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Why Satis�ability Checking?

Many important properties are based on strategic ability

Functionality ≈ ability of authorized users to complete tasks

Security ≈ inability of unauthorized users to complete tasks

One can try to formalize such properties in modal logics of
strategic ability, such as ATL or Strategy Logic

Model synthesis: �nd a model satisfying a given property,
provided that such a model exists

Model checking: by checking satis�ability of
ϕsystem ∧ ¬ϕcorrect
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Satis�ability (SAT) versus Model Checking (MC)

PL : SAT: NPTIME-complete, MC: PTIME-complete

LTL : SAT: PSPACE-complete, MC: PSPACE-complete,
from SAT to MC using automata approach,

CTL : SAT: EXPTIME-complete, MC: PTIME-complete

CTL* : SAT: 2EXPTIME-complete, MC: PSPACE-complete,

ATLI : SAT: EXPTIME-complete, MC: PTIME-complete,

ATLi : SAT: ??, MC: ∆P
2 − complete,

SL[SG ]I : SAT: ≤ 2EXPTIME-complete, MC: PTIME-complete,

TCTL : SAT: undecidable, MC: PSPACE-complete,

Assumption: model is represented by an LTS or CGS and the
size is given by the number of its transitions
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ATL: What Agents Can Achieve?

ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]

Temporal logic meets game theory

Main idea: cooperation modalities

〈〈A〉〉: coalition A has a collective strategy to enforce Φ

 Φ can include temporal operators: X (next), F (sometime in
the future), G (always in the future), U (strong until)
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Example formulae

�Agent 1 can ensure that the safe will never be
opened.�

〈〈1〉〉G (¬ open)

�Agent 1 cannot open the safe by himself.�

¬〈〈1〉〉F (open)

�Agents 1 and 2 can cooperate to open the
safe.�

〈〈1, 2〉〉F (open)
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Multi-agent system and model

MAS

A - a �nite set of agents

Li - a set of local states of i ∈ A
Acti - a set of local actions of i ∈ A
Pi , Ti - a local protocol and a transition function of i ∈ A

Act = Act1 × · · · × Actn - a set of global actions

PV - a �nite set of global propositions

Model M = (St, ι,T ,V )

• St = L1 × · · · × Ln - the global states
• ι ∈ St - an initial state
• T : St × Act ⇀ St - the global transition (partial) function
based on local protocols
• V : St → 2PV - the valuation of the states
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Example model

Agent 0
TB0 0 1

0 T T
1 F T

Product M
 

 VB (0,0) (0,1) (1,0) (1,1)
p T F T F

Agent 1
TB1 0 1

0 T F
1 F T

0 0

1

 1 

1

0 0

1 1

(0, 0) (0, 0)

(1, 0)

 (1, 0) 

(0, 1) (0, 1)

(1, 1)

 (1, 1) 

(1, 0)(1, 1)

Figure: Example model M
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Strategies and Abilities

Strategy

A strategy is a conditional plan.
We represent strategies by functions σi : St → Acti .

 memoryless, perfect information strategies

Semantics of ATL

M, s |= 〈〈A〉〉Φ i� there is a collective strategy σA such that,
for every path λ that may result from execution
of σA from s, we have that M, λ |= Φ.
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Semantic Variants of ATL

Available information:

Perfect information (I) vs. imperfect information strategies (i)

Memory of agents:

Perfect recall (R) vs. memoryless strategies (r)

MsATL uses memoryless (r) strategies, with and without perfect
information, and is the only one dedicated to checking satis�ability
of imperfect information.
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Problem and computational complexity

Decision problem ATLY SAT, for Y ∈ {i , I}

Decide whether an ATLY formula is satis�able.

Computational complexity

ATLISAT - EXPTIME-complete (for a �xed number of agents)

V. Goranko, G. Van Drimmelen
Complete axiomatization and decidability of ATL.
Theoretical Computer Science, 2006.

ATLiSAT - unknown
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Related work

Inspiration: SAT Modulo Monotonic Theories Solver for CTL

T. Klenze, S. Bayless, A.J. Hu
Fast, Flexible, and Minimal CTL Synthesis via SMT.
Computer Aided Veri�cation, 2016.

External MC tools:
MCMAS - for ATLIMC

A. Lomuscio, H. Qu, F. Raimondi
MCMAS: an open-source model checker for the ver. of MAS.
International Journal on Software Tools for Technology Transfer,
2017.

