?

Extensions to handle CTL and PDL

Replace (©)
©ϕ;©X ; Λ

ϕ;X
† by appropriate rules

CTL: models use branching-time

(EX)
EXϕ1 ; EXϕ2 ; · · · ; EXϕk ; AX Y ; Λ

ϕ1 ; Y ; T || ϕ2 ; Y ; T || · · · || ϕk ; Y ; T †

Eventualities: now there are two

E (ϕU ψ): β-rule uses min(i , j) to track “longest” loop as for LTL

A(ϕU ψ): β-rule uses max(i , j) to track “shortest” loop

PDL: branching and-rule but only eventuality is 〈α∗〉ϕ
regular expressions tracked using extra annotations in each node

Complexity: Still suboptimal ... how to regain optimality?

One-Pass Tableaux for Computation Tree Logic. LPAR 2007
An On-the-fly Tableau-based Decision Procedure for PDL-Satisfiability.
M4M 2007

Extensions to handle CTL and PDL

Replace (©)
©ϕ;©X ; Λ

ϕ;X
† by appropriate rules

CTL: models use branching-time

(EX)
EXϕ1 ; EXϕ2 ; · · · ; EXϕk ; AX Y ; Λ

ϕ1 ; Y ; T || ϕ2 ; Y ; T || · · · || ϕk ; Y ; T †

Eventualities: now there are two

E (ϕU ψ): β-rule uses min(i , j) to track “longest” loop as for LTL

A(ϕU ψ): β-rule uses max(i , j) to track “shortest” loop

PDL: branching and-rule but only eventuality is 〈α∗〉ϕ
regular expressions tracked using extra annotations in each node

Complexity: Still suboptimal ... how to regain optimality?

One-Pass Tableaux for Computation Tree Logic. LPAR 2007
An On-the-fly Tableau-based Decision Procedure for PDL-Satisfiability.
M4M 2007

On-the-fly And-Or Graph Tableaux for LTL and PDL

Interleave: the graph building and graph pruning phases

Global Caching: allow cross branch edges to previous node copies

Advantage: complexity optimal

Disadvantage: requires more memory

rt
done

wwooooooooooooooo

���
�
�

todo

��
z

f

��

f

~~}}}}}}}}
todo

��·

f

��

f

����������
f

��

todo

��
u

f

��

f

����������
y

f

��

x

f

��

b
oo

todo

��
w

b

00

· v

b

^^========
y ′

On-the-fly And-Or Graph Tableaux for LTL and PDL

Fulfilled: in the graph to the left of the frontier

Potentially fulfillable: path from x always procrastinates but hits a
forward-ancestor of x on the current branch
e.g. the path x , y , v , u,w , z potential rescuers

Closed: unfulfilled and unfulfillable

rt
done

wwooooooooooooooo

���
�
�

todo

��
z

f

��

f

~~}}}}}}}}
todo

��·

f

��

f

����������
f

��

todo

��
u

f

��

f

����������
y

f

��

x

f

��

b
oo

todo

��
w

b

00

· v

b

^^========
y ′

Theorems for LTL and PDL only

Thm: root.status = unsat implies Γ ∪ {¬ϕ} is L-unsatisfiable

Proof: not trivial

Thm: root.status = sat implies Γ ∪ {¬ϕ} is L-satisfiable

Proof: not trivial

Thm: Worst-case complexity is exptime

Proof: in worst case, we explore 2n different (annotated) nodes

To Do: we could not find a way to handle the A(ϕU ψ) eventuality of
CTL using on-the-fly and-or graph tableaux

An Optimal On-the-Fly Tableau-Based Decision Procedure for
PDL-Satisfiability. CADE 2009

Handling Converse in Modal And-Or Tableaux

Let us go right back to and-or modal tableaux and add converse

(id)
p;¬p;X

(∧)
ϕ ∧ ψ;X

ϕ;ψ;X
(∨)

