Evolutionary, symbolic, and hybrid algorithms for planning and web-service composition

Artur Niewiadomski Siedlce University, Poland

Institute of Computer Science, Polish Academy of Sciences, 02.07.2020

Outline

- 2 Abstract Planning
- 3 Genetic Algorithm
- 4 Hybrid Solution of the Abstract Planning Problem
- 5 Concrete Planning
- 6 Simmulated Annealing
- Generalized Extremal Optimization

8 Experimental Results

Artur Niewiadomski

PlanICS Team

Intelligent hybrid system for planning and composition of web services

- Wojciech Penczek (ICS PAS, Warsaw) the Head of the project
- Artur Niewiadomski (Siedlce University) symbolic (SMT-based) computations and algorithms
- Piotr Switalski, Jaroslaw Skaruz (Siedlce University) Evolutionary (and other nature-inspired) Algorithms
- Mariusz Jarocki, Agata Polrola (Lodz University) main concepts and Plancs language contributors
- Lukasz Mikulski (Nicolaus Copernicus University, Torun) Multiset Explorer - plan linearisations
- Maciej Szreter (ICS PAS, Warsaw) dynamic Web services

Related work - Web Service Composition Systems

- Entish IOPR, a two phase planning by an ontology,
- WSMO ontology, IOPR, a formal goal, embedded rule languages
- WSMX WSMO implementation, service registration, service discovery by matchmaking, service activation by adapters
- SUPER composition based on WSMO ontology and AI algorithms
- PlanICS
 - a state-based approach, multi-phase planning, a simple rule language,
 - abstract planners based on GA, SMT-solvers, and combining both as hybrid planners,
 - concrete planners based on evolutionary algorithms, SMT-solvers, and hybrid ones.

Key Concepts

• The main goal: an arrangement of service executions satisfying a user intention

Evolutionary and hybrid algorithms

Key Concepts

- The main goal: an arrangement of service executions satisfying a user intention
- Ontology the types of services and objects

Key Concepts

- The main goal: an arrangement of service executions satisfying a user intention
- Ontology the types of services and objects
- A two phase composition process: abstract (on types) and concrete (on web services)

System Overview

System Overview

Abstract Planning Phase

Planning in the terms of

- Service types
- Object types
- Abstract values of object attributes

Basic concepts

- A world a set of objects with specific attribute values
- A service can transform a world (if the pre-condition is met) by changing attribute values of existing objects and adding new objects
- A user query specifies initial and expected (final) worlds
- A solution is a sequence of service types able to transform an initial world into a world matching an expected one
- A **plan** is a set of solutions built over the same **multiset** of service types, regardless the ordering and the contexts.

Main goals of abstract planning

- Checking whether the user query can be realized using a given ontology
- Reducing the search space for a concrete planner
- Reducing the number of network interactions between web services and offer collector
- Providing a number of different potential ways to realize the query

Ontology

- $\bullet \ OWL + embedded \ Planics \ language \\$
- Service types
- Artifacts objects the services operate on
- Stamps special objects describing certain execution features

Ontology Example

HouseholdAppliance

User Query and Abstract Plan Example

in {p : Person}
inout {m : Money}
out {b : Book}
pre (p.name = ME and p.address = MyAddr. and m.amount = 50)
post (b.title = "Java in Practice" and b.location = p.address)

$$arphi_k^q = \mathcal{I}^q \; igwedge_{k} igl(\mathcal{C}_i \; igvee_{s\in\mathbb{S}} \mathcal{T}_i^s igr) \; \wedge \; \mathcal{E}_k^q \; \wedge \mathcal{B}_k^q$$

- Abstract planning problem for a query q encoded as the formula $arphi_k^q$
- $arphi_k^q$ satisfiable iff there exists a solution for q of the length k
- If a solution is found, then block all known abstract plans with the formula \mathcal{B}_k^q and search for other solutions,
- Otherwise proceed with k+1

$$arphi_k^q = \mathcal{I}^q \ igwedge_{k} igl(\mathcal{C}_i \ igvee_{s\in\mathbb{S}} \mathcal{T}_i^s igr) \ \land \ \mathcal{E}_k^q \ \land \mathcal{B}_k^q$$

