
A

Action Synthesis for Branching Time Logic: Theory and Applications

Micha l Knapik, Institute of Computer Science, PAS, Warsaw, Poland

Artur M ↪eski, Institute of Computer Science, PAS, Warsaw and FMCS, University of Lódź, Poland

Wojciech Penczek, Institute of Computer Science, PAS, Warsaw and Siedlce University, Poland

The paper introduces a parametric extension of Action-Restricted Computation Tree Logic, called

pmARCTL. A symbolic fixed-point algorithm providing a solution to the exhaustive parameter synthe-

sis problem is proposed. The parametric approach allows for an in-depth system analysis and synthesis
of the correct parameter values. The time complexity of the problem as well as of the algorithm is pro-

vided. An existential fragment of pmARCTL (pmEARCTL) is identified, in which all the solutions can be

generated from a minimal and unique base. A method for computing this base using symbolic methods
is provided. The prototype tool SPATULA implementing the algorithm is applied to the analysis of three

benchmarks: faulty Train-Gate-Controller, Peterson’s Mutual Exclusion Protocol, and a Generic Pipeline

Processing network. The experimental results show efficiency and scalability of our approach in comparison
with the näıve solution to the problem.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification

General Terms: Algorithms, Reliability, Verification

Additional Key Words and Phrases: parametric model checking, parameter synthesis, parametric verification

ACM Reference Format:

Micha l Knapik, Artur M ↪eski, and Wojciech Penczek, 2014. Action Synthesis for Branching Time Logic:
Theory and Applications. ACM Trans. Embedd. Comput. Syst. V, N, Article A (January YYYY), 23 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Parameter synthesis is a generalisation of the model checking problem, where a formula [Alur
et al. 2001; Bruyére et al. 2008; Giampaolo et al. 2010] and/or a model [Alur et al. 1993;
Hune et al. 2002] are augmented with parameters, and aims at computing the values of
the parameters that make the formula hold in the model. The parametric approach may be
useful at the design phase to support decisions in software and hardware production, as it
may provide the exact values for tunable parameters or sets of rules that govern the system
execution, often saving time spent on tedious experiments with the possible parameter
valuations.

In this work, we focus on the action synthesis problem for the parameters introduced to
the formulae of a branching time temporal logic. We build upon Action Restricted Computa-
tion Tree Logic (ARCTL) [Pecheur and Raimondi 2006], which we augment with parameters
corresponding to the sets of actions, by defining the logic pmARCTL. To solve the synthesis
problem for pmARCTL we propose a fixed-point based algorithm, inspired by [Jones et al.
2012], that processes the verified formula recursively and labels each state of the model

This work is partially funded by DEC-2012/07/N/ST6/03426 NCN Preludium 4 grant.
Author’s addresses: M. Knapik, A. M ↪eski, and W. Penczek, Institute of Computer Science, PAS, Warsaw,
Poland; email: {knapik,meski,penczek}@ipipan.waw.pl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 M. Knapik et al.

with the valuations of the parameters under which the formula holds in this state. A novel
framework for the parameter synthesis for pmARCTL, consisting of a theory, an imple-
mentation, and the tool SPATULA, is the main contribution of our paper. We are also the
first to demonstrate how to efficiently apply the exhaustive parameter synthesis in systems
design and analysis by showing the potential of the method in identifying possible attack
scenarios. We demonstrate this on the Peterson’s mutual exclusion algorithm by presenting
what instructions need to be injected into the memory monitor to expose a subtle weakness.
We also prove that the emptiness problem for pmARCTL is NP-complete and provide the
complexity results for the proposed algorithms. Even though the problem is of a prohibitive
theoretical complexity, our implementation significantly outperforms the näıve approach
and makes the method quite practical as we demonstrate on two scalable examples: faulty
Train-Gate-Controller and a Generic Pipeline Processing network.