ϕ ∨ ψ;X

ϕ;X | ψ;X

(K)
〈〉ϕ1; 〈〉ϕ2; · · · ; 〈〉ϕk ; []X ;Z

T ;ϕ1;X || T ;ϕ2;X || · · · || T ;ϕk ;X
†

Converse Operator Can Cause Incompatibility

Converse: add box and diamond connectives w.r.t. R−1

Syntax: two copies [F] for Future and [P] for Past of []

Axioms: ϕ→ [F] 〈P〉ϕ ϕ→ [P] 〈F 〉ϕ

and-node
〈F 〉 (ϕ ∨ ψ) ; 〈F 〉χ ; [F] ξ

(K)

�� (K)

))RRRRRRRRRRRRRRRR

or-node
ϕ ∨ ψ ; ξ ; T

��))SSSSSSSSSSSSSSS
χ; ξ; T

ϕ := [P] θ ; ξ ψ := [P]¬θ ; ξ

Usual solution: “restart”, requires “dynamic blocking” and is suboptimal

Global Caching Not Possible

Node with no top-level conjunctions or disjunctions is a state

Non-states are pre-states

states 〈F 〉
(
⊥ ∨ [P] q)

〈F〉

��

√ ¬q, 〈F 〉
(
⊥ ∨ [P] q

)
〈F〉

xxqqqqqqqqqqqqqqqqqqqqqqq
×

pre-state ⊥ ∨ [P] q ; T √

Satisfiability of pre-state does not imply satisfiability of state

Our Alternative Method

Starting point: “Sound Global Caching for ALC” from DL07

Node contents fixed: at its creation ; no dynamic blocking

New status type: unexpanded, sat, unsat, open, toosmall

Dynamic Status: status of a node changes during the algorithm:

I Example 1: unexpanded ; unsat
I Example 2: unexpanded ; open ; toosmall

But: status of sat, unsat, or toosmall will not change

Global State Caching: never explore the same state again
Global caching: no two nodes with the same set of formulae
Global state caching: no two states with the same set of formulae
Saturation: apply ∧ and ∨ rules until not applicable (giving state)

pre-states
(saturation)

pre-states
(saturation)

pre-states
(saturation)

s

s

s

Special Nodes

Basic idea: separate a state from the saturation phase of another state.

state s 〈F 〉ϕ ; [F] ∆ ; · · ·

R

��
ϕ ; ∆ ; T

saturate

��
special node [P] Γ ; Σ

If Γ in s, the special node is compatible with s.

Compatible Special Nodes

state 〈F 〉ϕ ; [F] ∆ ; · · · ; Γ

R

��
ϕ ; ∆ ; T

saturate

��
special node [P] Γ ; Σ

��state
(might already exist) [P] Γ ; Σ

Not Compatible Special Nodes

remember possible
extension Γ for s

state s 〈F 〉ϕ ; [F] ∆ ; Θ

R

��

//______ GFED@ABC+ Γ

ϕ ; ∆ ; T

saturate

��
special node [P] Γ ; Σ marked as too small

The Algorithm: Main Loop

I Pick node x which has not been expanded yet.

I Expand x , that is create children if needed and link them
appropriately.

I Determine and set the status of x from unexpanded to either open,
sat, unsat, or too small (see next slides).

I Explicit update/propagation phase, activated by status change of a
node

Determining the Status of And and Or Nodes

Or-nodes

I some child is sat ; or-node is sat

I else: some child is open or unexpanded ; or-node is open

I else: some child is too small ; or-node is too small

I else: all children unsat ; or-node is unsat

And-nodes

I some child is unsat ; state is unsat

I else: some child is too small ; state is too small

I else: some child is open or unexpanded ; state is open

I else: all children are sat ; state is sat

Determining the Status of a Special Node

I child 6= too small ; special node gets the same status

I state child too small with possible extensions Γ1, . . . , Γn:

�� ��special
node

∆

��

∆

�� ��888888888

''OOOOOOOOOOOOOOOO
behaves like
an or-node

;

too small
state

∆ //__ GFED@ABC+ Γ1
... GFED@ABC+ Γn ∆ ∆ ∪ Γ1

... ∆ ∪ Γn

Theorems for Converse Roles

Complexity: the algorithm terminates and runs in exptime

Thm: If a node is sat or remains open, its formulae are jointly satisfiable.