- Abstract planning problem for a query q encoded as the formula $arphi_k^q$
- φ^q_k satisfiable iff there exists a solution for q of the length k
- If a solution is found, then block all known abstract plans with the formula \mathcal{B}_k^q and search for other solutions,
- Otherwise proceed with k+1

- the initial worlds
- contexts and worlds transformations
- the expected worlds
- a blocking formula

$$arphi_k^q = \mathcal{I}^q \; igwedge_{i=1..k}^{} \Bigl(\mathcal{C}_i \; igvee_{s\in\mathbb{S}} \mathcal{T}_i^s \Bigr) \; \wedge \; \mathcal{E}_k^q \; \wedge \mathcal{B}_k^q$$

- Abstract planning problem for a query q encoded as the formula $arphi_k^q$
- φ^q_k satisfiable iff there exists a solution for q of the length k
- If a solution is found, then block all known abstract plans with the formula \mathcal{B}_k^q and search for other solutions,
- Otherwise proceed with k+1

- the initial worlds
- contexts and worlds transformations
- the expected worlds
- a blocking formula

$$arphi_k^q = \mathcal{I}^q \; igwedge_{k} igl(\mathcal{C}_i \; igvee_{s\in\mathbb{S}} \mathcal{T}_i^s igr) \; \wedge \; oldsymbol{\mathcal{E}}_k^q \; \wedge \mathcal{B}_k^q$$

- Abstract planning problem for a query q encoded as the formula $arphi_k^q$
- $arphi_k^q$ satisfiable iff there exists a solution for q of the length k
- If a solution is found, then block all known abstract plans with the formula \mathcal{B}_k^q and search for other solutions,
- Otherwise proceed with k+1

- the initial worlds
- contexts and worlds transformations
- the expected worlds
- a blocking formula

$$arphi_k^q = \mathcal{I}^q \ \bigwedge_{i=1..k} \Bigl(\mathcal{C}_i \ \bigvee_{s\in\mathbb{S}} \mathcal{T}_i^s \Bigr) \ \land \ \mathcal{E}_k^q \ \land \mathcal{B}_k^q$$

- Abstract planning problem for a query q encoded as the formula $arphi_k^q$
- $arphi_k^q$ satisfiable iff there exists a solution for q of the length k
- If a solution is found, then block all known abstract plans with the formula \mathcal{B}_k^q and search for other solutions,
- Otherwise proceed with k+1

- the initial worlds
- contexts and worlds transformations
- the expected worlds
- a blocking formula

Genetic Algorithm

- Introduced in 1960 by John Holland
- Applied to optimization and search problems
- A population of individuals (candidate solutions) is evolved toward better solutions
- Operators: mutation, crossover and selection
- Problem specific:
 - Encoding of individuals
 - Fitness function
 - Versions of operators and probabilities of their application

An individual is represented usually by a fixed-length array of bits or numbers. The fitness function evaluates a candidate solution - we know which ones are better than others. The better individuals have more chances to move on to the next stages of the algorithm.

- Standard GA implementation, but sophisticated fitness function and specialised mutation operator
- Individual: a sequence of service types
- Genes reordering in order to find the longest executable prefix
- Good service type concept

Intuitively, a service type is good, if it produces objects that can be a part of the expected world, or they can be an input for other good service types.

Individual of GA

An individual

- a multiset M of service types.

Checking whether \boldsymbol{M} is a plan

A transformation sequence seq_M is constructed from M.

• Start from an empty sequence

Artur Niewiadomski

Checking whether \boldsymbol{M} is a plan

A transformation sequence seq_M is constructed from M.

• Service types able to transform an initial world

Checking whether \boldsymbol{M} is a plan

A transformation sequence seq_M is constructed from M.

• Choose one, append it to $seq_M \dots$

Artur Niewiadomski

Checking whether \boldsymbol{M} is a plan

A transformation sequence seq_M is constructed from M.

• ...and check which Service Type can transform the current world

Checking whether \boldsymbol{M} is a plan

A transformation sequence seq_M is constructed from M.

• ...append and check next ...

Artur Niewiadomski

Checking whether \boldsymbol{M} is a plan

A transformation sequence seq_M is constructed from M.

• If none of remaining Service Types can transform the current world

Checking whether \boldsymbol{M} is a plan

A transformation sequence seq_M is constructed from M.

