STV+Reductions:
Towards Practical Verification
of Strategic AbilityaUsing Model
Reductions

Damian Kurpiewski, Witold Razderski, Wojciech Jamroga,
Yan,Kim

StraTegic Verifier

Model-checker, mostly for ATL;,

Pre-alpha version

Main (command line) part is not user friendly
© Has a nice graphical interface

Open source

* Presented at AAMAS 2019
(Demo session)

Previous * Included several pre-configured
scenarios (Tiandi, Castles, Bridge

VerS|0n Endplay, Drones, Simple Voting)

« User could:

 Generate the model with custom
parameters and view It

« Use apprixomations or
DominoDFS for verification

* New methods:
Current * Partial order reductions

Version Bisimulation checking

» Simple specification language
 Asynchronous models
* Interface changes

Wojciech Jamroga, Damian Kurpiewski, Witold Pazderski, Yan Kim

STV: Model Checking for Strategies under Imperfect Information (Demo)

UNIVERSITE DU
LUXEMBOURG

of Luxembourg

* Model 1 file:
C:\Users\root\Downloads\STVdemo_Windows\example_m
odels\2_stage_voting.txt

Choose a file..
Model 2 file:
C:\Users\root\Downloads\STVdemo_Windows\example_m
odels\2_stage_voting_sim.txt
Choose a file...
Generate
Bisimulation specification file:
C:\Users\root\Dewnloads\STVdemo_Windows\example_m
odels\2_stage_voting_mapping.txt
‘ Choose a file..
q Check
v

‘ Bisimulation checking

Coalition A=Officiall

Verify Left

5 Verify Right

Show State Labels

Show Actions

Freeze

Source

€) CHOOSE A MODEL TO VIEW:

» local automaton for each agent,

» generated global and reduced
models for POR,

» side-by-side view of two (global)

models for bisimuation-checking.

o EXPLORE MODEL(S)

GUI provides an intuitive interface with
color-highlights for:

> initial states,
winning strategy (if exists),
states satisfying given formula,

reduced model fragment,

vy v v.¥v

pairs of bisimilar node subsets.

© VERIFY MODEL(S)

Given formula can be verified both on
global and reduced models using:

» fix-point approximation
(upper/lower),

» dominance-based strategy search
(DominoDEFS).

CHOOSE AN ACTION

STV is a tool for verification of Multi-Agent
Systems. It does explicit-state model
checking and addresses the state space
explostion problem. STV offers:

>
>
>

C

model verification,

automated partial order reduction,
bisimulation - checking equivalence of
models according to a defined
relation of A-bisimulation.

GENERATE MODEL(S)

STV includes several parameterized
example models:

>

>

vVVvyVvYyYvVvYYy

L6

asynchronous: simple & two-stage
voting, train-gate-controller;
synchronous: bridge end-play, castles,
drones, Tian Ji.

model specification file user can define:

local automata for the agent(s),
propositional variables,
persistent propositions,

agent names,

ATL formula.

ADJUST GRAPH SETTINGS

The view can be panned and zoomed.

Labels with state or transition details
can be shown by hovering over the
target node/edge or toggled for the
whole graph.

* Fully automated

* Greatly reduces the state-space for some

Partial
Order

models

 Model is reduced according to the given

Reductions

formula

 Works on asynchronous models

Example: Voting

Voterl vote Voter2 vote

. Voterl vote
Reductions

R

Voterl vote Voter2 vote

Voter2 vote

« ,Expert mode” reductions

Bisimulation

checking

« ,Expert mode” reductions

* Fully automated bisimulation checking

Bisimulation

checking

« ,Expert mode” reductions

* Fully automated bisimulation checking
* ...but the reduced model must be created

Bisimulation by hand

checking

« ,Expert mode” reductions

* Fully automated bisimulation checking
* ...but the reduced model must be created

Bisimulation by hand

checking

» User provides:
* Initial model
 Reduced model
« States mapping
« Coalition

Simple Specification Language

Agent Train[2]:

init: wait

shared al aID: wait -> tunnel [aID in=true]
shared a2 _aID: tunnel -> away [aID in=false]
a3: away -> wait

Agent Controller[1]:

init: green

shared al_Trainl: green -> red
shared al Train2: green -> red
shared a2_Trainl: red -> green
shared a2 _Train2: red -> green