STV - for ATLiMC

D. Kurpiewski, M. Knapik, W. Jamroga
On Domination and Control in Strategic Ability.
AAMAS, 2019.

Comparison: TATL - for ATLISAT

A. David
Deciding ATL* Satis�ability by Tableaux.
Int. Conf. on Aut. Deduction, 2015. 13 / 54



Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Outline

1 Alternating-time Temporal Logic

2 Satis�ability Algorithm for ATL and MsATL tool

3 Strategy Logic with Simple Goals

4 Satis�ability Algorithm for SL[SG] and SGSAT tool

14 / 54



Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Boolean encoding of ATL model

Agent 0
TB0 0 1

0 T T
1 F T

Product M
 

 VB (0,0) (0,1) (1,0) (1,1)
p T F T F

Agent 1
TB1 0 1

0 T F
1 F T

0 0

1

 1 

1

0 0

1 1

(0, 0) (0, 0)

(1, 0)

 (1, 0) 

(0, 1) (0, 1)

(1, 1)

 (1, 1) 

(1, 0)(1, 1)

Figure: Example model M

vM = ( T ,T ,F ,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,F ,F ,T︸ ︷︷ ︸
TB1: rans. of Ag.1

, T ,F ,T ,F︸ ︷︷ ︸
VB: global props.

)
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Partial model

Figure: Partial model Mpar

vM = ( T ,U,F ,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,F ,U,T︸ ︷︷ ︸
TB1: trans. of Ag.1

, T ,U,U,F︸ ︷︷ ︸
VB: global props.

)
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Approximations

For �xed Y ∈ {i , I}, partial model Mpar , and a formula φ, we
compute

approximation of models:

CLASSY
Mpar

(φ) - a set of models s.t.:

if M is a total extension of Mpar and M, s |=Y φ

for some s ∈ St, then M ∈ CLASSY
Mpar

(φ)

approximation of states:

‖ φ ‖YMpar
={s ∈ St : ∃M∈CLASSY

Mpar
(φ) M, s |=Y φ}
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How to use these approximations?

For �xed Y ∈ {i , I}, Mpar , φ, and an initial state ι,

if Mpar can be extended to a total model M s.t. M, ι |=Y φ, then

M ∈ CLASSY
Mpar

(φ) and ι ∈‖ φ ‖YMpar

Consequently, if
ι 6∈‖ φ ‖YMpar

then Mpar cannot be extended to any total model satisfying φ.
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Monotonicity property

The implication

if M, s |=Y φ then M ′, s |=Y φ

holds if the following conditions are satis�ed

CASE: φ ∈ {〈〈Γ〉〉Xp, 〈〈Γ〉〉Gp, 〈〈Γ〉〉pUp}

positive monotonicity wrt. local transitions of agents i ∈ Γ:
vM [TBi ] ≤ vM′ [TBi ]

negative monotonicity wrt. local transitions of agents i 6∈ Γ:
vM [TBi ] ≥ vM′ [TBi ]

positive monotonicity wrt. propositions: vM [VB] ≤ vM′ [VB]

 assuming that F < T
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Construction of Mover and Munder

Partial model Mpar :

vMpar = ( T ,U,U,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,U,U,T︸ ︷︷ ︸
TB1: trans. of Ag.1

, U,U,U,U︸ ︷︷ ︸
VB: global prop.

)

MΓ
over for the given Mpar and a set of agents Γ = {0}:

vMΓ
over

= ( T ,T ,T ,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,F ,F ,T︸ ︷︷ ︸
TB1: trans. of Ag.1

, T ,T ,T ,T︸ ︷︷ ︸
VB: global prop.

)

MΓ
under for the given Mpar and a set of agents Γ = {0}:

vMΓ
under

= ( T ,F ,F ,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,T ,T ,T︸ ︷︷ ︸
TB1: trans. of Ag.1

, F ,F ,F ,F︸ ︷︷ ︸
VB: global prop.

)

Notice that Mover and Munder meet the conditions of monotonicity.
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Where do we use Mover and Munder ?

At the beginning we have a partial model which is gradually
extended to a total model.

In the next steps of our procedure, we use a model checker,
which must have a total model as input.

Therefore, the partial model must be extended to a total
model.
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How to compute ‖ φ ‖YMpar
?

We use the algorithm computing ‖ φ ‖YMpar ,λ
for λ ∈ {over , under}

and assume that ‖ φ ‖YMpar
=‖ φ ‖YMpar ,over

CASE: φ ∈ {¬p}

‖ φ ‖YMpar ,λ= MC (φ,MAunder ) for λ = over

‖ φ ‖YMpar ,λ= MC (φ,MAover ) for λ = under

CASE: φ ∈ {〈〈Γ〉〉Xp, 〈〈Γ〉〉Gp, 〈〈Γ〉〉pUp}

‖ φ ‖YMpar ,λ= MC (φ,MΓ
λ)

 MC (φ,M) is a model checking algorithm that returns the set
of states satisfying φ in M
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What about nested formulae ?

