
Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Satis�ability Checking

of

ATL and SL with Simple Goals

M. Kacprzak, A. Niewiadomski, W. Penczek

Bialystok University of Technology, Faculty of Computer Science, Poland
Siedlce University, Faculty of Exact and Natural Sciences, Poland

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Seminar of ZTSRiO, October 14, 2021
1 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Introduction

1 Why Satis�ability Checking?

2 How to Specify Strategic Abilities?
1 Alternating-time Temporal Logic
2 Strategy Logic with Simple Goals

3 Satis�ability Algorithm

4 MsATL and SGSAT tools

2 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Why Satis�ability Checking?

Many important properties are based on strategic ability

Functionality ≈ ability of authorized users to complete tasks

Security ≈ inability of unauthorized users to complete tasks

One can try to formalize such properties in modal logics of
strategic ability, such as ATL or Strategy Logic

Model synthesis: �nd a model satisfying a given property,
provided that such a model exists

Model checking: by checking satis�ability of
ϕsystem ∧ ¬ϕcorrect

3 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Satis�ability (SAT) versus Model Checking (MC)

PL : SAT: NPTIME-complete, MC: PTIME-complete

LTL : SAT: PSPACE-complete, MC: PSPACE-complete,
from SAT to MC using automata approach,

CTL : SAT: EXPTIME-complete, MC: PTIME-complete

CTL* : SAT: 2EXPTIME-complete, MC: PSPACE-complete,

ATLI : SAT: EXPTIME-complete, MC: PTIME-complete,

ATLi : SAT: ??, MC: ∆P
2 − complete,

SL[SG]I : SAT: ≤ 2EXPTIME-complete, MC: PTIME-complete,

TCTL : SAT: undecidable, MC: PSPACE-complete,

Assumption: model is represented by an LTS or CGS and the
size is given by the number of its transitions

4 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Outline

1 Alternating-time Temporal Logic

2 Satis�ability Algorithm for ATL and MsATL tool

3 Strategy Logic with Simple Goals

4 Satis�ability Algorithm for SL[SG] and SGSAT tool

5 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

ATL: What Agents Can Achieve?

ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]

Temporal logic meets game theory

Main idea: cooperation modalities

〈〈A〉〉: coalition A has a collective strategy to enforce Φ

 Φ can include temporal operators: X (next), F (sometime in
the future), G (always in the future), U (strong until)

6 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Example formulae

�Agent 1 can ensure that the safe will never be
opened.�

〈〈1〉〉G (¬ open)

�Agent 1 cannot open the safe by himself.�

¬〈〈1〉〉F (open)

�Agents 1 and 2 can cooperate to open the
safe.�

〈〈1, 2〉〉F (open)

7 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Multi-agent system and model

MAS

A - a �nite set of agents

Li - a set of local states of i ∈ A
Acti - a set of local actions of i ∈ A
Pi , Ti - a local protocol and a transition function of i ∈ A

Act = Act1 × · · · × Actn - a set of global actions

PV - a �nite set of global propositions

Model M = (St, ι,T ,V)

• St = L1 × · · · × Ln - the global states
• ι ∈ St - an initial state
• T : St × Act ⇀ St - the global transition (partial) function
based on local protocols
• V : St → 2PV - the valuation of the states

8 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Example model

Agent 0
TB0 0 1

0 T T
1 F T

Product M

 VB (0,0) (0,1) (1,0) (1,1)
p T F T F

Agent 1
TB1 0 1

0 T F
1 F T

0 0

1

 1

1

0 0

1 1

(0, 0) (0, 0)

(1, 0)

 (1, 0)

(0, 1) (0, 1)

(1, 1)

 (1, 1)

(1, 0)(1, 1)

Figure: Example model M

9 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Strategies and Abilities

Strategy

A strategy is a conditional plan.
We represent strategies by functions σi : St → Acti .

 memoryless, perfect information strategies

Semantics of ATL

M, s |= 〈〈A〉〉Φ i� there is a collective strategy σA such that,
for every path λ that may result from execution
of σA from s, we have that M, λ |= Φ.