The problem of synthesis of the valuations under which a given modal property holds
was first investigated in [Alur et al. 2001] in the context of a parametric version of LTL.
In [Bruyére et al. 2008] and [Giampaolo et al. 2010] the authors analyse parametric exten-
sions of MITL and TCTL, respectively. In [Jones et al. 2012] the problem of synthesis for
agent groups of the CTLK properties in a multi-agent setting was considered. In [Classen
et al. 2011] the authors focus on a verification of feature CTL (fCTL) properties for Soft-
ware Product Lines with the extended validity check providing constraints on when a given
property does not hold. Despite the fact that the authors do not consider parameterised
logics, their work shares the same difficulties as the problems we deal with in this paper:
both the state space and the set of solutions are susceptible to exponential blowup. The ex-
perimental results of [Classen et al. 2011] show that the symbolic verification of fCTL can be
up to 766-times faster than a brute-force approach. We extend these results to pmARCTL
parameter synthesis, where the relative speedup can exceed 8000. The work presented here
is also related to parametric model checking with parameters in models [Alur et al. 1993;
André et al. 2012; Hune et al. 2002], and model synthesis from a specification [Clarke and
Emerson 1981; Katz and Peled 2010].

The rest of the paper is organised as follows. In the next section we introduce the syntax
and the semantics of pmARCTL. The algorithms for the parameter synthesis are given in
Section III. An experimental evaluation is provided in Section IV, followed by a summary
and concluding remarks.

2. MIXED TRANSISTION SYSTEMS AND PMARCTL

In this section we recall some basic definitions and present the syntax and semantics of
the logic pmARCTL used in the paper. Mixed Transition Systems [Pecheur and Raimondi
2006] are essentially Kripke structures with the transitions labelled with actions. The labels
serve us to express branching-time properties with the selected set of actions allowed along
a given run.

Definition 2.1 (MTS). Let PV be a set of propositional variables. A mixed transition
system (MTS, for short) is a 5-tuple M = (S, s0,A, T ,Vs), where:

— S is a non-empty finite set of states,
— s0 ∈ S is the initial state,
—A is a non-empty finite set of actions,
— T ⊆ S ×A× S is a transition relation,
— Vs : S → 2PV is a (state) valuation function.

As usually, we write s
a→ s′ if (s, a, s′) ∈ T . Let χ ⊆ A be a nonempty set of actions. Let

π = (s0, a0, s1, a1, . . .) be a finite or infinite sequence of interleaved states and actions; by
|π| we denote the number of the states of π if π is finite, and ω if π is infinite. A sequence

π is a path over χ if (1) si
ai→ si+1 and ai ∈ χ for each i < |π| and (2) π is maximal with

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:3

respect to the condition (1). Note that if a path π is finite, then its final state does not have
a χ-successor state in S, i.e., if π = (s0, a0, s1, a1, . . . , sm), then there is no s′ ∈ S and a ∈ χ
s.t. sm

a→ s′.
The set of all the paths over χ ⊆ A in a model M is denoted by Π(M, χ), whereas the

set of all the paths π ∈ Π(M, χ) starting from a given state s ∈ S is denoted by Π(M, χ, s).
We omit the model symbol if it is clear from the context, simply writing Π(χ) and Π(χ, s).
By Πω(χ) and Πω(χ, s) we mean the corresponding sets restricted to the infinite paths only.

s0

start

p

s1

p

s2

safe

s3

safe

s4

p

s5

p

s6

p, safe

left

back

forward

forward

forward

forward

right

back

Fig. 1: A simple MTS used in Examples 2.2–3.3.

Example 2.2. Fig. 1 presents a simple mixed transition system with PV = {p, safe}, ac-
tionsA = {left, right, forward, back}, and the initial state s0. The path (s0, left, s1, right, s4)
belongs to Π({left, right}), but it does not belong to Π({left, right,back}). The rea-
son is that while (s0, left, s1, right, s4) is a maximal path over {left, right}, it is
not maximal over {left, right,back} as it can be extended e.g. into an infinite path
(s0, left, s1, right, s4,back, s0, . . .) ∈ Π({left, right,back}).

The MTSs defined in this paper slightly differ from these introduced in [Pecheur and
Raimondi 2006], where the actions that label the transitions are treated as propositions.
The difference is not essential however, as in [Pecheur and Raimondi 2006] the propositional
formulae over actions serve only to select sets of actions allowed along considered runs. Here,
we describe the actions allowed explicitly.

