And-Or Tableaux for Fixpoint Logics with Converse: LTL, CTL, PDL, CPDL

Rajeev Goré
(Pietro Abate, Ling Anh Nguyen, Linda Postniece, Jimmy Thomson, Florian Widmann)
Logic and Computation Group
College of Engineering and Computer Science
The Australian National University
rajeev.gore@anu.edu.au

IJCAR 2014 Vienna

A Motivating Example from Business Process Modelling

Banking: rules for ensuring processes meet anti-fraud legislation

Example: rules for granting a request to open a bank account
Rule 1: A risk assessment (ra) must eventually be carried out for each request to open a bank account (ro)
Rule 2: A request to open a bank account (ro) is granted (rog) only if the risk is assessed as low (ral)
Rule 3: A due diligence assessment (dd) must eventually be carried out for each request to open a bank account (ro)
Rule 4: If a person fails due diligence (ddf) then he or she must be blacklisted (b)

Question: how to check these rules for consistency and sanity?

A Motivating Example from Business Process Modelling

Banking: rules for ensuring processes meet anti-fraud legislation

Example: rules for granting a request to open a bank account
Rule 1: A risk assessment (ra) must eventually be carried out for each request to open a bank account (ro)
Rule 2: A request to open a bank account (ro) is granted (rog) only if the risk is assessed as low (ral)
Rule 3: A due diligence assessment (dd) must eventually be carried out for each request to open a bank account (ro)
Rule 4: If a person fails due diligence (ddf) then he or she must be blacklisted (b)

Question: how to check these rules for consistency and sanity?
Need: a logic which captures temporal notions like "eventually", "after", "before" as well as "if then", "only if" etc.

Fixpoint Logics: Linear Temporal Logic

Syntax: CPL plus "next", "until", "before", "always", "eventually"

$$
\begin{aligned}
\text { atom }::= & p|q| r \mid \cdots \\
\varphi, \psi: & =\text { atom }|\neg \varphi| \varphi \wedge \psi|\varphi \vee \psi| \varphi \rightarrow \psi \\
& |\bigcirc \varphi| \varphi \mathcal{U} \psi|\varphi \mathcal{B} \psi|[F] \varphi \mid\langle F\rangle \varphi
\end{aligned}
$$

Fixpoint Logics: Linear Temporal Logic

Syntax: CPL plus "next", "until", "before", "always", "eventually"

$$
\begin{aligned}
\text { atom }::= & p|q| r \mid \cdots \\
\varphi, \psi: & =\text { atom }|\neg \varphi| \varphi \wedge \psi|\varphi \vee \psi| \varphi \rightarrow \psi \\
& |\bigcirc \varphi| \varphi \mathcal{U} \psi|\varphi \mathcal{B} \psi|[F] \varphi \mid\langle F\rangle \varphi
\end{aligned}
$$

Semantics: infinite linear discrete sequence of points $s_{0}, s_{1}, s_{2}, \ldots$ Model: truth value \mathbf{t} exor \mathbf{f} to each atomic formula at each state s_{i} Evaluate CPL formula: at state s_{i} using truth tables Evaluate "temporal" formula: using relative order of states

Fixpoint Logics: Linear Temporal Logic

Syntax: CPL plus "next", "until", "before", "always", "eventually"

$$
\begin{aligned}
\text { atom }::= & p|q| r \mid \cdots \\
\varphi, \psi::= & \text { atom }|\neg \varphi| \varphi \wedge \psi|\varphi \vee \psi| \varphi \rightarrow \psi \\
& |\bigcirc \varphi| \varphi \mathcal{U} \psi|\varphi \mathcal{B} \psi|[F] \varphi \mid\langle F\rangle \varphi
\end{aligned}
$$

Semantics: infinite linear discrete sequence of points $s_{0}, s_{1}, s_{2}, \ldots$
Model: truth value \mathbf{t} exor \mathbf{f} to each atomic formula at each state s_{i}
Evaluate CPL formula: at state s_{i} using truth tables
Evaluate "temporal" formula: using relative order of states
Satisfiable: true at some state in some sequence
Valid: true in all states of every sequence
Lemma: φ is valid if and only if $\neg \varphi$ is unsatisfiable