10 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Semantic Variants of ATL

Available information:

Perfect information (I) vs. imperfect information strategies (i)

Memory of agents:

Perfect recall (R) vs. memoryless strategies (r)

MsATL uses memoryless (r) strategies, with and without perfect
information, and is the only one dedicated to checking satis�ability
of imperfect information.

11 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Problem and computational complexity

Decision problem ATLY SAT, for Y ∈ {i , I}

Decide whether an ATLY formula is satis�able.

Computational complexity

ATLISAT - EXPTIME-complete (for a �xed number of agents)

V. Goranko, G. Van Drimmelen
Complete axiomatization and decidability of ATL.
Theoretical Computer Science, 2006.

ATLiSAT - unknown

12 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Related work

Inspiration: SAT Modulo Monotonic Theories Solver for CTL

T. Klenze, S. Bayless, A.J. Hu
Fast, Flexible, and Minimal CTL Synthesis via SMT.
Computer Aided Veri�cation, 2016.

External MC tools:
MCMAS - for ATLIMC

A. Lomuscio, H. Qu, F. Raimondi
MCMAS: an open-source model checker for the ver. of MAS.
International Journal on Software Tools for Technology Transfer,
2017.

STV - for ATLiMC

D. Kurpiewski, M. Knapik, W. Jamroga
On Domination and Control in Strategic Ability.
AAMAS, 2019.

Comparison: TATL - for ATLISAT

A. David
Deciding ATL* Satis�ability by Tableaux.
Int. Conf. on Aut. Deduction, 2015. 13 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Outline

1 Alternating-time Temporal Logic

2 Satis�ability Algorithm for ATL and MsATL tool

3 Strategy Logic with Simple Goals

4 Satis�ability Algorithm for SL[SG] and SGSAT tool

14 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Boolean encoding of ATL model

Agent 0
TB0 0 1

0 T T
1 F T

Product M

 VB (0,0) (0,1) (1,0) (1,1)
p T F T F

Agent 1
TB1 0 1

0 T F
1 F T

0 0

1

 1

1

0 0

1 1

(0, 0) (0, 0)

(1, 0)

 (1, 0)

(0, 1) (0, 1)

(1, 1)

 (1, 1)

(1, 0)(1, 1)

Figure: Example model M

vM = (T ,T ,F ,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,F ,F ,T︸ ︷︷ ︸
TB1: rans. of Ag.1

, T ,F ,T ,F︸ ︷︷ ︸
VB: global props.

)

15 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Partial model

Figure: Partial model Mpar

vM = (T ,U,F ,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,F ,U,T︸ ︷︷ ︸
TB1: trans. of Ag.1

, T ,U,U,F︸ ︷︷ ︸
VB: global props.

)

16 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Approximations

For �xed Y ∈ {i , I}, partial model Mpar , and a formula φ, we
compute

approximation of models:

CLASSY
Mpar

(φ) - a set of models s.t.:

if M is a total extension of Mpar and M, s |=Y φ

for some s ∈ St, then M ∈ CLASSY
Mpar

(φ)

approximation of states:

‖ φ ‖YMpar
={s ∈ St : ∃M∈CLASSY

Mpar
(φ) M, s |=Y φ}

17 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

How to use these approximations?

For �xed Y ∈ {i , I}, Mpar , φ, and an initial state ι,

if Mpar can be extended to a total model M s.t. M, ι |=Y φ, then

M ∈ CLASSY
Mpar

(φ) and ι ∈‖ φ ‖YMpar

Consequently, if
ι 6∈‖ φ ‖YMpar

then Mpar cannot be extended to any total model satisfying φ.

18 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Monotonicity property

The implication

if M, s |=Y φ then M ′, s |=Y φ

holds if the following conditions are satis�ed

CASE: φ ∈ {〈〈Γ〉〉Xp, 〈〈Γ〉〉Gp, 〈〈Γ〉〉pUp}

positive monotonicity wrt. local transitions of agents i ∈ Γ:
vM [TBi] ≤ vM′ [TBi]

negative monotonicity wrt. local transitions of agents i 6∈ Γ:
vM [TBi] ≥ vM′ [TBi]

positive monotonicity wrt. propositions: vM [VB] ≤ vM′ [VB]

 assuming that F < T
19 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Construction of Mover and Munder

Partial model Mpar :

vMpar = (T ,U,U,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,U,U,T︸ ︷︷ ︸
TB1: trans. of Ag.1

, U,U,U,U︸ ︷︷ ︸
VB: global prop.