REDUCTION: [in_Trainl,in _Train2]
COALITION: [Controlleril]
FORMULA: <<Controllerl>>F(Trainl_in=True | Train2_in=True)

Simple Specification Language

Agent Train[2]:
init: wait Agents (templates)
shared al aID: wait -> tunnel [aID in=true]
shared a2 _aID: tunnel -> away [aID in=false]
a3: away -> wait

Agent Controller[1]:

init: green

shared al_Trainl: green -> red
shared al Train2: green -> red
shared a2_Trainl: red -> green
shared a2 _Train2: red -> green

REDUCTION: [in_Trainl,in _Train2]
COALITION: [Controlleril]
FORMULA: <<Controllerl>>F(Trainl_in=True | Train2_in=True)

Simple Specification Language

Agent Train[2]:

init: wait

shared al aID: wait -> tunnel [aID in=true]
shared a2 _aID: tunnel -> away [aID in=false]
a3: away -> wait

Agent Controller[1]:

init: green

shared al_Trainl: green -> red
shared al Train2: green -> red
shared a2_Trainl: red -> green
shared a2 _Train2: red -> green

REDUCTION: [in_Trainl,in _Train2]
COALITION: [Controlleril]
FORMULA: <<Controllerl>>F(Trainl_in=True | Train2_in=True)

Agents (templates)
Initial states

Simple Specification Language

Agent Train[2]:

init: wait AgentS (templatES)

shared al_aID: wait -> tunnel [aID in=true]

hared a2_alID: t 1l - ID in=fal "

:3?r:wa; Tz waitunne > away [a1b_infalse] Inltlal States

Agent Controller[1]: 2a.¢

init: green Shared transitions

shared al _Trainl: green -> red
shared al_Train2: green -> red
shared a2_Trainl: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Trainl,in _Train2]
COALITION: [Controlleril]
FORMULA: <<Controllerl>>F(Trainl_in=True | Train2_in=True)

Simple Specification Language

Agent Train[2]:

init: wait

shared al_aID: wait -> tunnel [aID in=true]
shared a2 _aID: tunnel -> away [aID in=false]
a3: away -> wait

Agent Controller[1]:

init: green

shared al _Trainl: green -> red
shared al_Train2: green -> red
shared a2_Trainl: red -> green
shared a2_Train2: red -> green

REDUCTION: [in_Trainl,in _Train2]
COALITION: [Controlleril]
FORMULA: <<Controllerl>>F(Trainl_in=True | Train2_in=True)

Agents (templates)
Initial states
Shared transitions
Local transitions

Simple Specification Language

Agent Train[2]:
init: wait

shared al_alID: -> [aID_in=true]
shared a2_alID: -> [aID_in=false]
a3: ->

Agent Controller[1]:
init: green

shared al_Trainl: ->
shared al _Train2: ->
shared a2_Trainl: ->
shared a2_Train2: ->

REDUCTION: [in_Trainl,in _Train2]
COALITION: [Controlleril]
FORMULA: <<Controllerl>>F(Trainl_in=True | Train2_in=True)

Agents (templates)
Initial states
Shared transitions
Local transitions

+armnlat
\‘ ‘\ ™
» ~ 4

Simple Specification Language

Agent Train[2]:
init: wait

shared al_alID: -> [aID_in=true]
shared a2_alID: -> [aID_in=false]
a3: ->

Agent Controller[1]:
init: green

shared al_Trainl: ->
shared al _Train2: ->
shared a2_Trainl: ->
shared a2_Train2: ->

REDUCTION: [in_Trainl,in _Train2]
COALITION: [Controlleril]

FORMULA: <<Controllerl>>F(Trainl_in=True | Train2_in=True)

Agents (templates)
Initial states
Shared transitions
Local transitions

[_ —

Proposition variables

Simple Specification Language

Agent Train[2]:

init: wait

shared al_alD: ->
shared a2_alID: ->
a3: ->

[aID_in=true]
[aID_in=false]

Agent Controller[1]:
init: green

shared al_Trainl: ->
shared al _Train2: ->
shared a2_Trainl: ->
shared a2_Train2: ->

REDUCTION: [in_Trainl,in_Train2]
COALITION: [Controlleri]

FORMULA: <<Controllerl>>F(Trainl_in=True | Train2_in=True)

Agents (templates)
Initial states
Shared transitions
Local transitions

states (templates

[4 —

Propositionvariables
Configuration