LTL: Kripke Semantics for Assigning \mathbf{t} at State s_{i}

Connective
$\left.\begin{array}{cccccccc}\text { next } & \cap p & p & & & & & \\ \text { Until } & p \mathcal{U q} & p & \ldots & p & \ldots & q & \\ \text { Before } & p \mathcal{B} q, \neg q & \neg q & \ldots & \neg q & \ldots & \neg q & \neg q\end{array}\right) \ldots$
\mathcal{U} : is "strong" and demands that eventually q is true at some s_{k}
$\mathcal{U}: s_{k}$ is the first state after or equal to s_{i} where q is true
\mathcal{B} : is "weak" since it does not demand eventually q
\mathcal{B} : is "strictly before" since q at s_{i} is forbidden

LTL: Defined Connectives

$$
\begin{array}{ccccccc}
\text { Defn } & s_{i} & s_{i+1} & s_{i+2} & s_{j} & \cdots & s_{k} \\
\top:=(p \vee \neg p) & \top & \top & \top & \top & \cdots & \top \\
\perp:=\neg \top & \text { never true } & & & & & \\
\langle F\rangle \psi:=(\top \mathcal{U} \psi) & \langle F\rangle \psi & \top & \top & \top & \cdots & \psi \\
& \neg\langle F\rangle \psi & \neg \psi & \neg \psi & \neg \psi & \cdots & \neg \psi \\
{[F] \varphi:=(\neg\langle F\rangle \neg \varphi)} & {[F] \varphi, \varphi} & \varphi & \cdots & \varphi & \cdots & \varphi
\end{array}
$$

$\langle F\rangle \psi$: captures "eventually in the Future ψ "
$[F] \varphi$: captures "always in the Future φ "

Encoding Our Example from Business Process Modelling

Rule 1: A risk assessment (ra) must eventually be carried out for each request to open a bank account (ro)

$$
[F](r o \rightarrow\langle F\rangle r a)
$$

Rule 2: A request to open a bank account (ro) is granted (rog) only if the risk is low (ral)

$$
[F](r o g \rightarrow r a l)
$$

Rule 3: A due diligence assessment (dd) must eventually be carried out for each request to open a bank account (ro)

$$
[F](r o \rightarrow\langle F\rangle d d)
$$

Rule 4: If a person fails due diligence (ddf) then he or she must be blacklisted (b)

$$
[F]((d d \wedge d d f) \rightarrow\langle F\rangle b /)
$$

Awad et al: An iterative approach to synthesize business process templates from compliance rules. Inf. Syst. 37(8): 714-736 (2012)

Fixpoint Logics: PLTL, CTL, LCK, PDL, CTL*, μ-calculus

PLTL: $\varphi \mathcal{U} \psi$
$\leftrightarrow \psi \vee \bigcirc(\varphi \mathcal{U} \psi)$
CTL: $E(\varphi \mathcal{U} \psi)$
LCK: $\langle C\rangle \psi$
PDL: $\langle\alpha *\rangle \psi$

$$
\leftrightarrow \psi \vee \operatorname{EXE}(\varphi \mathcal{U} \psi)
$$

$$
\leftrightarrow\langle E\rangle \psi \vee\langle E\rangle\langle C\rangle \psi
$$

$$
\leftrightarrow \psi \vee\langle\alpha\rangle\langle\alpha *\rangle \psi
$$

Kripke semantics: involve a base "step-relation" e.g. "next"
Least Fixpoints: "now or after one step"
$\langle F\rangle \varphi$: is least fixpoint $\mu Z .(\varphi \vee \bigcirc Z)$
$[F] \varphi$: is greatest fixpoint $\nu Z .(\varphi \wedge \bigcirc Z)$
Standard Translation: none are first-order definable
Fragments: of monadic second order logic of one successor S1S

The main logical problems and their complexity

Given:

- a logic $L \in\{L T L, C T L, P D L, \ldots\}$
- a finite set \mathcal{T} of global assumption (TBox) L-formulae
- a single L-formula φ

Satisfiability: is there an L-model that makes \mathcal{T} true everywhere and makes φ true somewhere

Global logical consequence: for every L-model M, if M makes \mathcal{T} true everywhere then M makes φ true everywhere

Validity: put $\mathcal{T}=\emptyset$

Counter-models: if φ not a glc of \mathcal{T} then output a model which makes \mathcal{T} true everywhere and φ false somewhere

Complexity: deciding glc is EXPTIME-complete

Why Tableaux?