)

MΓ
over for the given Mpar and a set of agents Γ = {0}:

vMΓ
over

= (T ,T ,T ,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,F ,F ,T︸ ︷︷ ︸
TB1: trans. of Ag.1

, T ,T ,T ,T︸ ︷︷ ︸
VB: global prop.

)

MΓ
under for the given Mpar and a set of agents Γ = {0}:

vMΓ
under

= (T ,F ,F ,T︸ ︷︷ ︸
TB0: trans. of Ag.0

, T ,T ,T ,T︸ ︷︷ ︸
TB1: trans. of Ag.1

, F ,F ,F ,F︸ ︷︷ ︸
VB: global prop.

)

Notice that Mover and Munder meet the conditions of monotonicity.
20 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Where do we use Mover and Munder ?

At the beginning we have a partial model which is gradually
extended to a total model.

In the next steps of our procedure, we use a model checker,
which must have a total model as input.

Therefore, the partial model must be extended to a total
model.

21 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

How to compute ‖ φ ‖YMpar
?

We use the algorithm computing ‖ φ ‖YMpar ,λ
for λ ∈ {over , under}

and assume that ‖ φ ‖YMpar
=‖ φ ‖YMpar ,over

CASE: φ ∈ {¬p}

‖ φ ‖YMpar ,λ= MC (φ,MAunder) for λ = over

‖ φ ‖YMpar ,λ= MC (φ,MAover) for λ = under

CASE: φ ∈ {〈〈Γ〉〉Xp, 〈〈Γ〉〉Gp, 〈〈Γ〉〉pUp}

‖ φ ‖YMpar ,λ= MC (φ,MΓ
λ)

 MC (φ,M) is a model checking algorithm that returns the set
of states satisfying φ in M

22 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

What about nested formulae ?

CASE: φ ∈ {¬ψ, 〈〈Γ〉〉Xψ, 〈〈Γ〉〉Gψ}

calculate ‖ ψ ‖YMpar ,λ
(recursively)

replace ψ in φ with a new proposition pψ which holds in the
states of

s ∈‖ ψ ‖YMpar ,λ

compute ‖ φ′ ‖YM′
par

for φ′ ∈ {¬pψ, 〈〈Γ〉〉Xpψ, 〈〈Γ〉〉Gpψ}, resp.

 M ′ is an extension of M by adding a new proposition pψ

23 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Satis�ability procedure

Model requirements

number of agents

number of local states of agents

number of global propositions

Input and output

Input: Y ∈ {i , I}, φ, ι, and model requirements determining Mpar .

Output: M s.t. M, ι |=Y φ, meeting the requirements of Mpar or

the answer that such a model does not exist.

24 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Satis�ability procedure

1. depth := 0; set vMpar

2. compute ‖ φ ‖YMpar

3. if ι ∈‖ φ ‖YMpar
, then

(a) if Mpar is total; SAT; return Mpar

(b) otherwise depth := depth + 1;

assign value to an unsigned variable; go to step 2

4. if ι 6∈‖ φ ‖YMpar
, then

(a) if depth > 0, analyse the con�ict, undo decisions up to
the con�ict depth c and assign the opposite value
to the con�icting variable; depth := c ; go to step 2

(b) if depth = 0 return UNSAT.
25 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

MsATL tool architecture

Figure: http://monosatatl.epizy.com

26 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Experimental results for perfect information

Form. 1: 〈〈0〉〉X(¬p0 ∨ 〈〈1〉〉G(¬p1 ∨ 〈〈0, 1〉〉F(¬p1 ∨ 〈〈0, 1〉〉F(¬p0 ∨
〈〈2〉〉F〈〈0〉〉X(¬p0 ∨ 〈〈1〉〉G(¬p1 ∨ 〈〈0, 1〉〉G(〈〈0〉〉F¬p0)))))))

Table: Experimental results for perfect information.

