
Verification of properties on partially observable Petri
nets

Federica Adobbati

17 June 2021

1 / 30

About me

My name is Federica, I am a PhD student at Milano-Bicocca University

Bachelor degree in maths

Master degree in computer science

Erasmus in Bielefeld
Thesis: Asynchronous games on Petri nets with application to control
problems (supervisors: Luca Bernardinello and Lucia Pomello)

Since November 2019 PhD student in computer science in MC3 lab

2 / 30

Introduction

1 What information can the user get through his observations?

2 Is the user able to force some behaviour on the system?

3 / 30

Context

Concurrent systems

System modelled with a Petri net

The user knows the structure of the system

The user observes only a part of the net

The user has a goal (grabbing information, performing

actions...)

The environment is hostile or indifferent

4 / 30

Modelling language: Petri nets

5 / 30

Modelling language: Petri nets

5 / 30

What information can the user get
through his observations?

6 / 30

Information flow

observable unobservable

The user interacts only by
observing the system

Positive flow

If the user observes a and
c , knows that g will
eventually fire

7 / 30

Information flow

observable unobservable

The user interacts only by
observing the system

Negative flow

If the user observes a,
knows that f did not and
will not fire

8 / 30

Formal definition on the unfolding

Run

Possible history of what
happened in the net

Reveals

{a, c} reveals g iff in each
run with at least an
occurrence of a and c , there
is also an occurrence of g

Excludes

a excludes f iff in no run with
at least an occurrence of f
there is an occurrence of a.

9 / 30

Formal definition on the unfolding

Run

Possible history of what
happened in the net

Reveals

{a, c} reveals g iff in each
run with at least an
occurrence of a and c , there
is also an occurrence of g

Excludes

a excludes f iff in no run with
at least an occurrence of f
there is an occurrence of a.

9 / 30

Formal definition on the unfolding

Run

Possible history of what
happened in the net

Reveals

{a, c} reveals g iff in each
run with at least an
occurrence of a and c , there
is also an occurrence of g

Excludes

a excludes f iff in no run with
at least an occurrence of f
there is an occurrence of a.

9 / 30

Formal definition on the unfolding

Run

Possible history of what
happened in the net

Reveals

{a, c} reveals g iff in each
run with at least an
occurrence of a and c , there
is also an occurrence of g

Excludes

a excludes f iff in no run with
at least an occurrence of f
there is an occurrence of a.

9 / 30

Free choice nets

In a free choice net, when two transitions are in conflict share all the
preconditions

10 / 30

The tree of maximal-step computations

Definition

Each node is a marking, each branch is labelled with a maximal step
enabled in that marking

A leaf is a deadlock or a repetition in the same run

11 / 30

Another example

c reveals d , c does not reveal h, a excludes b

12 / 30

Results

Theorem

Let Σ = (P,T ,F ,m0) be a free-choice net, and a, b ∈ T .

1 a reveals b on the unfolding iff in every path of the tree of
maximal-step computations with a there is also b.

2 The tree is sufficient to compute all the labels of all the runs in the
unfolding. From this sets of labels we can compute excludes and
general reveals relations.

13 / 30

Is the user able to force some behavior on
the system?

14 / 30

Control of the net

� uncontrollable � controllable unobservable target

The user interacts by
controlling some transitions

Example

Can the user force the system
to reach place 8 by
controlling only black
transitions?

Yes, by observing
which transition the
environment fires

15 / 30

Control of the net

� uncontrollable � controllable unobservable target

The user interacts by
controlling some transitions

Example

Can the user force the system
to reach place 8 by
controlling only black
transitions? Yes, by observing
which transition the
environment fires

15 / 30

Control of the net

� uncontrollable � controllable unobservable target

The user interacts by
controlling some transitions

Example

Can the user force the system
to reach place 8 by
controlling only black
transitions? Yes, by observing
which transition the
environment fires

15 / 30

Asynchronous game on Petri nets

� uncontrollable � controllable unobservable

Rules

Whenever a transition is
enabled, its owner can
decide to fire it

The Environment must
guarantee the progress
of the system

16 / 30

Game on the unfolding

B-cut: a maximal set of
pairwise concurrent
places

Play: a run on the
unfolding and an
increasing sequence of
cuts

Strategy:
α : obs(Γ)→ 2Tu

The user has a winning
strategy iff he wins all the
plays that are consistent with
it

17 / 30

Game on the unfolding

B-cut: a maximal set of
pairwise concurrent
places

Play: a run on the
unfolding and an
increasing sequence of
cuts

Strategy:
α : obs(Γ)→ 2Tu

The user has a winning
strategy iff he wins all the
plays that are consistent with
it

17 / 30

Game on the unfolding

Example

α({10, 50}) = {a}
α({10, 60}) = {b}
α(γo) = ∅ for all other
observable cuts

Observation of cuts provides
a memory to the user

18 / 30

Game on the unfolding

If the strategy is memoryless
can be defined on markings

Example

α({1, 5}) = {a}
α({1, 6}) = {b}
α(mo) = ∅ for all other
observable markings

19 / 30

Question

Given a goal for the user and a partially controllable net, how can we
decide whether the user has a winning strategy?

Proposed solution

1 Definition of a class of goals

2 Reduction to a game on a finite graph

3 Derivation of a strategy on the Petri net from the strategy on the
graph

4 Implementation of the strategy

20 / 30

1. Goals for the users

We can express goals with temporal logics (e.g. LTL)

Can the user force the system
to reach place 8 by
controlling only black
transitions?

⇒ Can the user force the
validity of F8?

21 / 30

2. Transition systems as Kripke models

−→ uncontrollable −→ controllable target

We can verify on this structure the ATL∗ formula 〈〈user〉〉F8

22 / 30

2. Transition systems as Kripke models

−→ uncontrollable −→ controllable target

We can verify on this structure the ATL∗ formula 〈〈user〉〉F8
22 / 30

2. Model checking on Kripke models

If the user has no memory, we can remove a subset of controllable arcs,
and check whether the resulting structure satisfies the LTL formula

23 / 30

3. Results

If the LTL formulas do not use the ‘next’ operator, we can construct a
game on the Kripke model equivalent to the game on the unfolding

Theorem

Let GΣ be the Kripke model derived from the elementary net Σ.
The user has a memoryless winning strategy on Σ iff he has a memoryless
winning strategy on GΣ, for all the formulas that do not use the ‘next’
operator

Advantage: We can use the algorithms for Kripke models to find
strategies on Petri nets

Drawback: When we consider memory, this equivalence does not hold
because of the different semantics

24 / 30

Example with memory

� controllable unobservable target

If the user observes place 5, he cannot know which between e and f he
has to choose to reach 8

25 / 30

Memory on the unfolding
�

controllable unobservable target

If the user partially observes cuts, there is a winning strategy:
α(50) = {e}, α(50) = {f }, α(γo) = ∅ otherwise.

26 / 30

Ongoing works

Development of techniques for finding strategies with causal memory
and partial observability

Development of algorithms working directly on concurrent structures

Implementable strategies

27 / 30

4. Implementable strategies

When there is a winning strategy, we want to know whether we can add
places to the net in order to allow only the desired behaviour

28 / 30

4. Implementable strategies

Conjecture: A strategy is implementable iff the reduced transition system
that follows the strategy is synthesizable in a P/T net

29 / 30

Partial observability on the transition system

A sort of modal transition system

30 / 30