Tableaux algorithms provide some of the most efficient methods for automated reasoning in non-classical logics

Long history (1979-2010) of attempts to devise tableau algorithms for fixpoint logics without much success

This talks summarises almost seven years of work from 2003-2010 with various people

Modal Tableaux as And-Or Trees (Using NNF)

(id) $\underline{p ; \neg p ; X}$
$(\wedge) \frac{\varphi \wedge \psi ; X}{\varphi ; \psi ; X}$
(V) $\frac{\varphi \vee \psi ; X}{\varphi ; X \mid \psi ; X}$

$$
\text { (K) } \frac{\left\rangle \varphi_{1} ;\langle \rangle \varphi_{2} ; \cdots ;\langle \rangle \varphi_{k} ;[] X ; Z\right.}{\mathcal{T} ; \varphi_{1} ; X\left\|\mathcal{T} ; \varphi_{2} ; X\right\| \cdots \| \mathcal{T} ; \varphi_{k} ; X} \dagger
$$

\mathcal{T} is a given finite set of global assumption formulae X, Y, Z are finite possibly empty sets of formulae
$\varphi ; X$ stands for a partition of the non-empty set $\{\varphi\} \cup X$
\dagger : Z is saturated (contains no top level \wedge, \vee, [] formulae)
A K-tableau for Y given global assumptions \mathcal{T}
is an inverted (or-branching) tree of nodes with:

1. a root node $\operatorname{nnf}(\mathcal{T} ; Y)$
2. and such that all children nodes are obtained from their parent node by instantiating a rule of inference

Propagation: Determining the status of nodes

$$
\begin{aligned}
& \text { (id) } \frac{p ; \neg p ; X}{} \quad(\wedge) \frac{\varphi \wedge \psi ; X}{\varphi ; \psi ; X} \quad \text { (V) } \frac{\varphi \vee \psi ; X}{\varphi ; X \mid \psi ; X} \\
& \text { (K) } \frac{\left\rangle \varphi_{1} ;\langle \rangle \varphi_{2} ; \cdots ;\langle \rangle \varphi_{k} ;[] X ; Z\right.}{\mathcal{T} ; \varphi_{1} ; X\left\|\mathcal{T} ; \varphi_{2} ; X\right\| \cdots \| \mathcal{T} ; \varphi_{k} ; X} \dagger
\end{aligned}
$$

Status of every node is initially unexpanded
Status sat if we can apply no rule
Status unsat if we apply (id)
Status changes to open for other rule applications
or-node: becomes sat if any child becomes sat and becomes unsat if all children become unsat
and-node: becomes unsat if any child becomes unsat and becomes sat if all children become sat

Example: the And-branching (K)-rule

(K) $\frac{\left\rangle \varphi_{1} ;\langle \rangle \varphi_{2} ; \cdots ;\langle \rangle \varphi_{k} ; \| X ; Z\right.}{\mathcal{T} ; \varphi_{1} ; X\left\|\mathcal{T} ; \varphi_{2} ; X\right\| \cdots \| \mathcal{T} ; \varphi_{k} ; X} \dagger(Z$ saturated $)$

Only one and-or tableau for $\left\rangle p_{1} ;\langle \rangle p_{2} ;\langle \rangle p_{3} ;[] p_{1} ;[] \neg p_{3}\right.$

Example: Termination Requires Ancestor Loops

$$
\text { (K) } \frac{\left\rangle \varphi_{1} ;\langle \rangle \varphi_{2} ; \cdots ;\langle \rangle \varphi_{k} ;[] X ; Z\right.}{\mathcal{T} ; \varphi_{1} ; X\left\|\mathcal{T} ; \varphi_{2} ; X\right\|\| \| \mathcal{T} ; \varphi_{k} ; X} \dagger(Z \text { saturated })
$$

The tableau for $\mathcal{T}=\{\langle \rangle p\}$ and $\varphi:=q$ loops!