CASE: φ ∈ {¬ψ, 〈〈Γ〉〉Xψ, 〈〈Γ〉〉Gψ}

calculate ‖ ψ ‖YMpar ,λ
(recursively)

replace ψ in φ with a new proposition pψ which holds in the
states of

s ∈‖ ψ ‖YMpar ,λ

compute ‖ φ′ ‖YM′
par

for φ′ ∈ {¬pψ, 〈〈Γ〉〉Xpψ, 〈〈Γ〉〉Gpψ}, resp.

 M ′ is an extension of M by adding a new proposition pψ
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Satis�ability procedure

Model requirements

number of agents

number of local states of agents

number of global propositions

Input and output

Input: Y ∈ {i , I}, φ, ι, and model requirements determining Mpar .

Output: M s.t. M, ι |=Y φ, meeting the requirements of Mpar or

the answer that such a model does not exist.
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Satis�ability procedure

1. depth := 0; set vMpar

2. compute ‖ φ ‖YMpar

3. if ι ∈‖ φ ‖YMpar
, then

(a) if Mpar is total; SAT; return Mpar

(b) otherwise depth := depth + 1;

assign value to an unsigned variable; go to step 2

4. if ι 6∈‖ φ ‖YMpar
, then

(a) if depth > 0, analyse the con�ict, undo decisions up to
the con�ict depth c and assign the opposite value
to the con�icting variable; depth := c ; go to step 2

(b) if depth = 0 return UNSAT.
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MsATL tool architecture

Figure: http://monosatatl.epizy.com

26 / 54



Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Experimental results for perfect information

Form. 1: 〈〈0〉〉X(¬p0 ∨ 〈〈1〉〉G(¬p1 ∨ 〈〈0, 1〉〉F(¬p1 ∨ 〈〈0, 1〉〉F(¬p0 ∨
〈〈2〉〉F〈〈0〉〉X(¬p0 ∨ 〈〈1〉〉G( ¬p1 ∨ 〈〈0, 1〉〉G(〈〈0〉〉F¬p0)))))))

Table: Experimental results for perfect information.

Id 1 2 3 4 5 6 7 8
Depth 9 13 17 20 23 26 30 33
Connectives 13 19 25 31 35 41 49 55
MsAtl (sec.) 0.22 0.23 0.24 0.31 0.32 0.34 0.38 0.43
TATL (sec.) 0.58 6.2 29.7 74.6 229 552 1382 3948
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Experimental results for imperfect information

Form. 2: 〈〈2〉〉F(¬p3 ∧ p1 ∨ p3 ∧ 〈〈0, 2〉〉F(¬p3 ∧ 〈〈0, 2〉〉Fp1 ∧ ¬p3))

Table: Experimental results for imperfect information. The 'L' parameter
is the number of local states of the agents.

Id Coalitions Depth Connectives L=2 L=3 L=4 L=5
1 1 2 4 12.1 37.2 88.8 226
2 2 3 9 16.4 52.7 167 542
3 3 3 6 15.8 56.6 163 559
4 3 4 6 22.9 68.1 194 746
5 4 7 6 35.8 124 285 795
6 5 13 13 70.9 265 647 2480
7 5 17 15 88.2 314 744 2365
8 5 21 18 106 383 1110 3470
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Live demonstration
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Strategy Logic: shared strategies

SL: Strategy Logic [F. Mogavero, A. Murano, L. Sauro:
Reasoning About Strategies, 2010]

Strategic plans over temporal goals.

Nash equilibrium, Stackelberg equilibrium.

Main idea: strategy quanti�ers and agent bindings

∃x : for some strategy x

∀x : every strategy x

(x , i): strategy x is used by agent i
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Strategy Logic with Simple Goals

A variant of SL: Simple Goal Strategy Logic, SL[SG]

Belardinelli, F.; Jamroga, W.; Kurpiewski, D.; Malvone, V.; and Murano, A.
Strategy logic with simple goals: Tractable reasoning about strategies.
IJCAI 2019
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Strategy Logic with Simple Goals

SL[SG]: main syntax constructions

℘[Xϕ, ℘[(ϕUϕ)

℘ - quanti�cation pre�x, e.g. ∀x∃y∀z
[ - binding pre�x, e.g. (x , 1)(x , 2)(y , 3)

Assumptions:

each binding pre�x [ contains every agent of A (the set of all
agents),

every agent is bound to exactly one variable,

every variable appearing in [ is quanti�ed in ℘.