Id 1 2 3 4 5 6 7 8
Depth 9 13 17 20 23 26 30 33
Connectives 13 19 25 31 35 41 49 55
MsAtl (sec.) 0.22 0.23 0.24 0.31 0.32 0.34 0.38 0.43
TATL (sec.) 0.58 6.2 29.7 74.6 229 552 1382 3948

27 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Experimental results for imperfect information

Form. 2: 〈〈2〉〉F(¬p3 ∧ p1 ∨ p3 ∧ 〈〈0, 2〉〉F(¬p3 ∧ 〈〈0, 2〉〉Fp1 ∧ ¬p3))

Table: Experimental results for imperfect information. The 'L' parameter
is the number of local states of the agents.

Id Coalitions Depth Connectives L=2 L=3 L=4 L=5
1 1 2 4 12.1 37.2 88.8 226
2 2 3 9 16.4 52.7 167 542
3 3 3 6 15.8 56.6 163 559
4 3 4 6 22.9 68.1 194 746
5 4 7 6 35.8 124 285 795
6 5 13 13 70.9 265 647 2480
7 5 17 15 88.2 314 744 2365
8 5 21 18 106 383 1110 3470

28 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Live demonstration

29 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Outline

1 Alternating-time Temporal Logic

2 Satis�ability Algorithm for ATL and MsATL tool

3 Strategy Logic with Simple Goals

4 Satis�ability Algorithm for SL[SG] and SGSAT tool

30 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Strategy Logic: shared strategies

SL: Strategy Logic [F. Mogavero, A. Murano, L. Sauro:
Reasoning About Strategies, 2010]

Strategic plans over temporal goals.

Nash equilibrium, Stackelberg equilibrium.

Main idea: strategy quanti�ers and agent bindings

∃x : for some strategy x

∀x : every strategy x

(x , i): strategy x is used by agent i

31 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Strategy Logic with Simple Goals

A variant of SL: Simple Goal Strategy Logic, SL[SG]

Belardinelli, F.; Jamroga, W.; Kurpiewski, D.; Malvone, V.; and Murano, A.
Strategy logic with simple goals: Tractable reasoning about strategies.
IJCAI 2019

32 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Strategy Logic with Simple Goals

SL[SG]: main syntax constructions

℘[Xϕ, ℘[(ϕUϕ)

℘ - quanti�cation pre�x, e.g. ∀x∃y∀z
[- binding pre�x, e.g. (x , 1)(x , 2)(y , 3)

Assumptions:

each binding pre�x [contains every agent of A (the set of all
agents),

every agent is bound to exactly one variable,

every variable appearing in [is quanti�ed in ℘.

As a result: every formula is a sentence.

33 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Examples

What is the di�erence between ATL and SL?

Properties not expressible in ATL

the quanti�ers over variables referring to strategies can be of
di�erent types and can appear in any order, e.g. for
A = {1, 2, 3, 4}

∃x1∀x2∀x3∃x4(1, x1)(2, x2)(3, x3)(4, x4)(p U q)

two or more agents can be assigned to the same strategy, e.g.
for A = {1, 2}

∃x(1, x)(2, x)X p

34 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Multi-agent system

MAS consists of n agents A = {1, 2, . . . , n}.
Every agent i ∈ A is associated with:

Li - a �nite non-empty set of local states

ιi ∈ Li - an initial local state

Acti - a �nite non-empty set of local actions

Pi : Li → 2Acti \ {∅} - a local protocol

Ti : Li × Act → Li - a (partial) local transition function
such that Ti (li , α) is de�ned i� αi ∈ Pi (li)

PV i - a �nite non-empty set of local propositions

Vi : Li → 2PV i - a local valuation function

• Act = Act1 × · · · × Actn - the set of joint global actions

• PV =
⋃n

i=1 PV i - the union of the local propositions
35 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Model

We consider synchronous MAS, where each global action is a
n-tuple 〈ai 〉i∈A with ai ∈ Acti .

