Fixed-point Methods in Parametric Model
Checking*

Michat Knapik! and Wojciech Penczek!3

! Institute of Computer Science, PAS, Warsaw, Poland
{mknapik, penczek}@ipipan.waw.pl
2 University of Natural Sciences and Humanities, II, Siedlce, Poland

Abstract We present a general framework for the synthesis of the con-
straints under which the selected properties hold in a class of models with
discrete transitions, together with Boolean encoding - based method of
implementing the theory. We introduce notions of parametric image and
preimage, and show how to use them to build fixed-point algorithms
for parametric model checking of reachability and deadlock freedom. An
outline of how the ideas shown in this paper were specialized for an exten-
sion of Computation Tree Logic is given together with some experimental
results.

1 Introduction

The analysis of the existing software- and hardware systems is already a daunting
task, and due to their increasing proliferation in everyday life will only become
more difficult, and important. The systems employed in the critical areas such
as avionics, security, and medical applications need to be thoroughly tested and
verified, with the testing and verification present from the possibly earliest stages
of design. While a battery of tests is often able to reveal some errors present
in a design, the formal verification aims to mathematically guarantee that the
abstraction of the system is compliant with its specification.

The classical model checking [7] is a simple, yet powerful methodology of
systems analysis. In this approach, the behaviour of the system is presented as
a mathematical model M with the intended level of granularity; a property to
be verified (e.g., the lack of deadlocks) is then expressed as a formula ¢ of se-
lected modal logic. The compliance of the model with the property is denoted as
M E ¢. Symbolic model checking applies various methods for an efficient repre-
sentation of the state-space, allowing to verify large systems with more than 102°
states [6]. Model checking needs a fairly complete description of the model and
the property to be verified, which limits its applicability when some of the details
are still unknown. Parametric model checking (also called parameter synthesis)
is an extension of model checking that allows for the presence of free variables
in the model and/or the formula; the goal is to describe all the valuations of
the free variables under which ¢ holds in M. In this way the parametric model

* Work partially funded by DEC — 2012/07/N/ST6/03426 NCN Preludium grant



checking tool can provide pointers to system designer or analyst, e.g., on how to
instantiate the unknown variables.

In this work we do not focus on any logic from the menagerie of known
modal logics. Instead, we propose a general framework that encompasses a range
of state-based models with discrete transition guards and logics with model-
checking procedures based on the computation of the (pre)image with respect
to the transition relation.

1.1 Related Work

The problem of the synthesis of the set of assignments under which a given for-
mula becomes true in a selected model was introduced in [1] in the context of a
parametric extension of Linear Temporal Logic (LTL), called Parametric Tem-
poral Logic (PLTL). This was later explored for other parametric extensions of
LTL, and Computation Tree Logic (CTL) in [9,11]. The [9] paper seems to be
especially important, as it shows how to extend standard fixed-point - based al-
gorithms for model checking to encompass quantified parameters in Parametric
Real Time CTL (PRTCTL). In the analysis of real-time systems, parametric ver-
sions of Timed CTL (PTCTL) interpreted over parametric extensions of timed
automata appear in [4,5] and [24,25]. The first group of papers presents the tech-
niques based on a translation of durations of runs of a timed automaton to a
formula of Presburger arithmetic, the second group extends explicit-state meth-
ods to a parametric version of region graph. In [16,18,22] SAT-based Bounded
Model Checking methods have been adapted to the task of RTCTL and PRTCTL
verification and to a limited parameter synthesis for parametric reachability in
a selected class of Petri Nets. In [8] the authors introduce algorithms for ver-
ification of specifications for software product lines expressed in Feature CTL.
This work is closest to what we present in this paper, as it employs fixed-point
algorithms implemented using Binary Decision Diagrams.

1.2 Paper Outline

In Section 2 we present the framework for parameter synthesis together with all
the relevant notions. Section 3 contains a brief description of how the algorithms
can be implemented using Boolean encodings. In Section 4 we sketch how the
introduced theory can be specialized on an example of a selected modal logic
PARCTL; we also cite some earlier experimental results that show the efficiency
of our approach. The paper ends with Conclusions.