2.1. Parametric ARCTL

The presented logic is a parametric extension of Action-Restricted Computation Tree Logic
(ARCTL) [Pecheur and Raimondi 2006]. The language of ARCTL consists of the CTL-like
branching-time formulae. The main difference between ARCTL and CTL is that each path
quantifier is subscripted with a set of actions. The subscripts are used in path selection,
e.g., E{left, right}G(E{forward}F safe) may be read as “there exists a path over left and right,
on which it holds globally that a state satisfying safe is reachable along some path over
forward”. Parametric ARCTL (pmARCTL) extends ARCTL by allowing free variables in
place of sets of actions, e.g., EYG(EZF safe).

Definition 2.3 (pmARCTL syntax). Let A be a finite set of actions, ActSets = 2A \ {∅},
ActVars be a finite set of variables, and PV be a set of propositional variables. The set of
the formulae of Parametric Action-Restricted CTL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | EαXφ | EαGφ | EωαGφ | Eα(φ Uφ),

where p ∈ PV, α ∈ ActSets ∪ActVars.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. Knapik et al.

The E path quantifier is read as “there exists a path”. The superscript ω restricts the quan-
tification to the infinite paths, whereas the subscript α restricts the quantification to the
paths over α. The X modality stands for “in the next state”. The state modality G is the
“globally” modality. The modality U stands for “until”.

Since the formulae considered contain free variables, their validity needs to be defined
with respect to the provided valuations of ActVars. A function υ : ActVars → ActSets is
called an action valuation and the set of all action valuations is denoted by ActVals. By
M, s |=υ φ we denote that the formula φ holds in the state s of the model M under the
valuation υ, as formalised in Definition 2.4 (we omit the model symbol where it is clear
from the context). In what follows, by πi we denote the i–th state of π. For conciseness, if
υ is an action valuation, then let:

υ(α)
def
=

{
χ if α = χ ⊆ A,
υ(Y) if α = Y ∈ ActVars.

Moreover, in the following notations, for O ∈ {E,A,Π} we assume that Oε = O.

Definition 2.4 (pmARCTL semantics). Let M = (S, s0,A, T ,Vs) be a MTS and υ ∈
ActVals be an action valuation. The relation |=υ is defined as follows:

— s |=υ p iff p ∈ Vs(s),
— s |=υ ¬φ iff s 6|=υ φ,
— s |=υ φ ∨ ψ iff s |=υ φ or s |=υ ψ,
— s |=υ EαXφ iff there exists π ∈ Π(υ(α), s) such that |π| > 1 and π1 |=υ φ,
— s |=υ E

r
αGφ iff there exists π ∈ Πr(υ(α), s) such that πi |=υ φ for all i < |π|,

— s |=υ Eα(φ Uψ) iff there exists π ∈ Π(υ(α), s) such that πi |=υ ψ for some i < |π| and
πj |=υ φ for all 0 ≤ j < i,

where p ∈ PV, φ, ψ ∈ pmARCTL, r ∈ {ω, ε}, and α ∈ ActSets ∪ActVars.

Next, we define several derived modalities. Let φ, ψ ∈ pmARCTL and denote:

(1) EωαXφ
def
= EαX(φ ∧ EωαG true),

(2) Eωα (φ Uψ)
def
= Eα

(
φ U(ψ ∧ Eωα true)

)
,

(3) ErαFφ
def
= Erα(true Uφ),

(4) ArαXφ
def
= ¬ErαX¬φ,

(5) ArαGφ
def
= ¬ErαF¬φ,

(6) Arα(φ Uψ)
def
= ¬

(
Erα(¬ψU¬(φ ∨ ψ)) ∨ ErαG¬ψ

)
,

(7) ArαFφ
def
= ¬ErαG¬φ,

where α ∈ ActSets ∪ ActVars and r ∈ {ω, ε}. The modality F stands for “in some future
state”, Aα stands for “for each path over α” and Aωα stands for “for each infinite path over
α”. The semantics of the derived modalities is consistent with the intuition.