Solution: check whether new node exists already on the current branch and stop when we see the same node

Note: looping nodes return open ... turns to sat at end of algorithm

Soundness, Completeness and Termination

Thm: every and-or tableau (with ancestor loops) is finite
Thm: any and-or tableau for $\mathcal{T} \cup\left\{\neg \varphi_{0}\right\}$ returns unsat iff φ_{0} is glc of \mathcal{T} Complexity:: Worst-case is is 2Exptime i.e. $O\left(2^{2^{n}}\right)$
Cause: tree tableaux can explore the same node on multiple branches Optimisations: practical implementations use many optimisations

Tableau Rules for LTL in Smullyan's $\boldsymbol{\alpha}$ - and $\boldsymbol{\beta}$-notation

Notation captures abstract "conjunctive" and "disjunctive" notions

$\boldsymbol{\alpha}$	$\boldsymbol{\alpha}_{1}$	$\boldsymbol{\alpha}_{2}$
$\varphi \wedge \psi$	φ	ψ
$\varphi B \psi$	$\sim \psi$	$\varphi \vee \bigcirc(\varphi B \psi)$
$[F] \varphi$	φ	$\bigcirc[F] \varphi$

$\boldsymbol{\beta}$	$\boldsymbol{\beta}_{1}$	$\boldsymbol{\beta}_{2}$
$\varphi \vee \psi$	φ	ψ
$\varphi U \psi$	ψ	$\varphi \wedge \bigcirc(\varphi U \psi)$
$\langle F\rangle \varphi$	φ	$\bigcirc\langle F\rangle \varphi$

Define: $\sim \psi:=N N F(\neg \psi)$
Prop: all instances of $\boldsymbol{\alpha} \leftrightarrow \boldsymbol{\alpha}_{1} \wedge \boldsymbol{\alpha}_{2}$ and $\boldsymbol{\beta} \leftrightarrow \boldsymbol{\beta}_{1} \vee \boldsymbol{\beta}_{2}$ are valid Assume: that all formulae are in Negation Normal Form
Tableau Rules: only applicable to non-starred formulae
$(\alpha) \frac{\Gamma ; \boldsymbol{\alpha}}{\alpha^{*} ; \Gamma ; \alpha_{1} ; \alpha_{2}}$
($\boldsymbol{\beta}) \frac{\Gamma ; \boldsymbol{\beta}}{\boldsymbol{\beta}^{*} ; \Gamma ; \boldsymbol{\beta}_{1} \mid \boldsymbol{\beta}^{*} ; \Gamma ; \boldsymbol{\beta}_{2}}$
(○) $\frac{\Lambda ; \bigcirc \varphi ; \bigcirc \Delta}{\varphi ; \Delta}$
where Λ contains only atoms, negated atoms and starred formulae

Traditional Multipass Graph Methods (1979-1998)

Phase 1: apply rules to obtain a cyclic graph
Phase 2: using multiple passes, prune inconsistent nodes and nodes that contain eventualities unfulfilled by the current graph

Eventuality: formulae which can be postponed for ever
LTL eventualities: $\varphi \mathcal{U} \psi$ and $\langle F\rangle \varphi:=(T \mathcal{U} \varphi)$

Answer unsat: if root node gets pruned
Answer sat: if no pruning possible (all eventualities fulfilled)

Example: is $[F] p \rightarrow[F] p$ LTL-valid ? Phase 1

α	α_{1}	α_{2}
$[F] \varphi$	φ	$\mathrm{O}[F] \varphi$

$\boldsymbol{\beta}$	$\boldsymbol{\beta}_{1}$	$\boldsymbol{\beta}_{2}$
$\langle F\rangle \varphi$	φ	$\bigcirc\langle F\rangle \varphi$

$$
\text { (○) } \frac{\Lambda ; \bigcirc \varphi ; \bigcirc \Delta}{\varphi ; \Delta} \dagger
$$

Example: is $[F] p \rightarrow[F] p$ LTL-valid ? Phase 2

Unstar all starred formulae
Prune the node containing $\{p, \neg p\}$
Prune the root containing $\langle F\rangle \neg p$ since no path reaches $\neg p$
That is, $[F] p ;\langle F\rangle \neg p$ is not LTL-satisfiable.
Hence $[F] p \rightarrow[F] p$ is LTL-valid.