• Append all to seq_M

Fitness function

$$fitness_M = \frac{f_{wM} * \alpha + c_{wM} * \beta + l_M * \gamma + g_{seqM} * \delta}{|w_q| * \alpha + |w_q| * \beta + |M| * \gamma + |M| * \delta}$$
(1)

- f_{wM} is the maximal number of objects from w_M , which **types and valuations** are consistent with objects from an expected world,
- $c_{wM} = \min(\operatorname{cst}(w_M), |w_q|))$, where $\operatorname{cst}(w_M)$ is the number of the objects from w_M of **types** consistent with an expected world
- g_{seqM} is the number of the good service types occurring in seq_M ,
- l_M is the length of the executable prefix of seq_M
- $\alpha = 0.1, \ \beta = 0.7, \ \gamma = 0.1$, and $\delta = 0.2$ are parameters of the fitness function.

After finding the first solution, the fitness function is modified by a penalty for similarity of new solutions to those already found.

Mutation operator

Hybrid Solution

Motivation

• Advantages and disadvantages of both methods: SMT and GA

	SMT	GA
Short time	×	 Image: A second s
High probability	√	X

Solution

• Combine both algorithms to exploit their advantages

Main Concept of Hybrid Abstract Planner

Experimental results

				Hybrid						Pure GA				Pure SMT	
Exp	k	n	sol	SMT	GA	Total	Avg	Max	Prob.	Time	Avg	Max	Prob.	First	Total
				[s]	[s]	[s]	plans	plans	[%]	[s]	plans	plans	[%]	[s]	[s]
1	6	64	1	4.05	8.24	12.29	1	1	100	5.71	1	1	100	6.31	12.8
2		128		5.77	8.78	14.55	1	1	100	8.07	1	1	100	7.29	14.8
3		256		10.79	13.29	24.07	1	1	100	13.62	1	1	100	16.66	27.1
4		64	10	3.04	25.74	28.78	3.25	10	100	24.29	5.4	10	100	5.22	18.3
5		128		6.52	32.15	38.67	3.15	8	100	31.21	6.25	10	100	8.54	26.6
6		256		13.85	43.33	57.18	3.65	8	100	45.95	5.55	9	100	11.93	38.1
7	9	64	1	12.08	11.67	23.75	1	1	85	11.83	1	1	95	19.49	58.7
8		128		25.65	15.68	41.33	1	1	90	13.43	1	1	100	41.01	90.1
9		256		43.61	28.88	72.49	1	1	90	26.74	1	1	90	54.99	133
10		64	10	17.54	56.9	74.43	3.15	10	100	57.69	1.77	4	65	21.09	295
11		128		30.64	63.38	94.02	4.16	10	95	69.94	1.54	4	65	49.93	553
12		256		61.64	113.05	174.69	4.32	10	95	113.15	1.33	2	30	113.3	977
13	12	64	1	55.09	21.77	76.86	1	1	45	21.22	1	1	65	156.4	781
14		128		86.48	30.15	116.62	1	1	85	28.12	1	1	60	203.2	1962
15		256		118.7	46.82	165.52	1	1	55	46.31	1	1	60	315.4	1947
16		64	10	78.98	118.56	197.54	2.79	10	95	118.29	0	0	0	113.5	> 2000
17		128		109.89	139.96	249.84	2.38	10	80	148.65				250.5	
18		256		193.17	253.22	446.39	1.85	6	65	260.94				325.8	
19	15	64	1	119.09	33.68	152.77	1	1	25	34.56	1	1	30	469.7	
20		128		185.34	43.17	228.51	1	1	30	40.45	1	1	25	382.1	
21		256		247.3	68.26	315.56	1	1	35	68.69	1	1	35	1018	
22		64	10	168.46	237.57	406.03	1.67	3	30	216.6	0	0	0	413	
23		128		309.53	267.83	577.36	3	5	10	261.21				1850	
24		256		304.88	450.63	755.5	3	3	5	437.59				931	

System Overview

System Overview

Abstract Plan, Offers, Constraints

Query: 3 investments up to \$100, maximizing the sum of profits

Artur Niewiadomski

Concrete Planning as the Constrained Optimization Problem

 $P_j^i = [o_{j,1}^i, o_{j,2}^i, \dots, o_{j,m_i}^i]$

 $\mathbb P$: the set of all possible sequences $(P_{j_1}^1,\ldots,P_{j_n}^n)$,

 $max\{Q(S) \mid S \in \mathbb{P}\} \text{ subject to } \mathbb{C}(S),$

• $Q: \mathbb{P} \mapsto \mathbb{R}$, an objective function defined as the sum of all quality constraints

•
$$\mathbb{C}(S)$$
, where $S \in \mathbb{P}$,

a set of constraints to be satisfied.