Example 2.5. Consider the MTS from Fig. 1 and the formulae φ1 = AYGp and φ2 =
AωYGp. It is easy to check that for υ ∈ ActVals such that υ(Y) = {left, right, back} the
set Π(υ(Y), s0) consists of infinite paths only, and we have s0 |=υ φ1 and s0 |=υ φ2. On
the other hand for υ′ ∈ ActVals satisfying υ′(Y) = {left, right, back, forward} the set
Π(υ(Y), s0) contains finite paths along which p does not hold globally (e.g., (s0, s1, s3, s5))
therefore s0 6|=υ′ φ1 while s0 |=υ′ φ2.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:5

3. ACTION SYNTHESIS FOR PMARCTL

Consider a formula φddk = AYG(EYXtrue). This property expresses a lack of deadlock, i.e.,
s |=υ φddk iff each state reachable from s via transitions labelled with actions from υ(Y) has
a υ(Y)-successor. The complete description of the set of valuations under which φddk holds
in the initial state of M can provide crucial information about the safety of the modelled
system. If the model is overspecified, then these valuations can be used for its pruning,
i.e., removing unnecessary actions while preserving the no-deadlock attribute. The space of
synthesised valuations can be explored with many goals in mind, including a minimal model
selection, a correct model synthesis from a general skeleton, failure resistance, etc.

The main focus of this paper is therefore on the automatic and efficient synthesis of the
subset of the action valuations under which a given formula holds. More formally, for a
given model M and a formula φ of pmARCTL, we define the function fφ : S → 2ActVals

satisfying the condition:

υ ∈ fφ(s) iff s |=υ φ, for all s ∈ S, (?)

i.e., fφ(s) returns all the valuations under which φ holds in s.

Example 3.1. Consider the model in Fig. 1 and the formula φ1 = EY (pU(p ∧ safe)). By
hand calculations one can check that s0 |=υ φ1 iff {forward, left, right} ⊆ υ(Y).

In what follows, given a model, by writing the function fφ for φ of pmARCTL, we assume
that fφ satisfies the condition (?).

3.1. Algorithms for computing fφ

Next, we show how to compute the function fφ by means of the recursive compositions,
preimage, and fixpoints. Throughout this section let M be a fixed MTS and Y ∈ ActVars.
Propositional variables and boolean operations. Let p ∈ PV be a propositional
variable and s ∈ S be a state. It is easy to notice that the set fp(s) consists of either
all the action valuations if s is labelled with p, or is empty otherwise, thus:

fp(s) =

{
ActVals if p ∈ Vs(s),
∅ if p 6∈ Vs(s).

Now, let φ ∈ pmARCTL and fφ be given. Then the set f¬φ(s) consists of all the action
valuations υ such that s 6|=υ φ. From the inductive assumption this is equivalent to υ 6∈ fφ(s),
from which follows: f¬φ(s) = ActVals\fφ(s). To deal with the boolean connectives, assume
that φ, ψ ∈ pmARCTL and fφ and fψ are given. Recall that from definition s |=υ φ ∨ ψ
iff s |=υ φ or s |=υ ψ. By the inductive assumption, s |=υ φ or s |=υ ψ is equivalent to
υ ∈ fφ(s) or υ ∈ fψ(s), therefore: fφ∨ψ(s) = fφ(s) ∪ fψ(s).
Parametric preimage and neXt. Let f : S → 2ActVals be a function. The existen-
tial parametric preimage of f with respect to Y ∈ ActVars is defined as the function
parPre∃Y (f) : S → 2ActVals such that:

parPre∃Y (f)(s) =
{
υ | ∃s′∈S ∃a∈υ(Y) s

a→ s′ ∧ υ ∈ f(s′)
}

for each s ∈ S.
It follows immediately from the (?) condition that for each φ ∈ pmARCTL the set

parPre∃Y (fφ)(s) consists of all such action valuations υ that some state s′ such that s′ |=υ φ
can be reached by firing an action from υ(Y).