2 Framework for Parameter Synthesis

In this work we do not focus on any logic from the menagerie of known modal log-
ics. Instead, we propose a general framework that encompasses a range of state-
based models with discrete transition guards and logics with model-checking
procedures based on the computation of the (pre)image with respect to the
transition relation.



2.1 Parametric Image and Preimage

Let us start with establishing the computation model. Definition 1 allows to
interpret many of the state-based models encountered in the theory and practice
of model checking.

Definition 1. Let X be a finite set of propositional variables (called parame-
ters) and let Lx denote the set of propositional formulae over X. A Lx-labeled
transition system (also called a model) is a tuple M = (S, s°,—), where S is a
finite set of states, s° € S is the initial state, and —€ S x Lx x S is a transition
relation.

In what follows we fix a set of parameters X and Lx-labeled transition
system M = (S,5° —). The set of all valuations of X is denoted by (2. If
t = (s,9,8) €—, then let sre(t) = s, trgt(t) = s and guard(t) = g. We
abbreviate (s, g, s') €= as s % s'. Consider a sequence of interleaved states and
transitions m = (s, to, 1,1, . ..). If the sequence is finite, then we assume that it
ends with a state. By || we denote the floor of the length of the sequence divided
by two; the i—th state and transition of m are denoted by 77 = s; and 7 = t;,

respectively. Let v € (2, then 7 is a v-path if s; By si+1 and v |= guard(t;) for
all i < |r|. The set of all v-paths in M is denoted by IT(M,v) and the set of
all v-paths starting from s € S is denoted by II(s, M,v); we omit the model
symbol when it is evident from the context. One way of thinking about v-paths
is that a given valuation v enables all and only those transitions whose guards
evaluate to true.

Ezample 1. Consider the model in Fig. 1 with the set of parameters X =
{z1,22,23}. The loop ® = (sg,x1 A —x3,81,21 V Ta, S2, L1 A —a,Sp,...) IS a
v-path iff v(z1) = true and v(zs) = v(x3) = false. In fact, this is the only
maximal v-path for this valuation, and this is the only valuation under which
II(sp,v) contains an infinite path.

x1 N\ X3 x1 V To
X3

S0 @ S3
1 N\ X2 U.’El N T2

Figure 1: A simple model.

start

A function ¢ : S — 27 is called a characterization. The set of all character-
izations is denoted by Chars. A characterization £ assigns to an each state a



set of valuations; intuitively, these are the constraints under which some given
property holds. In what follows, for each g € Lx by [g] we denote the set of all
valuations satisfying g.

Definition 2. Let X be a set of parameters, and let M = (S, s9,—) be a Lx-
labeled transition system. We define the operators of parametric image and the
parametric preimage Post, Pre € Chars®™ with respect to — as follows. Let
& € Chars, then:

Post(¢)(s) = [ {lguard(t)] N &(sre(t)) | trgt(t) = s},

Pre(€)(s) = | J {lguard(t)] N E(trgt(t)) | sre(t) = s},

te—
for all s € S.

Let us assume that the characterization £ defines the constraints under which
some property in question holds. The set Post(£)(s) consists of all the valuations
that simultaneously enable the transition to s from some of its predecessors s’
and ensure that the property £ holds in s’. The set Pre(€)(s) gathers all the
valuations which simultaneously enable a transition to some successor s’ of s
and ensure that the property £ holds in s'.

2.2 Reachability and Deadlock Freedom

The reachability analysis is arguably the most utilized formal methods-based
task both in the research and the industry, employed in error detection [26],
protocol analysis [12,19], planning [10], and many other areas. Algorithm 1 is a
template that allows, depending on the passed operator Oper and initial property
&, for the synthesis of constraints for reachability from the initial state (Lemma
1), reachability of a state satisfying a given property f (Lemma 2), and freedom
from deadlocks in the model (Lemma 3).

Algorithm 1 constrVals (M, Oper, §)
Input: M = (S,s°, =), Oper € {Post, Pre}, € € Chars
1. f:=¢

:h:=0

: while f # h do

2
3
4: h:=f

5:  for each s € S let f(s) := f(s) UOper(f)(s)
6

7

: end while
: return f

It is usually more feasible to use the parametric image (i.e., to test forward
reachability) rather than the preimage operator (i.e., to test backward reachabil-
ity) when synthesizing the constraints for the reachability from the initial state.



