


STV: What’s that?

• StraTegic Verifier

• Model-checker, mostly for ATLir

• Pre-alpha version

• Main (command line) part is not user friendly

• ☺ Has a nice graphical interface

• Open source



Previous 
Version

• Presented at AAMAS 2019 
(Demo session)

• Included several pre-configured
scenarios (TianJi, Castles, Bridge 
Endplay, Drones, Simple Voting)

• User could:

• Generate the model with custom
parameters and view it

• Use apprixomations or
DominoDFS for verification



Current
Version

• New methods:

• Partial order reductions

• Bisimulation checking

• Simple specification language

• Asynchronous models

• Interface changes





Partial
Order 
Reductions

• Fully automated

• Greatly reduces the state-space for some 

models

• Model is reduced according to the given 

formula

• Works on asynchronous models



Example: Voting

Voter1 vote

Voter1 vote

Voter2 vote

Voter2 vote

Reductions

Voter2 vote

Voter1 vote



Bisimulation
checking

• „Expert mode” reductions

• Fully automated bisimulation checking

• …but the reduced model must be created 
by hand

• User provides: 

• Initial model

• Reduced model

• States mapping

• Coalition



Bisimulation
checking

• „Expert mode” reductions

• Fully automated bisimulation checking

• …but the reduced model must be created 
by hand

• User provides: 

• Initial model

• Reduced model

• States mapping

• Coalition



Bisimulation
checking

• „Expert mode” reductions

• Fully automated bisimulation checking

• …but the reduced model must be created 
by hand

• User provides: 

• Initial model

• Reduced model

• States mapping

• Coalition



Bisimulation
checking

• „Expert mode” reductions

• Fully automated bisimulation checking

• …but the reduced model must be created 
by hand

• User provides: 

• Initial model

• Reduced model

• States mapping

• Coalition



Simple Specification Language

Agent Train[2]:
init: wait
shared a1_aID: wait -> tunnel [aID_in=true]
shared a2_aID: tunnel -> away [aID_in=false]
a3: away -> wait

Agent Controller[1]:
init: green
shared a1_Train1: green -> red
shared a1_Train2: green -> red
shared a2_Train1: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Train1,in_Train2]
COALITION: [Controller1]
FORMULA: <<Controller1>>F(Train1_in=True | Train2_in=True)



Simple Specification Language

Agent Train[2]:
init: wait
shared a1_aID: wait -> tunnel [aID_in=true]
shared a2_aID: tunnel -> away [aID_in=false]
a3: away -> wait

Agent Controller[1]:
init: green
shared a1_Train1: green -> red
shared a1_Train2: green -> red
shared a2_Train1: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Train1,in_Train2]
COALITION: [Controller1]
FORMULA: <<Controller1>>F(Train1_in=True | Train2_in=True)

Agents (templates)



Simple Specification Language

Agent Train[2]:
init: wait
shared a1_aID: wait -> tunnel [aID_in=true]
shared a2_aID: tunnel -> away [aID_in=false]
a3: away -> wait

Agent Controller[1]:
init: green
shared a1_Train1: green -> red
shared a1_Train2: green -> red
shared a2_Train1: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Train1,in_Train2]
COALITION: [Controller1]
FORMULA: <<Controller1>>F(Train1_in=True | Train2_in=True)

Agents (templates)
Initial states



Simple Specification Language

Agent Train[2]:
init: wait
shared a1_aID: wait -> tunnel [aID_in=true]
shared a2_aID: tunnel -> away [aID_in=false]
a3: away -> wait

Agent Controller[1]:
init: green
shared a1_Train1: green -> red
shared a1_Train2: green -> red
shared a2_Train1: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Train1,in_Train2]
COALITION: [Controller1]
FORMULA: <<Controller1>>F(Train1_in=True | Train2_in=True)

Agents (templates)
Initial states
Shared transitions



Simple Specification Language

Agent Train[2]:
init: wait
shared a1_aID: wait -> tunnel [aID_in=true]
shared a2_aID: tunnel -> away [aID_in=false]
a3: away -> wait

Agent Controller[1]:
init: green
shared a1_Train1: green -> red
shared a1_Train2: green -> red
shared a2_Train1: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Train1,in_Train2]
COALITION: [Controller1]
FORMULA: <<Controller1>>F(Train1_in=True | Train2_in=True)

Agents (templates)
Initial states
Shared transitions
Local transitions



Simple Specification Language

Agent Train[2]:
init: wait
shared a1_aID: wait -> tunnel [aID_in=true]
shared a2_aID: tunnel -> away [aID_in=false]
a3: away -> wait

Agent Controller[1]:
init: green
shared a1_Train1: green -> red
shared a1_Train2: green -> red
shared a2_Train1: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Train1,in_Train2]
COALITION: [Controller1]
FORMULA: <<Controller1>>F(Train1_in=True | Train2_in=True)

Agents (templates)
Initial states
Shared transitions
Local transitions
States (templates)



Simple Specification Language

Agent Train[2]:
init: wait
shared a1_aID: wait -> tunnel [aID_in=true]
shared a2_aID: tunnel -> away [aID_in=false]
a3: away -> wait

Agent Controller[1]:
init: green
shared a1_Train1: green -> red
shared a1_Train2: green -> red
shared a2_Train1: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Train1,in_Train2]
COALITION: [Controller1]
FORMULA: <<Controller1>>F(Train1_in=True | Train2_in=True)

Agents (templates)
Initial states
Shared transitions
Local transitions
States (templates)
Proposition variables



Simple Specification Language

Agent Train[2]:
init: wait
shared a1_aID: wait -> tunnel [aID_in=true]
shared a2_aID: tunnel -> away [aID_in=false]
a3: away -> wait

Agent Controller[1]:
init: green
shared a1_Train1: green -> red
shared a1_Train2: green -> red
shared a2_Train1: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Train1,in_Train2]
COALITION: [Controller1]
FORMULA: <<Controller1>>F(Train1_in=True | Train2_in=True)

Agents (templates)
Initial states
Shared transitions
Local transitions
States (templates)
Proposition variables
Configuration