Lemma 3.2. For each s ∈ S, φ ∈ pmARCTL, and Y ∈ ActVars, and υ ∈ ActVals, the
following condition holds: s |=υ EYXφ iff υ ∈ parPre∃Y (fφ)(s).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. Knapik et al.

Proof. From the definition s |=υ EYXφ iff there exists a path π ∈ Π(υ(Y), s) such that

|π| > 1 and π1 |=υ φ, which is equivalent to ∃s′∈S∃a∈υ(Y)(s
a→ s′ ∧ s′ |=υ φ) as (s, a, s′) can

be extended to a path. This, in turn, is equivalent to ∃s′∈S∃a∈υ(Y)(s
a→ s′∧υ ∈ fφ(s′)), i.e.,

υ ∈ parPre∃Y (fφ)(s).

The meaning of the above lemma can be expressed as: fEYXφ = parPre∃Y (fφ) for each φ ∈
pmARCTL.

Example 3.3. Consider the MTS from Fig. 1. By case-by-case analysis one can see
that s1 |=υ EY F safe iff forward ∈ υ(Y) and s2 |=υ EY F safe for all υ ∈ ActVals,
thus fEY F safe(s1) = {υ | forward ∈ υ(Y)} and fEY F safe(s2) = ActVals. To compute

parPre∃Y (fEYX(EY F safe))(s0) notice that in order to reach s1 or s2 from s0 the actions left
or forward should be fired, respectively. Therefore:

parPre∃Y (fEYX(EY F safe))(s0) =
⋃

i∈{1,2}

(
{υ | ∃a∈υ(Y) s0

a→ si} ∩ fEY F safe(si)
)

= {υ | forward ∈ υ(Y)}.
Two versions of the Globally modality. We employ the equivalence EωYGφ ≡ φ ∧
EYXE

ω
YGφ to obtain Algorithm 1. Note the similarity to its non-parametric counterpart.

The case of EYG is more interesting as a potential lack of the totality of the transition
relation needs to be taken into account. To this end Algorithm 2 consecutively keeps adding
action valuations under which the given states satisfy the considered formula, but are dead-
locked, i.e., have no successors.

ALGORITHM 1: SynthEωG (fφ, Y)

Input: fφ ∈
(
2ActVals

)S
Output: fEω

Y
Gφ ∈

(
2ActVals

)S
1: f := fφ; h := ∅
2: while f 6= h do
3: h := f
4: f := fφ ∩ parPre∃Y (h)
5: end while
6: return f

ALGORITHM 2: SynthEG (fφ, Y)

Input: fφ ∈
(
2ActVals

)S
Output: fEY Gφ ∈

(
2ActVals

)S
1: f := fφ; h := ∅
2: D := fφ∧¬EY Xtrue

3: while f 6= h do
4: h := f
5: f := (fφ ∩ parPre∃Y (h)) ∪D
6: end while
7: return f

Lemma 3.4. Let φ be a pmARCTL formula, r ∈ {ω, ε}, and Y ∈ ActVars. For all s ∈ S
and υ ∈ ActVals we have: s |=υ E

r
YGφ iff υ ∈ SynthE rG(fφ, Y)(s)

Proof. Let us first prove that s |=υ E
ω
YGφ iff υ ∈ SynthEωG(fφ, Y)(s). For a while,

replace the condition in Line 2 of Algorithm 1 with true. In this way, the while loop 2–5
becomes infinite, and we can define fi for each i ∈ N as the value of the f variable after the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:7

i–th run and f0 = fφ. First, we prove that:

fi(s) = {υ | ∃π∈Π(υ(Y),s)(|π| ≥ i ∧ ∀0≤j≤i πj |=υ φ)}

for each s ∈ S and i ∈ N. The base case for i = 0 follows immediately from the defi-
nition. For the inductive step notice that fi+1 = fφ ∩ parPre∃Y (fi) and parPre∃Y (fi)(s) =
{υ | ∃π∈Π(υ(Y),s)(|π| ≥ i + 1 ∧ ∀0<j≤i+1 πj |=υ φ)}, from which it follows that fφ(s) ∩
parPre∃Y (fi)(s) = {υ | ∃π∈Π(υ(Y),s)(|π| ≥ i + 1 ∧ ∀0≤j≤i πj |=υ φ)}. Now, observe that
s |=υ E