This is due to the possible chance of pruning the state-space by removing the
trajectories that start from the states unreachable from the initial one. The state
s € S is reachable from the initial state s° under valuation v € 2 iff there exists
a v-path 7 € IT(s°,v) such that 77 = s for some i € N.

Lemma 1. Let M = (S, s%,—) be a model. Denote &1 := {(s°, 2)}U{(s,0) | s €
S Ns # 8%}, then a state s € S is reachable from s° under v € Q iff v €
constrVals (M, Post, &) (s).

Proof. For each i € N by f? denote the value of the f variable before entering
the 3-6 loop. For a while replace the stop condition test of the loop with true.
We prove that for each i € N the set f?(s) consists of all the valuations v under
which the state s can be reached in i or less steps from the initial state s°, i.e.,
there exists m € I1(s°,v) such that ﬂf = s for some j < i. The proof follows
by the induction with the trivial base case of f°, as defined in Line 1. For the
inductive step, notice that by the inductive assumption the state s is reachable
under v in i + 1 or less steps iff v € fi(s) or if for some 7 € II(s°,v) we have
75, = sand v € fi(x}) and v |= «] for some j < i. The latter is in turn
equivalent to v € fi(s) U Post(f?)(s), i.e., v € fi*1(s) (Line 5). Now it suffices
to notice that for each of a finite number of s € S the sequence (f(s));en is
monotonically increasing and consists of subsets of a finite set {2, thus for some
k € N we have f7t% = f* for all j € N. Therefore the fixed-point is reached, the
loop stops, and f = f* is the correct characterization of the reachability from
s for M. 0

Let £ € Chars be a characterization, v € {2, and s € S. We say that £ is
reachable under v from the state s € S iff there exists # € II(s,v) such that
v € &(m;) for some i < |r|. To obtain the constraints for this type of reachability
we employ the operator of the parametric preimage in Algorithm 1.

Lemma 2. Let M be a model. A characterization & € Chars is reachable under
v € 2 from the state s € S iff v € constrVals (M, Pre, &) (s).

Proof. Again, for each i € N by f? we denote the value of the f variable before
entering the loop 3-6. By the induction on i € N we prove that for each s € S
the set fi(s) consists of all the valuations under which for some 7 € I1(s,v)
there exists 0 < j < i such that v € {(n;). We omit the remaining details of the
proof, as it follows very similarly to the proof of Lemma 1. O

One of the typical assumptions in the formal methods approach to systems
analysis is that the model in question is free of deadlocks, i.e., every state reach-
able from the initial one has an enabled outgoing transition. A state s € S is in
a deadlock under valuation v € 2 iff there is no s € S, such that s % & and
v = g, i.e., s has no successor under v. A state is deadlock-free under v € 2 iff it
is not in a deadlock. In what follows, let £ € Chars be such a characterization
that ¢ (s) = 2 for all s € S. For each s € S the set Pre(£)(s) consists of all
those valuations under which there is an outgoing transition from s. This means



that Pre(¢) € Chars is a characterization of no-local-deadlock property, what
we want to obtain however, is the set of valuations under which no state in dead-
lock is reachable from a given state. Let £ € Chars be a characterization, then
we define its complement & € Chars by £(s) := 2\ &(s) for all s € S. Intuitively,
£(s) gathers all those valuations under which the property ¢ does not hold in s.

Lemma 3. Let M be a model and s € S. All states reachable from s under v

are deadlock-free iff v € constrVals(M, Pre, Pre(£))(s).

Proof. Let s € S, then the set Pre(£9)(s) consists of the valuations under which
s is in a deadlock, i.e., Pre(£%?) € Chars is a characterization of a deadlock. By
Lemma 2, the set constrVals(M, Pre, Pre(£%))(s) gathers all those valuations
under which a state in a deadlock is reachable from s, thus the complement of
the set consists of valuations under which all reachable states are deadlock-free.

O

3 Boolean Encodings

The notions introduced in this paper are geared towards symbolic parameter
synthesis. In contrast to the explicit approach, in symbolic verification and syn-
thesis we do not deal with single states and transitions; instead - we manipulate
sets of states, functions and relations [6]. In this section we show how to express
the problem of parameter synthesis using operations on propositional formulae.