Properties of the graph multipass tableau method

Worst case complexity: is EXPTIME

Best case complexity: can be better than EXPTIME

Disadvantage: can do unnecessary work

Example: $\langle F\rangle \varphi \wedge\langle F\rangle \Psi$ where Ψ is huge but irrelevant

Ideal: build, prune and check eventualities "on the fly"

One-pass And-Or Tree Tableaux for LTL (1998)

Use the tree-tableaux for modal logics, with ancestor loops
One pass: build a rooted and-or tree with ancestor cycles and allow nodes to pass up a list of unfulfilled eventualities
Advantage: can explore one branch at a time
Disadvantage: suboptimal (2EXPTIME)

Close: any node at height h with an eventuality (ev, $h+1$)
S. Schwendimann. A new one-pass tableau calculus for PLTL. In Proc. TABLEAUX'98, LNAI 1397:277-291. Springer, 1998.

One-pass And-Or Tree Tableaux

Use the tree-tableaux for modal logics, with ancestor loops

\bigcirc rule: either creates a successor or blocks on an existing ancestor New: rules now pass back a set of pairs (ev,j) listing blocks

Tree-tableau method for LTL

Use the tree-tableaux for modal logics, with ancestor loops:

Return: extra information from children to parents
$(\langle F\rangle \neg p, j)$: eventualities that are blocked from being fulfilled and the height of their blocking ancestor exor unsat to indicate "closed"

Tree-tableau method for LTL

Use the tree-tableaux for modal logics, with ancestor loops:

Closure: node at level i receives back a pair $(e v, j)$ where $j>i$
Hence: node 0 closes itself, thus closing the tableau
Reason: $\langle F\rangle \neg p$ not fulfilled by the subtree rooted at node 1

Properties of one-pass tree tableaux for LTL

Thm: φ is glc of \mathcal{T} iff any one-pass tree-tableau for $\mathcal{T} \cup \neg \varphi$ closes
Complexity worst-case: 2EXPTIME close all branches
Complexity best-case: less first branch is open
Space: worst-case is EXPSPACE depth-first search
Advantage: may avoid unnecessary work
Example: $\langle F\rangle \varphi \wedge\langle F\rangle \Psi$ where Ψ is huge but irrelevant

Properties of one-pass tree tableaux for LTL

Thm: φ is glc of \mathcal{T} iff any one-pass tree-tableau for $\mathcal{T} \cup \neg \varphi$ closes
Complexity worst-case: 2EXPTIME close all branches
Complexity best-case: less first branch is open
Space: worst-case is EXPSPACE depth-first search
Advantage: may avoid unnecessary work
Example: $\langle F\rangle \varphi \wedge\langle F\rangle \Psi$ where Ψ is huge but irrelevant

What about CTL and PDL?
How to regain optimality?

Extensions to handle CTL and PDL
Replace ($\bigcirc) \frac{\bigcirc \varphi ; \bigcirc X ; \Lambda}{\varphi ; X} \dagger$ by appropriate rules
CTL: models use branching-time

$$
(\mathrm{EX}) \frac{E X \varphi_{1} ; E X \varphi_{2} ; \cdots ; E X \varphi_{k} ; A X Y ; \Lambda}{\varphi_{1} ; Y ; \mathcal{T}\left\|\varphi_{2} ; Y ; \mathcal{T}\right\| \cdots \| \varphi_{k} ; Y ; \mathcal{T}} \dagger
$$

Eventualities: now there are two
$E(\varphi \mathcal{U} \psi)$: β-rule uses $\min (i, j)$ to track "longest" loop as for LTL
$A(\varphi \mathcal{U} \psi): \beta$-rule uses max (i, j) to track "shortest" loop

Extensions to handle CTL and PDL

Replace (\bigcirc) $\frac{\bigcirc \varphi ; \bigcirc X ; \Lambda}{\varphi ; X} \dagger$ by appropriate rules
CTL: models use branching-time

$$
(\mathrm{EX}) \frac{E X \varphi_{1} ; E X \varphi_{2} ; \cdots ; E X \varphi_{k} ; A X Y ; \Lambda}{\varphi_{1} ; Y ; \mathcal{T}\left\|\varphi_{2} ; Y ; \mathcal{T}\right\| \cdots \| \varphi_{k} ; Y ; \mathcal{T}} \dagger
$$