Model

The model for MAS is a 4-tuple M = (St, ι,T ,V) where
• St = L1 × · · · × Ln is a set of the global states,
• ι = (ι1, . . . , ιn) ∈ St is the initial global state,
• T : St × Act → St is the partial global transition function, such
that T (s, α) = s ′ i� Ti (si , α) = s ′i for all i ∈ A
• V : St → 2PV is the valuation function such that
V ((l1, . . . , ln)) =

⋃n
i=1 Vi (li).

36 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Example MAS and model

37 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Strategies

Strategy

A strategy is a conditional plan.
We represent strategies by functions σi : St+ → Acti .

 memoryfull, perfect information strategies

38 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Semantic Variants of SL

Available information:

Perfect information (I) vs. imperfect information strategies (i)

Memory of agents:

Perfect recall (R) vs. memoryless strategies (r)

SGSAT uses memoryfull strategies with perfect information and is
the only one dedicated to checking SL[SG].

39 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Shared actions

Shared actions

For every non-empty set Γ ⊆ A, the set of shared actions of
agents Γ is determined ActΓ , ∩i∈ΓActi .

Such a set must be non-empty if we want to ensure the existence of
a non-empty set of shared strategies for Γ (i.e. a set of strategies
that can be used by every i ∈ Γ).

40 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Shared strategies

Shared strategies

If the range of a strategy σ is a subset of Acti ∩ Actj , then we say
that the strategy is shared by agents i and j

Notation:

shr(x , ϕ) - the set of all agents bound to the variable x within the
formula ϕ

Σ(M)shr(x ,ϕ) - the set of all strategies shared by agents from
shr(x , ϕ)

41 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Assignment

An assignment gives a valuation of variables with strategies, where
the latter are used to determine the behavior of agents.

Assignment

An assignment is a function

χ : Var ∪ A → Σ(M)

such that for every agent i ∈ A, χ(i) is a strategy for i .

For z ∈ Var ∪ A and σ ∈ Σ(M), the variant χz
σ is the assignment

that maps z to σ and coincides with χ on all other variables and
agents.

42 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Semantics of SL

Semantics of SL

(M, h, χ) |= ∃xψ i� there is a strategy σ ∈ Σ(M)shr(x ,ψ),

such that (M, h, χx
σ) |= ψ

there is a strategy shared by all agents bound to x , s.t. if the

agents perform the strategy then ψ holds

(M, h, χ) |= (x , i)ψ i� (M, h, χi
χ(x)) |= ψ

if agent i performs the strategy assigned to x by χ, then ψ holds

43 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Decision problem

Bounded satis�ability problem, SLSG SAT

Decide whether a SL[SG] formula is satis�able under some �xed
initial restrictions on MAS.

Restrictions concern:

the number of agents,

local actions,

local states, and

local propositions of every agent.

44 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Computational complexity

SL SAT - highly undecidable - Σ1
1-HARD, does not have the

bounded-tree model property

Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
Reasoning about strategies: on the satis�ability problem.
Log. Methods Comput. Sci. 13(1), 2017.

SL[1G] SAT - 2EXPTIME (One-Goal Strategy Logic)

Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
Reasoning about strategies: On the model-checking problem.
ACM Trans. Comput. Logic 15(4), 2014.

SL[SG] SAT - no worse than 2EXPTIME
(since SL[SG] is a sublogic of SL[1G])

SL[SG] MC - P-Time-complete

Belardinelli, F.; Jamroga, W.; Kurpiewski, D.; Malvone, V.; and Murano,
A.
Strategy logic with simple goals: Tractable reasoning about strategies.
IJCAI 2019

45 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Related work

Inspiration: SAT Modulo Monotonic Theories Solver for CTL

T. Klenze, S. Bayless, A.J. Hu
Fast, Flexible, and Minimal CTL Synthesis via SMT.
Computer Aided Veri�cation, 2016.

Previous work:

Niewiadomski, A.; Kacprzak, M.; Kurpiewski, D.; Knapik, M.; Penczek,
W.; and Jamroga, W.
MsATL: A tool for SAT- based ATL satis�ability checking.
Proc. of AAMAS, 2020

Kacprzak, M.; Niewiadomski, A.; and Penczek, W.
Sat-based ATL satis�ability checking.
Proc. of KR, 2020

External MC tools:
MCMAS - for SL[1G]

Cermák, P.; Lomuscio, A.; and Murano, A.
Verifying and synthesising multi-agent systems against one-goal
strategy logic speci�cations.
Proc. of AAAI Conference on Arti�cial Intelligence, 2015.