3.1 Boolean Encodings and Operations

Let M = (5,5, —) be a Lx-labelled transition system, and let V be a set of
propositional variables such that V' is disjoint with X and |V| = [log(|S])].
Recall that £y denotes the set of propositional formulae over V. It is easy to see
that we can encode the set of states S using the variables from V, i.e., for each
s € S we define enc(s) € Ly such that enc(s) is satisfiable and £ enc(s) Aenc(s’)
for all 5,5’ € S, s # s’. We also use an auxiliary set of propositional variables V',
disjoint with V' and X and such that |V'| = |V|. Assume that V = {vy,...,v%}
and V' = {v],...,v,};if g € Ly then ¢’ € Ly denotes the formula obtained by
replacing in ¢ each v; with its primed counterpart. The transition relation of M
is then encoded as: enc(—) = \/,_, enc(src(t)) A guard(t) A enc (trgt(tr)).

Example 2. Let us encode the transition relation of the model in Fig. 1. Denote
V = {v1,v2} and X = {x1,29,23}. Let us put enc(sg) = v1 A va, enc(sy) =
v1 A —wa, enc(sz) = w1 A v, enc(ss) = —wy A —we, then: enc(—) = ((m Avg) A
(z1 A—3) A (V] A=05) )V ((v1 A=wg) Az Va ) A (—0] Avh) )V ((mo1 Av ) A(z1 A=) A
(Vi AVY)) V ((mo1 Avg) A1 Amg) A (=] A=) V ((mvg A=) A(z3) A (-] Avh)).

If A C (2 then let enc(A) € Lx be such that [enc(A)] = A. Let f € Chars
be a characterization, then we define its encoding as: enc(f) = \/,cgenc(s) A



enc(f(s)). Let & € Chars, then the operations of parametric image and preimage
of ¢ are performed symbolically as follows:

enc' (Post(€)) = \/ (enc(—) Aenc(§))[vr < bf(v1),... vk = bf (vi)],

bfe2v

enc(Pre(§)) = \/ (enc(—) Aend (€))[v] + bf (v)),..., v < bf(vp)].

bfeav’

It is quite easy to see that the encoding of a join of two relations or char-
acterizations is encoded as a disjunction of their encodings; the same follows
for the meet, encoded as a conjunction. In order to implement the operation of
complement, we make use of the following procedure.

Algorithm 2 Complement(f)
Input: f € Chars; Output: enc(f) € Chars
L: return —enc(f) AV, eqvr enc(f)[vi <= bf(v1), ... v = bf(vg)]

The following lemma (first presented in [14]), applied to F' = enc(f) with
[fi substituted with state encodings and g; substituted with associated guards,

proves that enc(f) = Complement(f).

Lemma 4. Let F' = \/,. 4 fi N\ gi, where A is a finite set of indices, and f;, g;
are propositional formulae such that:

— sets of propositional variables present in f;, g; are disjoint,
— for alli,j € A such that i # j we have that }~= f; A f;.

Let F' =\/;c 4 fi, then =F N F' =\/,_ 4 fi N g;.

Proof. Let v = =F A F’, then there exists exactly one ¢ € A such that v = f;.
On the other hand v [~ f; A g, thus v = f; A=(f; A g;). Now it suffices to notice
that fi A =(fi Agi) = fi A—gi. Now let v =\, 4 fi A —gi- As previously, there
exists exactly one i € A such that v = f; A—g;, and obviously v = F’. It suffices
to notice that if we had v = F then v = f; A g; would hold. This is not possible,
therefore v = —F, and v = —-F A F'. O

4 Application and Evaluation

In this section we present an outline of how the general ideas and models in-
troduced so far have been specialized for a selected logic, providing paramet-
ric frameworks for action synthesis [17]. We have implemented the theory in
stand-alone tool SPATULA [15,17]. The tool employs Reduced Ordered Binary
Decision Diagrams (BDDs) CUDD package [23] for an efficient representation of



transition relation and operations on Boolean encodings. To provide the means
for the comparison with the non-parametric approach we also implemented the
naive, enumerative parameter synthesis. In the naive approach, a tool simply it-
erates through all the possible substitutions of parameters and records all those
for which the result yields true.