ω
YGφ iff υ ∈

⋂
i∈N fi(s). Notice that fi+1(s) ⊆ fi(s) for all i ∈ N, s ∈ S and the

(common) codomain of fi is finite. This means that the monotonic sequence
(
fi(s)

)
i∈N sta-

bilises, i.e., there exists k ∈ N such that fi = fk for all i ≥ k. Obviously, fk(s) =
⋂
i∈N fi(s)

and fk is the fixpoint of the loop and the value returned by Algorithm 1. This concludes
the proof of the first case.

Let us move to the second case, i.e., prove that s |=υ EYGφ iff υ ∈ SynthEG(fφ, Y)(s).
Let φ ∈ pmARCTL and notice that D = fφ∧¬EYXtrue is a constant, and D(s) = {υ | (s |=υ

φ)∧¬∃s′∈S∃a∈υ(Y) s
a→ s′} for each s ∈ S. The set D(s) consists of all the action valuations

under which φ holds in s and s has no successor. By fi we denote the value of the f variable
after the i–th run of the 3–6 loop of Algorithm 2. Also, let f0 = fφ, as given in Line 1. We
prove that fi(s) = AiF (s) ∪Ai∞(s) for each i ∈ N, s ∈ S, where:

AiF (s) = {υ | ∃π∈Π(υ(Y),s)(|π| ≤ i ∧ ∀0≤j≤|π| πj |=υ φ)},
Ai∞(s) = {υ | ∃π∈Π(υ(Y),s)(|π| > i ∧ ∀0≤j≤i πj |=υ φ)},

i.e., AiF (s) consists of action valuations under which there exists a finite path of length
smaller than or equal to i along which φ holds, whereas Ai∞(s) contains all such valuations
that along some path of length greater than i the φ formula holds up to its i–th state. The
base case of f0(s) follows immediately from the definition of fφ (note that D(s) ⊆ fφ(s) for

all s ∈ S). For the inductive step, first notice that (Line 5) fi+1 = (fφ ∩ parPre∃Y (fi)) ∪D,

and that for each s ∈ S we have parPre∃Y (fi)(s) = {υ | ∃π∈Π(υ(Y),s)(1 ≤ |π| ≤ i + 1 ∧
∀0<j≤|π|πj |=υ φ)} ∪ {υ | ∃π∈Π(υ(Y),s)(|π| > i+ 1 ∧ ∀0<j≤i+1πj |=υ φ)}. We can now easily

derive that (fφ(s)∩ parPre∃Y (fi)(s))∪D(s) = Ai+1
F (s)∪Ai+1

∞ (s). The sequence
(
AiF (s)

)
i∈N

is increasing, therefore it eventually stabilises at the fixpoint AF (s) consisting of all the
action valuations under which φ holds along some finite path starting from s. The sequence(
Ai∞(s)

)
i∈N decreases until it reaches a fixpoint A∞(s), consisting of all action valuations

under which φ holds along an infinite path beginning at s. As SynthEG(fφ, Y)(s) = AF (s)∪
A∞(s), this concludes the proof.

From Lemma 3.4: fEω
Y
Gφ = SynthEωG(fφ, Y), fEY Gφ = SynthEG(fφ, Y).

Until modality. Similarly as in the case of CTL, the equivalence EY (φUψ) ≡ ψ ∨ (φ ∧
EYXEY (φUψ)) motivates the following fixpoint algorithm.

ALGORITHM 3: SynthEU (fφ, fψ, Y)

Input: fφ, fψ ∈
(
2ActVals

)S
Output: fEY (φUψ) ∈

(
2ActVals

)S
1: f := fψ; h := ∅
2: while f 6= h do
3: h := f ; f := fψ ∪ (fφ ∩ parPre∃Y (h))
4: end while
5: return f

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Knapik et al.