Eventualities: now there are two
$E(\varphi \mathcal{U} \psi)$: β-rule uses $\min (i, j)$ to track "longest" loop as for LTL $A(\varphi \mathcal{U} \psi)$: β-rule uses $\max (i, j)$ to track "shortest" loop

PDL: branching and-rule but only eventuality is $\langle\alpha *\rangle \varphi$
regular expressions tracked using extra annotations in each node
Complexity: Still suboptimal ... how to regain optimality?
One-Pass Tableaux for Computation Tree Logic. LPAR 2007 An On-the-fly Tableau-based Decision Procedure for PDL-Satisfiability. M4M 2007

On-the-fly And-Or Graph Tableaux for LTL and PDL

Interleave: the graph building and graph pruning phases
Global Caching: allow cross branch edges to previous node copies Advantage: complexity optimal
Disadvantage: requires more memory

On-the-fly And-Or Graph Tableaux for LTL and PDL

Fulfilled: in the graph to the left of the frontier
Potentially fulfillable: path from x always procrastinates but hits a forward-ancestor of x on the current branch e.g. the path x, y, v, u, w, z
potential rescuers
Closed: unfulfilled and unfulfillable

Theorems for LTL and PDL only

Thm: root.status $=$ unsat implies $\Gamma \cup\{\neg \varphi\}$ is L-unsatisfiable
Proof: not trivial

Thm: root.status $=$ sat implies $\Gamma \cup\{\neg \varphi\}$ is L-satisfiable
Proof: not trivial

Thm: Worst-case complexity is Exptime
Proof: in worst case, we explore 2^{n} different (annotated) nodes

To Do: we could not find a way to handle the $A(\varphi \mathcal{U} \psi)$ eventuality of CTL using on-the-fly and-or graph tableaux

An Optimal On-the-Fly Tableau-Based Decision Procedure for PDL-Satisfiability. CADE 2009

Handling Converse in Modal And-Or Tableaux

Let us go right back to and-or modal tableaux and add converse

$$
\begin{aligned}
& \text { (id) } \frac{p ; \neg p ; X}{} \quad(\wedge) \frac{\varphi \wedge \psi ; X}{\varphi ; \psi ; X} \quad \text { (V) } \frac{\varphi \vee \psi ; X}{\varphi ; X \mid \psi ; X} \\
& \text { (K) } \frac{\left\rangle \varphi_{1} ;\langle \rangle \varphi_{2} ; \cdots ;\langle \rangle \varphi_{k} ;[] X ; Z\right.}{\mathcal{T} ; \varphi_{1} ; X\left\|\mathcal{T} ; \varphi_{2} ; X\right\| \cdots \| \mathcal{T} ; \varphi_{k} ; X} \dagger
\end{aligned}
$$

Converse Operator Can Cause Incompatibility

Converse: add box and diamond connectives w.r.t. R^{-1}
Syntax: two copies [F] for Future and $[P]$ for Past of []
Axioms: $\varphi \rightarrow[F]\langle P\rangle \varphi \quad \varphi \rightarrow[P]\langle F\rangle \varphi$

Usual solution: "restart", requires "dynamic blocking" and is suboptimal

Global Caching Not Possible

Node with no top-level conjunctions or disjunctions is a state
Non-states are pre-states

Satisfiability of pre-state does not imply satisfiability of state

Our Alternative Method

Starting point: "Sound Global Caching for ALC" from DL07

Node contents fixed: at its creation \leadsto no dynamic blocking

New status type: unexpanded, sat, unsat, open, toosmall

Dynamic Status: status of a node changes during the algorithm:

- Example 1: unexpanded \sim unsat
- Example 2: unexpanded \leadsto open \leadsto toosmall

But: status of sat, unsat, or toosmall will not change

Global State Caching: never explore the same state again

Global caching: no two nodes with the same set of formulae Global state caching: no two states with the same set of formulae Saturation: apply \wedge and \vee rules until not applicable (giving state)

Special Nodes

Basic idea: separate a state from the saturation phase of another state.

saturate
special node
$\frac{\dot{V}}{[P] \Gamma ; \Sigma}$

If Γ in s, the special node is compatible with s.

