Ride Sharing Platform Vs Taxi Platform: the Impact on the Revenue

Benjamin Bordais¹, Costas Courcoubetis²

¹ENS Rennes

²Singapore University of Technology and Design

March 28, 2019

There is great need of mobility in major cities!

Possibilities to get a ride:	
Public transportation	 Ride sharing
One's own car	 A taxi

Consists in optimizing the choices of a platform

- Choose efficiently the point of departure and arrival¹
- An optimization algorithm to efficiently match supply and demand²

¹Service region design for urban electric vehicle sharing systems, Long He et al., 2017

²On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment, Alonso-Mora et al., 2017

Our point of view

- Effect of the introduction of a ride sharing/taxi platform
- Game theory \rightarrow predict the outcome

Original paper¹

- Impact of the introduction of a ride sharing platform
- Game theory: new model of the population

Extension

- What happens if a taxi platform competes with the ride sharing platform ?
- Impact on the revenue (can it increase ?)
- Original model + choice for the users

¹ Drivers, riders and service providers: the impact of the sharing economy on mobility, Courcoubetis et al., 2017

- 2 Theoretical analysis
- 3 Numerical analysis

 ρ > 0 = utility for using private transportation ν > 0 = wage rate when working at a regular job

The platforms

The ride sharing platform

- Rental price r₁:
 user(s), + riders
- Supply: from the population
- Demand: from the population

The taxi platform

- Rental price r₂: user(s)
- Supply: fixed number of taxis n_t
- Demand: from the population

Some other constants of the game:

- Number of seats per car: k
- Cost of ownership: ω
- Cost of usage: c

Theoretical analysis

Numerical analysis

Conclusion

Individuals' possibilities

Standardized time: $1/\lambda_n + 1/\lambda_t = 1$, $\lambda_t, \lambda_n > 1$.

The	Model	
ooc	000000	

Strategies

Five strategies in $\Sigma = \{A, D, S, U_l, U_h\}$:

- Abstinent (A)
- Driver (D)
- Service Provider (S)
- Low User (U)
- High User (U_h)

For $\sigma \in \Sigma$, μ_{σ} : fraction of the population opting for strategy σ

Theoretical analysis

Numerical analysis

Conclusion

Payoffs: $r = min(r_1, r_2), \bar{r} = max(r_1, r_2)$

•
$$\pi_A(\rho, \nu) = \nu/\lambda_n$$

• $\pi_D(\rho, \nu) = \nu/\lambda_n + \rho - \omega + k\bar{p}r_1 - c$
• $\pi_S(\rho, \nu) = \rho - \omega + \lambda_t(k\bar{p}r_1 - c)$
• $\pi_{U_l}(\rho, \nu) = \nu/\lambda_n + p_l(\rho - r)$
• $\pi_{U_h}(\rho, \nu) = \nu/\lambda_n + p_l(\rho - r) + (1 - p_l)p_h(\rho - \bar{r})$

 p_l, p_h, \bar{p} : probabilities, depends on the distribution $\mu = (\mu_A, \mu_D, \mu_S, \mu_{U_l}, \mu_{U_h}).$

Nash Equilibrium

Informal definition

A situation where it is not in the interest of any player to unilaterally change his strategy

At equilibrium:

- Strategy of players given by $\sigma^*: X \to \Sigma$
- $\forall \chi = (\rho, \nu) \in X, \forall \sigma \in \Sigma, \pi_{\sigma^*(\chi)}(\rho, \nu) \ge \pi_{\sigma}(\rho, \nu)$
- X partitionned into sets $P_{\sigma} = \{ \text{Player choosing strategy } \sigma \}, \sigma \in \Sigma$

Theoretical analysis

Numerical analysis

Conclusion

Example of equilibrium

Figure: Equilibrium with parameters $\lambda_t = 6, k = 2$ (o stands for ω)

Numerical analysis

Conclusion

The revenue of the ride sharing platform: \mathcal{R}

Proportionate to:

- The rental price r₁
- The number of seats sold (depends on which is the cheapest platform)

If $r_1 \le r_2$: If $r_1 > r_2$:

 $\mathcal{R} = r_1 \times p_l \times (\mu_{U_l} + \mu_{U_h})$ $\mathcal{R} = r_1 \times p_h \times (1 - p_l) \mu_{U_h}$

Theoretical analysis

Numerical analysis

Conclusion

Some results: when $r_1 \leq r_2$ ($r = r_1$)

Theorem

If $r_1 \ge \frac{\omega+c}{k+1}$, then the equilibrium is the same as in the original game (without taxis).