Lemma 3.5. For each s ∈ S, φ, ψ ∈ pmARCTL, Y ∈ ActVars, and υ ∈ ActVals the
following condition holds: s |=υ EY (φUψ) iff υ ∈ SynthEU (fφ, fψ, Y)(s).

Proof. For now, assume that the while loop 2–4 of Algorithm 3 is infinite (i.e.,
put true in place of the f 6= h condition). Let fi denote the value of the variable f
after the i–th run of the loop, and let f0 = fψ (as given in Line 1). First, let us
prove that fi(s) = {υ | ∃π∈Π(υ(Y),s)∃j≤i(|π| ≥ i ∧ πj |=υ ψ ∧ ∀0≤k<jπk |=υ φ)} for
each s ∈ S. In the case of f0 the above equality follows immediately from the def-
inition of fψ. For the inductive step, notice that due to the substitution in Line 3

we have that fi+1 = fψ ∪ (fφ ∩ parPre∃Y (fi)). Now, observe that: parPre∃Y (fi)(s) =

{υ | ∃s′∈S∃a∈υ(Y)(s
a→ s′∧υ ∈ fi(s′))} = {υ | ∃s′∈S∃a∈υ(Y)(s

a→ s′∧∃π∈Π(υ(Y),s′)∃j≤i(πj |=υ

ψ ∧ ∀0≤k<jπk |=υ φ))} = {υ | ∃π∈Π(υ(Y),s)∃0<j≤i+1(πj |=υ ψ ∧ ∀0<k<jπk |=υ φ)} and there-

fore fφ(s)∩ parPre∃Y (fi)(s) = {υ | ∃π∈Π(υ(Y),s)∃0<j≤i+1(πj |=υ ψ ∧∀0≤k<jπk |=υ φ)}. From
the above we finally have:

fψ(s) ∪ (fφ(s) ∩ parPre∃Y (fi)(s)) = {υ | ∃π∈Π(υ(Y),s)∃0≤j≤i+1(πj |=υ ψ ∧ ∀0≤k<jπk |=υ φ)}.

Now observe that s |=υ EY φUψ iff υ ∈
⋃∞
i=0 fi(s). As fi(s) ⊆ fi+1(s) for all i ∈ N, we have

that if the fixpoint in Line 2 is reached for some k–th run of the loop, then fk(s) =
⋃∞
i=0 fi(s).

The fixpoint however is always reached and the algorithm stops, because there is only a finite

number of functions in
(
2ActVals

)S
and

(
fi(s)

)
i∈N is a monotonic sequence of sets.

Following the chosen convention we have: fEY (φUψ) = SynthEU (fφ, fψ, Y).

Overall algorithm. The last algorithm presented in this section provides the en-
try point for the computation of the fφ function, given a formula φ ∈ pmARCTL.

ALGORITHM 4: Synthfull(φ)

Input: φ ∈ pmARCTL

Output: fφ ∈
(
2ActVals

)S
1: if φ = EYXψ then
2: return parPre∃Y (Synthfull(ψ))
3: else if φ = ErYGψ where r ∈ {ω, ε} then
4: return SynthErG (Synthfull(ψ), Y)
5: else if φ = EY (ξUψ) then
6: return SynthEU (Synthfull(ξ),Synthfull(ψ), Y)
7: else {propositional and non-parametric modalities omitted for simplicity}
8: return fφ
9: end if

The validity of the results obtained with Algorithm 4 is summarised by the following theo-
rem.

Theorem 3.6. For each model M, formula φ ∈ pmARCTL, state s ∈ S, and action
valuation υ ∈ ActVals we have: M, s |=υ φ iff υ ∈ Synthfull(φ)(s).

Proof. Follows immediately from Lemmas 3.2–3.5.