Compatible Special Nodes

state

saturate
special node
state
(might already exist)

Not Compatible Special Nodes

remember possible extension 「 for s
state s
special node

The Algorithm: Main Loop

- Pick node x which has not been expanded yet.
- Expand x, that is create children if needed and link them appropriately.
- Determine and set the status of x from unexpanded to either open, sat, unsat, or too small (see next slides).
- Explicit update/propagation phase, activated by status change of a node

Determining the Status of And and Or Nodes

Or-nodes

- some child is sat \leadsto or-node is sat
- else: some child is open or unexpanded \leadsto or-node is open
- else: some child is too small \leadsto or-node is too small
- else: all children unsat \leadsto or-node is unsat

And-nodes

- some child is unsat \sim state is unsat
- else: some child is too small \leadsto state is too small
- else: some child is open or unexpanded \leadsto state is open
- else: all children are sat \leadsto state is sat

Determining the Status of a Special Node

- child \neq too small \leadsto special node gets the same status
- state child too small with possible extensions $\Gamma_{1}, \ldots, \Gamma_{n}$:

Theorems for Converse Roles

Complexity: the algorithm terminates and runs in EXPTIME
Thm: If a node is sat or remains open, its formulae are jointly satisfiable.
Thm: If a node is unsat, its formulae are not jointly satisfiable.
Thm: If the root node is too small, its formulae are not jointly satisfiable.

Sound Global State Caching for ALC with Inverse Roles. TABLEAUX 2009

On-the-fly Complexity Optimal Tableaux for CPDL

On-the-fly Complexity Optimal Tableaux for CPDL

potential rescuers: on-the-fly graph tableaux
annotations: inside nodes to track regular expressions
special nodes: to handle converse
global state caching: to handle converse

On-the-fly Complexity Optimal Tableaux for CPDL

potential rescuers: on-the-fly graph tableaux
annotations: inside nodes to track regular expressions
special nodes: to handle converse
global state caching: to handle converse
unexp: initially all nodes have status unexpanded
undef: expanded but status not known
closed (a / t) : toosmall so needs to be cloned into alternatives
open(prs, alt): open with potential rescuers, and alternatives in case it is closed later on
closed(.): unsatisfiable, will never change again
$i d x_{x}$: unique time stamp of when it became "defined" for proofs by induction

On-the-fly Complexity Optimal Tableaux for CPDL

Apply the following "rules" repeatedly in this order
Rule 1: picks an unexpanded node and expands it
Rule 2: picks an expanded but undefined node and computes its (initial) status. It also sets the correct time stamp.
Rule 3: picks an open node whose status has changed and recomputes its status.
Rule 4: is only applicable if all nodes are up-to-date. It picks an open node containing an eventuality φ which is currently not fulfilled in the graph and which does not have any potential rescuers either. As this indicates that φ can never be fulfilled, the node is closed.

On-the-fly Complexity Optimal Tableaux for CPDL

Soundness, Completeness and Complexity: Let $\phi \in \mathrm{Fml}$ be a formula in negation normal form of size n. The procedure is-sat (ϕ) terminates, runs in EXPTIME in n, and ϕ is satisfiable iff is-sat (ϕ) returns true.

Implementations:
http://users.cecs.anu.edu.au/~rpg/software.html

Note: As far as I know, this is the only complexity-optimal algorithm for CPDL that does not use a cut rule

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic with Converse. IJCAR 2010

Related Work for Fixpoint Logics

Terminating Tableaux: for LTL exist (experimentally not competitive)
Resolution Methods: LTL and CTL, optimal, PDL?, converse?
BDD-based methods: LTL, CTL, PDL plus converse, optimal
MLSolver: general solver for many modal logics

- creates and solves parity game optimally
- handles many fixpoint logics including LTL, CTL, PDL, CTL* and mu-calculus converse?
- experimentally not competitive

CTL*: Mark Renolds has developed a suboptimal tableau calculus
Mona: embed into S1S ... non-elementary complexity
PDL: automata based methods exist (converse?)
CPDL: De Giacomo and Massacci (Inf. and Comp. 2000)

- paper does not give explicit Exptime algorithms
- only known implementation for CPDL is unsound
- new implementation for PDL exists

Further Work

Optimisations: needed since many standard ones are not sound Extend: to other fixpoint logics e.g. CTL, ATL, LCK SAT: many people investigating using modern SAT/SMT solvers
QBF: worth investigating instead of SAT solvers
Efficiency and Scalability: is the front line

Questions?