As a result: every formula is a sentence.
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Examples

What is the di�erence between ATL and SL?

Properties not expressible in ATL

the quanti�ers over variables referring to strategies can be of
di�erent types and can appear in any order, e.g. for
A = {1, 2, 3, 4}

∃x1∀x2∀x3∃x4(1, x1)(2, x2)(3, x3)(4, x4)(p U q)

two or more agents can be assigned to the same strategy, e.g.
for A = {1, 2}

∃x(1, x)(2, x)X p
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Multi-agent system

MAS consists of n agents A = {1, 2, . . . , n}.
Every agent i ∈ A is associated with:

Li - a �nite non-empty set of local states

ιi ∈ Li - an initial local state

Acti - a �nite non-empty set of local actions

Pi : Li → 2Acti \ {∅} - a local protocol

Ti : Li × Act → Li - a (partial) local transition function
such that Ti (li , α) is de�ned i� αi ∈ Pi (li )

PV i - a �nite non-empty set of local propositions

Vi : Li → 2PV i - a local valuation function

• Act = Act1 × · · · × Actn - the set of joint global actions

• PV =
⋃n

i=1 PV i - the union of the local propositions
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Model

We consider synchronous MAS, where each global action is a
n-tuple 〈ai 〉i∈A with ai ∈ Acti .

Model

The model for MAS is a 4-tuple M = (St, ι,T ,V ) where
• St = L1 × · · · × Ln is a set of the global states,
• ι = (ι1, . . . , ιn) ∈ St is the initial global state,
• T : St × Act → St is the partial global transition function, such
that T (s, α) = s ′ i� Ti (si , α) = s ′i for all i ∈ A
• V : St → 2PV is the valuation function such that
V ((l1, . . . , ln)) =

⋃n
i=1 Vi (li ).
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Example MAS and model
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Strategies

Strategy

A strategy is a conditional plan.
We represent strategies by functions σi : St+ → Acti .

 memoryfull, perfect information strategies
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Semantic Variants of SL

Available information:

Perfect information (I) vs. imperfect information strategies (i)

Memory of agents:

Perfect recall (R) vs. memoryless strategies (r)

SGSAT uses memoryfull strategies with perfect information and is
the only one dedicated to checking SL[SG].
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Shared actions

Shared actions

For every non-empty set Γ ⊆ A, the set of shared actions of
agents Γ is determined ActΓ , ∩i∈ΓActi .

Such a set must be non-empty if we want to ensure the existence of
a non-empty set of shared strategies for Γ (i.e. a set of strategies
that can be used by every i ∈ Γ).
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Shared strategies

Shared strategies

If the range of a strategy σ is a subset of Acti ∩ Actj , then we say
that the strategy is shared by agents i and j

Notation:

shr(x , ϕ) - the set of all agents bound to the variable x within the
formula ϕ

Σ(M)shr(x ,ϕ) - the set of all strategies shared by agents from
shr(x , ϕ)
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Assignment

An assignment gives a valuation of variables with strategies, where
the latter are used to determine the behavior of agents.

Assignment

An assignment is a function

χ : Var ∪ A → Σ(M)

such that for every agent i ∈ A, χ(i) is a strategy for i .

For z ∈ Var ∪ A and σ ∈ Σ(M), the variant χz
σ is the assignment

that maps z to σ and coincides with χ on all other variables and
agents.
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Semantics of SL

Semantics of SL

(M, h, χ) |= ∃xψ i� there is a strategy σ ∈ Σ(M)shr(x ,ψ),

such that (M, h, χx
σ) |= ψ

there is a strategy shared by all agents bound to x , s.t. if the

agents perform the strategy then ψ holds

(M, h, χ) |= (x , i)ψ i� (M, h, χi
χ(x)) |= ψ

if agent i performs the strategy assigned to x by χ, then ψ holds

43 / 54



Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Decision problem

Bounded satis�ability problem, SLSG SAT

Decide whether a SL[SG] formula is satis�able under some �xed
initial restrictions on MAS.

Restrictions concern:

the number of agents,

local actions,

local states, and

local propositions of every agent.
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Computational complexity

SL SAT - highly undecidable - Σ1
1-HARD, does not have the

bounded-tree model property

Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
Reasoning about strategies: on the satis�ability problem.
Log. Methods Comput. Sci. 13(1), 2017.

SL[1G] SAT - 2EXPTIME (One-Goal Strategy Logic)

Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
Reasoning about strategies: On the model-checking problem.
ACM Trans. Comput. Logic 15(4), 2014.