4.1 Preliminaries

In what follows, we introduce a parameterized logic that allows for the presence
of the parameters (i.e., free variables) in the formulae. In order to deal with the
formulae with multiple parameters, we need to extend the notion of a character-
ization. Let ¢ be a formula with parameters Pars (i.e., a modal logic formula,
interpreted in a Lx-labeled transition system M). Let v : Pars — 2% be a
valuation of Pars (we use the symbol 2p,,.s to denote the set of all such valua-
tions). In this work, we assign to Pars the subsets of the set of allowed actions
(subsection 4.2). By ¢[v] we denote the result of substitution of the variables in
¢ in accordance to v, and by M, s =, ¢ we denote that the ground formula ¢[v]
holds in the state s of M (we usually omit the model symbol). The methods
presented in the previous section can be extended to allow for an efficient con-
struction, for each formula ¢ of a chosen logic, of the function f, : S — 2%Pars
such that: v € fy(s) iff s =, ¢, for all s € S. We only present a brief explanation
of the relevant extensions, referring to the earlier work for a detailed description.

Let M be a model with the set of states S, and let PV be a finite set of fresh
(i.e., not appearing in the model) propositions. A function V : S — 27V is called
a labeling. Intuitively, V(s) denotes the set of all the propositions from PV that
are true in the state s € S.

4.2 Parametric Action-restricted CTL

Action-restricted CTL [20] (ARCTL) is a simple branching time logic with ac-
tions. The formulae of ARCTL limit the set of actions allowed along a given run.
In [17] we have introduced a parametric extension of the logic, called PARCTL
that allows for the presence of the variables in place of concrete sets of actions.

Definition 3 (PARCTL syntax). Let Acts be a finite set of actions, and
Pars be a finite set of action variables. The set of the formulae of Parametric
Action-Restricted CTL is defined by the following grammar:

pu=p| 9|V e|EX|EGP| EaGYd | Eald Ud),
where p € PV, a € (24 U Pars), and Y € Pars.

The E path selector is read as “there exists a path”, and the superscript . se-
lects the actions allowed along a given run. The X modality stands for “in a next
state”, the modalities G, G* stand for “globally” with the second one pertaining to
the infinite paths only, and the U modality is read as “until”. In what follows, we



also use the universal path selector A (read as “for all paths”) and the temporal
modality F' (standing for “n future”); both of these can be derived from the al-
ready introduced notions. As to give an example, Efiete, right} G(Efforwara} £ safe)
is a formula without parameters that may be read as “there exists a path over
left and right, on which it holds globally that a state satisfying safe is reach-
able along some path over forward”. A formula EyG(EzF safe) contains two
parameters we seek to valuate, i.e., for a given state s € S we wish to obtain all
valuations v such that F,y)G(E,z)F safe) holds in s.

We refer to [17] for the full description of the semantics of the logic and the
construction of the function fg for each ¢ € PARCTL. In general, the imple-
mentation of the Boolean operations is rather straightforward, and the following
equalities hold: EyG¥¢ = ¢ AN Ey XEyG¥¢, and EyGp = ¢ A (—Ey Xtrue V
Ey XEyG¥¢),and Ey (¢U) = YV (¢AEy X Ey (¢U4)), where ¢, ¢ € PARCTL,
and Y € Pars. These equivalences can be converted into fixed-point algorithms
[17] based on the consecutive computation of fg, x(.), which in turn can be
obtained by a single application of parametric preimage operation with some
additional variable relabeling.

4.3 Experimental Results

We have performed a batch of tests to establish the efficiency of our approach
as compared to the naive, enumerative one, as to our best knowledge there is
no tool comparable to ours. In all the experiments, the timeout was set at 15
minutes.

In the first test, we used a version of Train-Gate-Controller, a classical bench-
mark [2] with the injected faulty behaviour, as inspired by [3]. The system con-
sists of k trains and the controller that monitors the access to the tunnel. The
safety requires that at most one train at a time enters the tunnel. In a non-faulty
version of the model this is ensured by a simple protocol where a train gains an
access if it reaches an agreement with the controller. In our version of the system,
the (red/green light - based) communication between the selected faulty train
and a controller can malfunction. We have tested the properties:

— 1 = Ay G(= Vi ing Ning) ) A N\, <, <), By Fin;, with the meaning that:
“it is not possible for any pair of trains to be in the tunnel at the same time,
and each train will eventually be in the tunnel”;

— 1y = EyFAyG((/\,]; —in;) A green), with the meaning that: “it is possible
for the system to execute in such a way that at some state, in all the possible
executions of the system, all the trains remain outside the tunnel while the
controller remains in the green state”.

