Ride Sharing Platform Vs Taxi Platform: the Impact on the Revenue

Benjamin Bordais ${ }^{1}$,
Costas Courcoubetis ${ }^{2}$

${ }^{1}$ ENS Rennes
${ }^{2}$ Singapore University of Technology and Design
March 28, 2019

Introduction

There is great need of mobility in major cities!
Possibilities to get a ride:

- Public transportation
- Ride sharing
- One's own car
- A taxi

Introduction: related work

Consists in optimizing the choices of a platform

- Choose efficiently the point of departure and arrival ${ }^{1}$
- An optimization algorithm to efficiently match supply and demand ${ }^{2}$

[^0]
Introduction: our approach

Our point of view

- Effect of the introduction of a ride sharing/taxi platform
- Game theory \rightarrow predict the outcome

Original paper ${ }^{1}$

- Impact of the introduction of a ride sharing platform
- Game theory: new model of the population

Extension

- What happens if a taxi platform competes with the ride sharing platform?
- Impact on the revenue (can it increase ?)
- Original model + choice for the users

[^1]
Outline

(1) The Model
(2) Theoretical analysis
(3) Numerical analysis
4. Conclusion

The individuals

Society $=\{$ Individual $\}$. Individuals have type $\chi \in X=\mathbb{R}_{+}^{2}$:

$\rho>0=$ utility for using private transportation
$\nu>0=$ wage rate when working at a regular job

The platforms

The ride sharing platform

- Rental price r_{1} : - user(s), + riders
- Supply: from the population
- Demand: from the population

The taxi platform

- Rental price r_{2} : - user(s)
- Supply: fixed number of taxis n_{t}
- Demand: from the population

Some other constants of the game:

- Number of seats per car: k
- Cost of ownership: ω
- Cost of usage: c

Individuals' possibilities

Transport state

Has to fulfill a transportation need:

Non-Transport state Two possiblities:

- Use public transport
- Request in one of the two platforms (get $\rho>0$)
- Offer seats (get $\rho>0$)
\rightarrow Time spent: $1 / \lambda_{t}$

Standardized time: $1 / \lambda_{n}+1 / \lambda_{t}=1, \lambda_{t}, \lambda_{n}>1$.

Strategies

Five strategies in $\Sigma=\left\{A, D, S, U_{l}, U_{h}\right\}$:

- Abstinent (A)
- Driver (D)
- Service Provider (S)
- Low User (Ul)
- High User (U_{h})

For $\sigma \in \Sigma, \mu_{\sigma}$: fraction of the population opting for strategy σ

Strategies (in the case $r_{1} \leq r_{2}$)

Payoffs: $r=\min \left(r_{1}, r_{2}\right), \bar{r}=\max \left(r_{1}, r_{2}\right)$

- $\pi_{A}(\rho, \nu)=\nu / \lambda_{n}$
- $\pi_{D}(\rho, \nu)=\nu / \lambda_{n}+\rho-\omega+k \bar{p} r_{1}-c$
- $\pi_{S}(\rho, \nu)=\rho-\omega+\lambda_{t}\left(k \bar{p} r_{1}-c\right)$
- $\pi_{U_{l}}(\rho, \nu)=\nu / \lambda_{n}+p_{l}(\rho-r)$
- $\pi_{U_{n}}(\rho, \nu)=\nu / \lambda_{n}+p_{l}(\rho-r)+\left(1-p_{l}\right) p_{h}(\rho-\bar{r})$
p_{l}, p_{h}, \bar{p} : probabilities, depends on the distribution
$\mu=\left(\mu_{A}, \mu_{D}, \mu_{S}, \mu_{U_{l}}, \mu_{U_{h}}\right)$.

Nash Equilibrium

Informal definition

A situation where it is not in the interest of any player to unilaterally change his strategy

At equilibrium:

- Strategy of players given by $\sigma^{*}: X \rightarrow \Sigma$
- $\forall \chi=(\rho, \nu) \in X, \forall \sigma \in \Sigma, \pi_{\sigma^{*}(\chi)}(\rho, \nu) \geq \pi_{\sigma}(\rho, \nu)$
- X partitionned into sets
$P_{\sigma}=\{$ Player choosing strategy $\sigma\}, \sigma \in \Sigma$

Example of equilibrium

$$
\begin{gathered}
\mathrm{C}=0.4, \mathrm{O}=0.1, \mathrm{nt}=0.5, \mathrm{rl}=0.8, \mathrm{r} 2=0.9
\end{gathered}
$$

Figure: Equilibrium with parameters $\lambda_{t}=6, k=2$ (o stands for ω)

Outline

(1) The Model

(2) Theoretical analysis
(3) Numerical analysis
4. Conclusion

The revenue of the ride sharing platform: \mathcal{R}

Proportionate to:

- The rental price r_{1}
- The number of seats sold (depends on which is the cheapest platform)

$$
\begin{aligned}
\text { If } r_{1} & \leq r_{2}: & \text { If } r_{1} & >r_{2}: \\
\mathcal{R} & =r_{1} \times p_{l} \times\left(\mu_{U_{l}}+\mu U_{h}\right) & \mathcal{R} & =r_{1} \times p_{h} \times\left(1-p_{l}\right) \mu_{U_{h}}
\end{aligned}
$$

Some results: when $r_{1} \leq r_{2}\left(r=r_{1}\right)$

Theorem

If $r_{1} \geq \frac{\omega+c}{k+1}$, then the equilibrium is the same as in the original game (without taxis).

$$
\omega=0.1, c=0.4, k=2, n_{t}=0.1, \lambda_{t}=6 .
$$

Some results: when $r_{1} \leq r_{2}\left(r=r_{1}, r_{t}=r_{2}\right)$

Theorem

If $\omega \leq c / k$ then adding the taxi platform can not increase the revenue of the ride sharing platform

Some results: The revenue can increase

Theorem

There exists some values of our parameters for which the revenue of the ride sharing platform strictly increases

Figure: Equilibrium with parameters $\omega=0.1, c=0.4, k=2, n_{t}=0.1$, $\lambda_{t}=6$.

Outline

(1) The Model

(2) Theoretical analysis
(3) Numerical analysis
4. Conclusion

The Best Response Dynamics Algorithm

```
Algorithm 1 Best Response Dynamics
    1: Each player is assigned a strategy randomly
    2: while a player changed strategy do
    3: for each player do
    4: \(\quad\) Choose the payoff-maximizing strategy;
    5: Update distribution
```

This algorithm:

- Works on a large number of players (5000)
- Does not necessarily converge
- When it does, we have a Nash Equilibrium

Better revenue

Figure: Equilibria without (top) and with (bottom) taxis, for $k=1$

Price dynamics

Figure: Optimizing price of one platform as a function of the price of the other platform

Outline

(1) The Model
(2) Theoretical analysis
(3) Numerical analysis
(4) Conclusion

Conclusion and future work

- Model difficult to study: the model changes if $r_{1} \leq r_{2}$ or if $r_{2}>r_{1}$
- However, we do have some results:
- Conditions that ensure that the revenue does not increase
- Numerical/Analytical example of an increasing revenue
- Situations that do not change by adding taxis

Future possibilities

- Condition of existence of service providers (independent of the distribution)
- Study the price dynamics: numerical simulations may suggest what happens

Other functions of interest: definition

- Distribution: $\mu_{\sigma}(s)=\int_{X} \delta_{s, \sigma} d \chi$
- Ownership: $\Omega(\mu)=\mu_{S}+\mu_{D}$;
- Traffic intensity: $\Gamma(\mu)=\mu_{S}+\mu_{D} / \lambda_{t}$;
- Social Welfare: $W(s)=\sum_{\sigma \in \Sigma} \int_{X} \pi_{\sigma}(\chi) \cdot \delta_{s, \sigma} d \chi$.

Other functions of interest: curves

Figure: Curves with parameters $\omega=0.1, c=0.4, k=2, n_{t}=0.1$, $\lambda_{t}=6$.

The matching functions

$$
\begin{aligned}
& \text { If } r_{1} \leq r_{2}: \\
& \quad \bullet p_{l}=\frac{k\left(\mu_{D}+\lambda_{t} \mu_{S}\right)}{\mu_{U_{l}}+\mu_{U_{h}}} \wedge 1
\end{aligned}
$$

$$
\text { - } p_{h}=\frac{n_{t}}{\left(1-p_{l}\right) \mu_{U_{h}}} \wedge 1
$$

$$
\text { - } \bar{p}=\frac{\mu_{U_{l}}+\mu_{U_{h}}}{k\left(\mu_{D}+\lambda_{t} \mu_{S}\right)} \wedge 1
$$

If $r_{1}>r_{2}$:

- $p_{l}=\frac{n_{t}}{\mu_{U_{l}}+\mu_{U_{h}}} \wedge 1$
- $p_{h}=\frac{k\left(\mu_{D}+\lambda_{t} \mu_{S}\right)}{\left(1-p_{l}\right) \mu_{U_{h}}} \wedge 1$
- $\bar{p}=\frac{\left(1-p_{l}\right) \mu_{U_{h}}}{k\left(\mu_{D}+\lambda_{t} \mu_{S}\right)} \wedge 1$

[^0]: ${ }^{1}$ Service region design for urban electric vehicle sharing systems, Long He et al., 2017
 ${ }^{2}$ On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment, Alonso-Mora et al., 2017

[^1]: ${ }^{1}$ Drivers, riders and service providers: the impact of the sharing economy on mobility, Courcoubetis et al., 2017