SL[SG] SAT - no worse than 2EXPTIME
(since SL[SG] is a sublogic of SL[1G])

SL[SG] MC - P-Time-complete

Belardinelli, F.; Jamroga, W.; Kurpiewski, D.; Malvone, V.; and Murano,
A.
Strategy logic with simple goals: Tractable reasoning about strategies.
IJCAI 2019
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Related work

Inspiration: SAT Modulo Monotonic Theories Solver for CTL

T. Klenze, S. Bayless, A.J. Hu
Fast, Flexible, and Minimal CTL Synthesis via SMT.
Computer Aided Veri�cation, 2016.

Previous work:

Niewiadomski, A.; Kacprzak, M.; Kurpiewski, D.; Knapik, M.; Penczek,
W.; and Jamroga, W.
MsATL: A tool for SAT- based ATL satis�ability checking.
Proc. of AAMAS, 2020

Kacprzak, M.; Niewiadomski, A.; and Penczek, W.
Sat-based ATL satis�ability checking.
Proc. of KR, 2020

External MC tools:
MCMAS - for SL[1G]

Cermák, P.; Lomuscio, A.; and Murano, A.
Verifying and synthesising multi-agent systems against one-goal
strategy logic speci�cations.
Proc. of AAAI Conference on Arti�cial Intelligence, 2015.
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Outline
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Boolean encoding of SL[SG] model
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Boolean encoding of SL[SG] model - assumptions

A1 In each local state there is a legal action:

ϕ1 =
∧

i≤n;k≤ni

∨
t≤mi

pbi (k , t)

A2 Transition (li , α, l
′
i ) is de�ned i� α is legal in li :

ϕ2 =
∧

i≤n;t≤mi ;k≤ni ;j∈gli (t)

(
(
∨

k ′≤ni

tbi (k , j , k
′))↔ pbi (k, t)

)
A3 Transition relation is a function:

ϕ3 =
∧

i≤n;k,k ′≤ni ;j≤|Act|

(
tbi (k , j , k

′)→
∧

k ′′≤ni ,k ′′ 6=k ′

¬tbi (k , j , k ′′)
)
.
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Partial model
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Monotonicity property

The implication

if M, h, χ |= φ then M ′, h, χ |= φ

holds if the following conditions are satis�ed

CASE: φ ∈ {℘[X p, ℘[(p1 U p2)} for p, p1, p2 ∈ PV

positive monotonicity wrt. local transitions and local protocol
of agents i ∈ E (℘[): vM(bi ) ≤ vM′(bi ) for each
bi ∈ TBi ∪ PBi

negative monotonicity wrt. local transitions and local protocol
of agents i ∈ A(℘[): vM(bi ) ≥ vM′(bi ) for each
bi ∈ TBi ∪ PBi

positive monotonicity wrt. propositions: vM(vb) ≤ vM′(vb) for
each vb ∈ VB

 assuming that F < T
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SGSAT tool architecture

SGSAT (C++)       

MiniSAT-Core

SL Theory 
Solver

MCMAS
Adapter

STV
Adapter

MCMAS-SL
Model 

Checker

STV
Model 

Checker

Input:
SLSGFormula
Constraints
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Preliminary experimental results for SL[SG]

ϕ1 = ∃x1...∃xn(x1, 1)...(xn, n)F(p11 ∧ ... ∧ p1n), and
ϕ2 = ∀x1∃x2...∃xn(x1, 1)...(xn, n)F(p11 ∧ ... ∧ p1n).

ϕ1 ϕ2

n ls la lp vars satT runT satT runT

2 2 2 2 48 0.05 1.69 0.05 1.14

2 3 2 2 96 0.42 4.19 0.39 4.37

2 4 2 2 160 2.60 17.5 2.85 20.0

2 5 2 2 240 19.8 125 21.5 132

2 2 5 2 228 0.43 6.08 0.4 6.26

3 2 2 2 120 0.56 5.22 0.48 5.24

3 3 2 2 252 37.4 237 41.1 262

3 2 3 2 354 3.88 29.9 3.83 29.6

3 2 4 2 804 18.9 147 19.9 155

3 2 5 2 1542 66.9 607 79.8 708

4 2 2 2 288 13.6 96.4 13.9 101

4 2 3 2 1336 257 1700 270 2462

5 2 2 2 680 501 4121 423 3397

Table: The number of: agents, local states, local actions, local
propositions, and variables encoding MAS. Next, the time consumed by
SAT-solver, and the total runtime (in seconds). 53 / 54
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