As we aim to synthesize actions that are used for communication (via synchro-
nized actions) between the participating entities, the results of the synthesis can
be interpreted as finding the sets of messages that have to be turned off in order
to provide the compliance with a specification.

In Table 1 we provide the results on the relative time speedup of the paramet-
ric approach versus the naive one. As it can be clearly seen, the benefits of moving



from an exponential number of simple tests operating on sets (enumerative syn-
thesis) to a small number of complex tests operating on characteristic functions
are very substantial. This is in line with the results reported in [8], where the
relative speedup exceeded 750 for the emptiness and universality tests.

Speedup (naive/parametric time)
2 trains|3 trains|4 trains| 5 trains
)1 76.0 | 463.59 |4021.68| 17378.02
P2 48.96 | 276.01 | 703.97 | 1553.73
Table 1: Speedup for Faulty Train-Gate-Controller.

Property

In the second test, we analyze a pipeline network inspired by [21]. The model
in question consists of the chain of k£ nodes, each of which has two states: in and
out. A node can synchronize via shared action with up to four other surrounding
ones, depending on its position in the pipeline. The first node can be perceived
as a Producer, and the last one as a Consumer, and each of the intermediate
tokens can obtain an information token from one of its predecessors by firing a
shared action and moving to the ¢n state. In this way the token can be moved
from the Producer to the Consumer through a series of intermediate nodes. We
have tested the properties:

- ¢ = AYF(/\ISiSL%J out; A /\[g]gjgk in;), describing unavoidability of a
configuration in which the first half of the nodes is in out- and the other half
is in 4n states;

— ¢2 = AyGAy F(\,<;<; n:), expressing that the configuration with all the
nodes simultaneously in their in states appears infinitely often or ends a
path;

- ¢3 = EYFAYG(/\19§[§] Mai—1 AAlS%‘SL%J outs;), describing that the con-
figuration with the first half of the nodes such that the odd nodes are in
their in- and the even are in their out states becomes persistent starting
from some point in the future.

As previously, we present the relative speedup of our approach in Table 2.
The relative efficiency of our approach is even more evident in this case, as we
were able to verify formulae for which the naive approach timed out within the
set time limits.

Speedup (naive/parametric time)

Property 7 processes|8 processes|9 processes|10 processes
b1 1402.60 4115.96 9171.02 22669.83
b2 1202.53 3265.79 8723.40 [> 12344.497
¢3 2985.93 7979.04 | 18633.09 |[> 34531.717

(T - the naive approach exceeded set timeout of 15 minutes)

Table 2: Speedup for Generic Pipeline Paradigm.

10



We refer to [17] for the detailed presentation and analysis of the experimen-
tal results, as well as for some applications of our tool to concurrent systems
security.

5 Conclusions

In this work we presented a framework for parametric model checking for mod-
els with discrete transitions. We have shown how to synthesize constraints for
reachability by means of computing the fixpoint of consecutively applied se-
quence of parametric image operations, and how to synthesize constraints for
deadlock-freedom by means of computing the fixpoint of consecutively applied
sequence of operations of parametric preimage. We have also outlined how to
implement the presented theory using Boolean encodings (typically, BDDs), and
how to extend it to properties expressed in selected modal logics on an exam-
ple of PARCTL. The benefits of the approach are illustrated on two scalable
benchmarks.

Acknowledgements: Michal Knapik is supported by the Foundation for Polish
Science under Int. PhD Projects in Intelligent Computing. Project financed from
the EU within the Innovative Economy OP 2007-2013 and ERDF.