A solution of CPP

- selecting one offer from each offer set
 - all constraints are satisfied
 - value of the objective function is maximized

SMT-based algorithm overview

SMT(Satisfiability Modulo Theories)

- Encode CPP as a formula $[\varphi]$ which is satisfiable iff there is a solution
- Exploit an SMT-solver to find a solution of quality q, where $q \in \mathbb{R}$
- Proceed with $[arphi] \wedge [quality > q]$ to search for better solutions
 - adapting the binary search method
 - taking advantage of SMT interactive mode
 - using assumptions

GA for Concrete Planning Problem

Standard GA implementation

 Individual - a sequence of indices of the offers chosen from the consecutive offer sets,

•
$$fitness(Ind) = Q(S_{Ind}) + \beta \cdot \frac{|sat(\mathbb{C}(S_{Ind}))|}{c}$$

- Ind an individual,
- S_{Ind} a sequence of the offer values corresponding to Ind,
- $sat(\mathbb{C}(S_{Ind}))$ a set of the constraints satisfied by Ind,
- c the number of all constraints,
- β a constant to reduce both of the sum components to the same order of magnitude.

Simmulated Annealing (SA)

- a probabilistic metaheuristic
- the annealing process in metallurgy heating and cooling of a material in order to improve its properties
- in SA "a material" is a potential solution an individual
- cooling implemented as a slow decrease in the probability of accepting worse solutions while the algorithm explores the search space
- search space exploration by applying a neighbourhood operator to the individual in order to obtain a new individual
 - usually, a neighbourhood operator is like mutation in GA, but applied with the probability equals to $1\,$
 - in our case it changes one randomly chosen "gene- an offer index

SA Algorithm for Concrete Planning

SA(n, G, I_L, temp, decFactor)

Input: the length of the individual: n, the number of iterations: G, the number of internal loop iterations: I_L , an initial value of the temperature: temp, the temperature decreasing factor: decFactor

Result: a solution of the highest quality function value **begin**

Generalized Extremal Optimization (GEO)

Different terminology!

- Introduced by Sousa et al. about 2004
- The main idea is to focus on the worst parts of a solution and change them
- Similarly to SA maintains a single solution
- At every step, the algorithm
 - tries to mutate every gene separately
 - assigns a number proportional to the gain (or loss) of fitness after the change
 - builds a ranking of genes the most promising have a better chance to mutate
 - stochastically choose and modify a gene from ranking

GEO Algorithm for Concrete Planning

GEO(*n*, *K*, *τ*)

Input: the number of individuals in population: n, the number of iterations: K, a parameter: τ Result: a solution with the highest fitness value

begin

 $I_{cur} \leftarrow random(n)$: // generate an initial offer vector randomly // calculate and store the best fitness value found so far $Q_{hest} \leftarrow Q(I_{cur});$ $I_{best} \leftarrow I_{cur}$; // remember the best solution found so far for $(i \leftarrow 1..K)$ do for $(j \leftarrow 1..n)$ do $I_{tmp,j} \leftarrow mutation(I_{cur}, j);$ // mutate the j-th offer index if $(I_{tmp,j} \text{ satisfies all constraints})$ then $Q_i \leftarrow Q(I_{tmn,i});$ // calculate the fitness value of $I_{tmn,i}$ else $Q_i \leftarrow \infty$: // individuals violating constraints fall low in the ranking $\Delta_i \leftarrow Q_i - Q(I_{cur});$ // relative change of fitness resulting from mutation $Rank \leftarrow sort((I_{tmp,1}, \Delta_1), \ldots, (I_{tmp,n}, \Delta_n)), desc);$ // build the ranking by sorting the mutated populations according to decreasing Δ_i values $changed \leftarrow false$: while $(\neg changed)$ do $j \leftarrow random(1..n)$; // randomly choose an individual to be changed $k \leftarrow Rank.find(i)$: // the position of the j-th individual in the ranking $p \leftarrow k^{-\tau}$: // the probability of mutation of the *j*-th individual $x \leftarrow random([0.0, 1.0]);$ // a random value from the range [0.0, 1.0] if (p > x) then $I_{cur} \leftarrow I_{tmn,i}$; // a new population becomes the current one changed \leftarrow true; if $((\infty > Q_i > Q_{hest}))$ then $Q_{hest} \leftarrow Q_i$; // update the best fitness value found so far $I_{hest} \leftarrow I_{cur}$; // update the best solution found so far return Ibest; // return the best solution