Thm: If a node is unsat, its formulae are not jointly satisfiable.

Thm: If the root node is too small, its formulae are not jointly satisfiable.

Sound Global State Caching for ALC with Inverse Roles.
TABLEAUX 2009

On-the-fly Complexity Optimal Tableaux for CPDL

rt
done

wwooooooooooooooo

���
�
�

todo

��
z

f

��

f

~~}}}}}}}}
todo

��·

f

��

f

����������
f

��

todo

��
u

f

��

f

����������
y

f

��

x

f

��

b
oo

todo

��
w

b

00

· v

b

^^========
y ′

On-the-fly Complexity Optimal Tableaux for CPDL

potential rescuers: on-the-fly graph tableaux

annotations: inside nodes to track regular expressions

special nodes: to handle converse

global state caching: to handle converse

unexp: initially all nodes have status unexpanded

undef: expanded but status not known

closed(alt): toosmall so needs to be cloned into alternatives

open(prs, alt): open with potential rescuers, and alternatives in case it is
closed later on

closed(.): unsatisfiable, will never change again

idxx : unique time stamp of when it became “defined” for proofs by
induction

On-the-fly Complexity Optimal Tableaux for CPDL

potential rescuers: on-the-fly graph tableaux

annotations: inside nodes to track regular expressions

special nodes: to handle converse

global state caching: to handle converse

unexp: initially all nodes have status unexpanded

undef: expanded but status not known

closed(alt): toosmall so needs to be cloned into alternatives

open(prs, alt): open with potential rescuers, and alternatives in case it is
closed later on

closed(.): unsatisfiable, will never change again

idxx : unique time stamp of when it became “defined” for proofs by
induction

On-the-fly Complexity Optimal Tableaux for CPDL

Apply the following “rules” repeatedly in this order

Rule 1: picks an unexpanded node and expands it

Rule 2: picks an expanded but undefined node and computes its (initial)
status. It also sets the correct time stamp.

Rule 3: picks an open node whose status has changed and recomputes
its status.

Rule 4: is only applicable if all nodes are up-to-date. It picks an open
node containing an eventuality ϕ which is currently not fulfilled in the
graph and which does not have any potential rescuers either. As this
indicates that ϕ can never be fulfilled, the node is closed.

On-the-fly Complexity Optimal Tableaux for CPDL

Soundness, Completeness and Complexity: Let φ ∈ Fml be a formula in
negation normal form of size n. The procedure is-sat(φ) terminates,
runs in exptime in n, and φ is satisfiable iff is-sat(φ) returns true.

Implementations:
http://users.cecs.anu.edu.au/~rpg/software.html

Note: As far as I know, this is the only complexity-optimal algorithm for
CPDL that does not use a cut rule

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic with
Converse. IJCAR 2010

http://users.cecs.anu.edu.au/~rpg/software.html

Related Work for Fixpoint Logics

Terminating Tableaux: for LTL exist (experimentally not competitive)

Resolution Methods: LTL and CTL, optimal, PDL?, converse?

BDD-based methods: LTL, CTL, PDL plus converse, optimal

MLSolver: general solver for many modal logics

I creates and solves parity game optimally
I handles many fixpoint logics including LTL, CTL, PDL, CTL*

and mu-calculus converse?
I experimentally not competitive

CTL*: Mark Renolds has developed a suboptimal tableau calculus

Mona: embed into S1S ... non-elementary complexity

PDL: automata based methods exist (converse?)

CPDL: De Giacomo and Massacci (Inf. and Comp. 2000)

I paper does not give explicit exptime algorithms
I only known implementation for CPDL is unsound
I new implementation for PDL exists

Further Work

Optimisations: needed since many standard ones are not sound

Extend: to other fixpoint logics e.g. CTL, ATL, LCK

SAT: many people investigating using modern SAT/SMT solvers

QBF: worth investigating instead of SAT solvers

Efficiency and Scalability: is the front line

Questions?