 $\omega = 0.1, c = 0.4, k = 2, n_t = 0.1, \lambda_t = 6.$

Numerical analysis

Conclusion

Some results: when $r_1 \leq r_2$ ($r = r_1$, $r_t = r_2$)

Theorem

If $\omega \leq c/k$ then adding the taxi platform can not increase the revenue of the ride sharing platform

 $\omega = 0.1, c = 0.4, k = 2, n_t = 0.1, \lambda_t = 6.$

Numerical analysis

Conclusion

Some results: The revenue can increase

Theorem

There exists some values of our parameters for which the revenue of the ride sharing platform strictly increases

Equilibrium (computed), r=0.55 , r_t=0.4

Figure: Equilibrium with parameters $\omega = 0.1$, c = 0.4, k = 2, $n_t = 0.1$, $\lambda_t = 6$.

- 2 Theoretical analysis
- 3 Numerical analysis

The Best Response Dynamics Algorithm

Algorithm 1 Best Response Dynamics

- 1: Each player is assigned a strategy randomly
- 2: while a player changed strategy \mathbf{do}
- 3: for each player do
- 4: Choose the payoff-maximizing strategy;
- 5: Update distribution

This algorithm:

- Works on a large number of players (5000)
- Does not necessarily converge
- When it does, we have a Nash Equilibrium

The	Model

Theoretical analysis

Numerical analysis

Conclusion

Better revenue

Figure: Equilibria without (top) and with (bottom) taxis, for k = 1

The Model	Theoretical analysis	Numerical analysis ○○○●	Conclusion			
Price dvnamics						

Figure: Optimizing price of one platform as a function of the price of the other platform

- 2 Theoretical analysis
- 3 Numerical analysis

Theoretical analysis

Numerical analysis

 $\underset{o \bullet}{\text{Conclusion}}$

Conclusion and future work

- Model difficult to study: the model changes if $r_1 \le r_2$ or if $r_2 > r_1$
- However, we do have some results:
 - Conditions that ensure that the revenue does not increase
 - Numerical/Analytical example of an increasing revenue
 - Situations that do not change by adding taxis

Future possibilities

- Condition of existence of service providers (independent of the distribution)
- Study the price dynamics: numerical simulations may suggest what happens

Other functions of interest: definition

• Distribution:
$$\mu_{\sigma}(s) = \int_{X} \delta_{s,\sigma} d\chi$$

• Ownership:
$$\Omega(\mu) = \mu_S + \mu_D$$
;

• Traffic intensity:
$$\Gamma(\mu) = \mu_S + \mu_D / \lambda_t$$
;

• Social Welfare:
$$W(s) = \sum_{\sigma \in \Sigma} \int_{X} \pi_{\sigma}(\chi) \cdot \delta_{s,\sigma} d\chi.$$

Other functions of interest: curves

Figure: Curves with parameters $\omega = 0.1$, c = 0.4, k = 2, $n_t = 0.1$, _{26/24} $\lambda_t = 6$.

The matching functions

If
$$r_1 \le r_2$$
:
• $p_l = \frac{k(\mu_D + \lambda_t \mu_S)}{\mu_{U_l} + \mu_{U_h}} \land 1$
• $p_h = \frac{n_t}{(1 - p_l)\mu_{U_h}} \land 1$
• $p_h = \frac{k(\mu_D + \lambda_t \mu_S)}{(1 - p_l)\mu_{U_h}} \land 1$
• $p_h = \frac{k(\mu_D + \lambda_t \mu_S)}{(1 - p_l)\mu_{U_h}} \land 1$
• $\bar{p} = \frac{\mu_{U_l} + \mu_{U_h}}{k(\mu_D + \lambda_t \mu_S)} \land 1$
• $\bar{p} = \frac{(1 - p_l)\mu_{U_h}}{k(\mu_D + \lambda_t \mu_S)} \land 1$