Hybrid Solution

Motivation

• Disadvantages of both methods: SMT and Metaheuristics

	SMT	Metaheuristics
Short time	×	 Image: A set of the set of the
Good quality	1	×
High probability	1	×

Solution

• Combine both algorithms to exploit their advantages

Hybrid Concrete Planners

Random Hybrid (RH) and Semi-Random Hybrid (SRH)

- combine GA with SMT
- alternately run GA and SMT
- best individuals of GA passed to SMT for improving

Initial Population Hybrid (IPH)

- SMT generates (a part of) the initial population
- the generated individuals satisfy all constraints
- GA obtains some (usually not optimal) solutions at start

Hybrid SA and Hybrid GEO

HSA and HGEO

- follows the IPH scheme
- GA replaced by SA or GEO
- the initial solution generated by an SMT procedure
- it satisfies all constraints, but usually is of poor quality

Experiments

- 12 datasets generated randomly, scaled by the length of a plan (10, 15, or 20) and the number of offers ($2^8 = 256$ or $2^9 = 512$)
- \bullet the search space varying from $256^{10}=2^{80}$ to $512^{20}=2^{180}$

$$\mathbb{C}(S)_{1..6} = \bigwedge_{i=1}^{n-1} (o_{j_{i},1}^{i} < o_{j_{i+1},1}^{i}), \qquad Q_{1..6} = \sum_{i=1}^{n} o_{j_{i},2}^{i}$$
$$\mathbb{C}(S)_{7..12} = \bigwedge_{i=1}^{n-1} (o_{j_{i},1}^{i} - o_{j_{i},2}^{i+1}) > 10, \quad Q_{7..12} = \sum_{i=1}^{n-1} (o_{j_{i},1}^{i} - o_{j_{i},2}^{i+1}),$$

Parameters

- IPH and GA: the population size = 1000, iterations = 100, crossover probability 95%, mutation probability 0,5%,
- HSA: temp = 1.0, G = 500, $I_L = 40$, decFactor = 0.98,
- HGEO: $n = 10; 15; 20, K = 1000, \tau = 5.0,$
- SMT: 400 sec. timeout.

Experimental Results Summary

Concrete planning methods

Artur Niewiadomski	Evolutionary and hybrid algorithms
--------------------	------------------------------------

Conclusions and Future Work

Hybrids are

- methods of a high potential
- a trade-off between time and probability

Future work

- Improve the results of APP and CPP
- Try to combine SMT with other Evolutionary Algorithms
- Develop hybrids for other problems, like, e.g., model checking
- Reductions and abstractions to speed up the planning

Thank You

References

- Combining ontology reductions with new approaches to automated abstract planning of PlanICS. Applied Soft Computing 53 (2017): 352-379, http://dx.doi.org/10.1016/j.asoc.2017.01.007
- Concrete Planning in PlanICS Framework by Combining SMT with GEO and Simulated Annealing. Fundam. Inform. 147 (2016): 289-313, IOS Press, 2016. DOI 10.3233/FI-2016-1409
- Hybrid Approach to Abstract Planning of Web Services. Service Computation 2015 : 35-40
- Genetic Algorithm to the Power of SMT: a Hybrid Approach to Web Service Composition Problem. Service Computation 2014: 44-48
- Towards SMT-based Abstract Planning in PlanICS Ontology, in KEOD, pages 123-131, 2013
- Automated abstract planning with use of genetic algorithms, GECCO (Companion) 2013: 129-130
- Evolutionary Algorithms for Abstract Planning, in PPAM (1), vol. 8384 of LNCS, pages 392-401, Springer, 2013
- SMT vs Genetic Algorithms: Concrete Planning in PlanICS Framework, CS&P2013: 309-321, ceur-ws.org/Vol-1032/paper-27.pdf

Artur Niewiadomski

Evolutionary and hybrid algorithms