46 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Outline

1 Alternating-time Temporal Logic

2 Satis�ability Algorithm for ATL and MsATL tool

3 Strategy Logic with Simple Goals

4 Satis�ability Algorithm for SL[SG] and SGSAT tool

47 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Boolean encoding of SL[SG] model

48 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Boolean encoding of SL[SG] model - assumptions

A1 In each local state there is a legal action:

ϕ1 =
∧

i≤n;k≤ni

∨
t≤mi

pbi (k , t)

A2 Transition (li , α, l
′
i) is de�ned i� α is legal in li :

ϕ2 =
∧

i≤n;t≤mi ;k≤ni ;j∈gli (t)

(
(
∨

k ′≤ni

tbi (k , j , k
′))↔ pbi (k, t)

)
A3 Transition relation is a function:

ϕ3 =
∧

i≤n;k,k ′≤ni ;j≤|Act|

(
tbi (k , j , k

′)→
∧

k ′′≤ni ,k ′′ 6=k ′

¬tbi (k , j , k ′′)
)
.

49 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Partial model

50 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Monotonicity property

The implication

if M, h, χ |= φ then M ′, h, χ |= φ

holds if the following conditions are satis�ed

CASE: φ ∈ {℘[X p, ℘[(p1 U p2)} for p, p1, p2 ∈ PV

positive monotonicity wrt. local transitions and local protocol
of agents i ∈ E (℘[): vM(bi) ≤ vM′(bi) for each
bi ∈ TBi ∪ PBi

negative monotonicity wrt. local transitions and local protocol
of agents i ∈ A(℘[): vM(bi) ≥ vM′(bi) for each
bi ∈ TBi ∪ PBi

positive monotonicity wrt. propositions: vM(vb) ≤ vM′(vb) for
each vb ∈ VB

 assuming that F < T
51 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

SGSAT tool architecture

SGSAT (C++)

MiniSAT-Core

SL Theory
Solver

MCMAS
Adapter

STV
Adapter

MCMAS-SL
Model

Checker

STV
Model

Checker

Input:
SLSGFormula
Constraints

52 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

Preliminary experimental results for SL[SG]

ϕ1 = ∃x1...∃xn(x1, 1)...(xn, n)F(p11 ∧ ... ∧ p1n), and
ϕ2 = ∀x1∃x2...∃xn(x1, 1)...(xn, n)F(p11 ∧ ... ∧ p1n).

ϕ1 ϕ2

n ls la lp vars satT runT satT runT

2 2 2 2 48 0.05 1.69 0.05 1.14

2 3 2 2 96 0.42 4.19 0.39 4.37

2 4 2 2 160 2.60 17.5 2.85 20.0

2 5 2 2 240 19.8 125 21.5 132

2 2 5 2 228 0.43 6.08 0.4 6.26

3 2 2 2 120 0.56 5.22 0.48 5.24

3 3 2 2 252 37.4 237 41.1 262

3 2 3 2 354 3.88 29.9 3.83 29.6

3 2 4 2 804 18.9 147 19.9 155

3 2 5 2 1542 66.9 607 79.8 708

4 2 2 2 288 13.6 96.4 13.9 101

4 2 3 2 1336 257 1700 270 2462

5 2 2 2 680 501 4121 423 3397

Table: The number of: agents, local states, local actions, local
propositions, and variables encoding MAS. Next, the time consumed by
SAT-solver, and the total runtime (in seconds). 53 / 54

Alternating-time Temporal Logic
Satis�ability Algorithm for ATL and MsATL tool

Strategy Logic with Simple Goals
Satis�ability Algorithm for SL[SG] and SGSAT tool

54 / 54

	Alternating-time Temporal Logic
	Satisfiability Algorithm for ATL and MsATL tool
	Strategy Logic with Simple Goals
	Satisfiability Algorithm for SL[SG] and SGSAT tool