References

1. Alur, R., Etessami, K., Torre, S.L., Peled, D.: Parametric Temporal Logic for
“Model Measuring”. ACM Trans. Comput. Log. 2(3), 388-407 (2001)

2. Alur, R., Henzinger, T., Vardi, M.: Parametric real-time reasoning. In: Proc. of the
25th Ann. Symp. on Theory of Computing (STOC’93). pp. 592-601. ACM (1993)

3. Belardinelli, F., Jones, A.V., Lomuscio, A.: Model checking temporal-epistemic
logic using alternating tree automata. Fundam. Inform. 112(1), 19-37 (2011)

4. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Form. Methods Syst. Des. 35(2), 121-151 (Oct 2009), http://
dx.doi.org/10.1007/s10703-009-0074-0

5. Bruyére, V., Dall’Olio, E., Raskin, J.F.: Durations, parametric model-checking in
timed automata with presburger arithmetic. In: Alt, H., Habib, M. (eds.) STACS.
Lecture Notes in Computer Science, vol. 2607, pp. 687-698. Springer (2003)

6. Burch, J.R., Clarke, E., McMillan, K.L., Dill; D.L., Hwang, L.J.: Symbolic model
checking: 10%° states and beyond. Information and Computation 98(2), 142-170
(1990)

7. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. Lecture Notes in Computer Science, vol. 5000, pp. 1-26.
Springer (2008)

8. Classen, A., Heymaus, P., Schobbens, P.Y., Legay, A.: Symbolic model checking of
software product lines. In: Proc. of the 33rd Int. Conf. on Software Engineering.
pp. 321-330. ICSE ’11, ACM, New York, NY, USA (2011)

9. Emerson, E.A.| Trefler, R.: Parametric quantitative temporal reasoning. In: Proc.
of the 14th Symp. on Logic in Computer Science (LICS’99). pp. 336-343. IEEE
Computer Society (July 1999)

11



10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice.
Elsevier (2004)

Giampaolo, B.D., La Torre, S., Napoli, M.: Parametric metric interval temporal
logic. In: Dediu, A.H., Fernau, H., Martin-Vide, C. (eds.) LATA. Lecture Notes in
Computer Science, vol. 6031, pp. 249-260. Springer (2010)

Holzmann, G.J.: Protocol design: Redefining the state of the art. IEEE Software
9(1), 17-22 (1992)

Jensen, K., Donatelli, S., Koutny, M. (eds.): Transactions on Petri Nets and Other
Models of Concurrency IV, Lecture Notes in Computer Science, vol. 6550. Springer
(2010)

Jones, A.V., Knapik, M., Penczek, W., Lomuscio, A.: Parametric computation tree
logic with knowledge. In: Proc. of the Int. Workshop on Concurrency, Specification
and Programming (CS&P’11). pp. 286-300. Bialystok University of Technology
(2011)

Knapik, M.: https://michalknapik.github.io/spatula

Knapik, M., Penczek, W., Szreter, M., Pélrola, A.: Bounded parametric verifica-
tion for distributed time Petri nets with discrete-time semantics. Fundam. Inform.
101(1-2), 9-27 (2010)

Knapik, M., Meski, A., Penczek, W.: Action synthesis for branching time logic:
Theory and applications. In: Proc. of the 14th Int. Conf. on Application of Con-
currency to System Design (to appear). IEEE Computer Society (2014)

Knapik, M., Szreter, M., Penczek, W.: Bounded parametric model checking for
elementary net systems. In: T. Petri Nets and Other Models of Concurrency [13],
pp. 42-71

Lin, F.J., Chu, P.M., Liu, M.T.: Protocol verification using reachability analy-
sis: The state space explosion problem and relief strategies. SIGCOMM Comput.
Commun. Rev. 17(5), 126-135 (Aug 1987)

Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In:
Proc. of MoChArt 2006. Springer Verlag (2006)

Peled, D.: All From One, One For All: On Model Checking Using Representatives.
In: Proc. of CAV’93. pp. 409-423 (1993)

Penczek, W., Polrola, A.; Zbrzezny, A.: Sat-based (parametric) reachability for a
class of distributed time petri nets. In: T. Petri Nets and Other Models of Con-
currency [13], pp. 72-97

Somenzi, F.: CUDD: CU decision diagram package - release 2.3.1. http://
vlsi.colorado.edu/~fabio/CUDD /cuddIntro.html

Wang, F.: Parametric timing analysis for real-time systems. Inf. Comput. 130(2),
131-150 (1996)

Wang, F.: Parametric analysis of computer systems. Formal Methods in System
Design 17(1), 39-60 (2000)

Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. SIGPLAN
Not. 40(1), 351-363 (Jan 2005)

12