3.2. Synthesis of Minimal Sets of Constraints

In Subsection 3.1 it is shown how to synthesise the complete set of the action valuations
under which a given formula holds. It is, however, often infeasible to preserve such a solution
in its entirety. It turns out that in some special cases, all the sought valuations can be derived
from their subset – a base, usually much smaller than the whole set. This requires to restrict
the language of pmARCTL such that the operator EαG is disallowed as it is not distributive
over unions and intersections of α’s (see the example below).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:9

Example 3.7. Consider the MTS from Fig. 2, where Vs(s3) = {p}, Vs(si) = ∅ for all
i 6= 3, and A = {a, b, c}. It is not difficult to see that s0 |= A{a,c}Fp and s0 |= A{b,c}Fp.
On the other hand, s0 6|= A{a,c}∪{b,c}Fp (due to the existence of the loop between s1 and
s2) and s0 6|= A{a,c}∩{b,c}Fp (as p 6∈ Vs(s0)). Similarly, we have both s0 |= E{a}G¬p and
s0 |= E{c}G¬p, but s0 6|= E{a,c}G¬p.

s0start

s1

s2

s3p

a

b a

b

c

c

Fig. 2: A counterexample for the action monotonicity.

Let υ, υ′ ∈ ActVals. We write υ ≺ υ′ if υ(Y) ⊆ υ′(Y) for all Y ∈ ActVars. For a given
property φ, if (M, s0 |=υ φ and υ ≺ υ′) implies M, s0 |=υ′ φ for all υ, υ′ ∈ ActVals and
all modelsM, then φ is called action-monotone. The language is action-monotone if all its
formulae are so.

Definition 3.8 (pmEARCTL syntax). The language of Parametric Existential Action-
Restricted CTL is defined by the following grammar:

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | EαXφ | EωαGφ | Eα(φ Uφ),

where p ∈ PV, α ∈ ActSets ∪ActVars.

Observe that if φ, ψ ∈ pmEARCTL and r ∈ {ω, ε}, then the derived modalities EωαXφ,
Eωα (φ Uψ), and ErαFφ also belong to pmEARCTL.

Lemma 3.9. The language of pmEARCTL is action-monotone.

Proof. The proof follows by the induction on the structure of φ ∈ pmEARCTL. Let
us assume that s |=υ φ and υ ≺ υ′. The base case of φ = p ∈ PV and the cases of
the conjunction, disjunction, and the negation of a proposition are straightforward. If φ ∈
{EαXφ,Eα(φUφ)} then it suffices to notice that each path π ∈ Π(υ(α), s) is a prefix of
some path in Π(υ′(α), s) and apply the inductive assumption. Similarly, if φ = EωαGφ, notice
that Πω(υ(α), s) ⊆ Πω(υ′(α), s) and apply the inductive assumption.

Let Υ ⊆ ActVals and let minVals(Υ) denote the set of the valuations in Υ minimal with
respect to ≺. Formally:

minVals(Υ) = {υ ∈ Υ | ∀υ′∈Υ(υ′ ≺ υ =⇒ υ′ = υ)}.
By Lemma 3.9, for φ ∈ pmEARCTL the set fφ(s0) can be generated by (typically much
smaller) minVals(fφ(s0)).

In our approach, parameter synthesis is performed by means of manipulations of boolean
formulae. The process of building such formulae does not differ much from the non-
parametric case [Baier and Katoen 2008], with the main difference consisting in the en-
coding of action valuations. With some notational abuse let us treat the set of the actions

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Knapik et al.

A as propositional variables. Propositional formulae over A can be perceived as indicator
functions for the subsets of ActSets, i.e., let α be a propositional formula over A, and:

[α] = {{a1, . . . , am} ⊆ A | |= α[a1/true, . . . , am/true]}.
The formula α encodes the set of all the subsets of A that make α hold when all their
elements are set to true. It is easy to show that for each A ⊆ ActSets there exists a
formula α such that [α] = A. To encode the subsets of ActVals we introduce a set of fresh
propositional variables AActVars =

⋃
Y ∈ActVars{aY | a ∈ A}, that is – for each variable Y we

introduce a copy of each element of A subscripted by Y . We use propositional formulae over
AActVars to represent sets of action valuations as follows. Let β be a propositional formula
over AActVars, then:

[β]ActVars = {f ∈ ActVals | ∃υ∈[β]∀Y ∈ActVars

(
a ∈ f(Y) ⇐⇒ aY ∈ υ

)
}.

It is straighforward to prove that for each set of functions F ⊆ ActVals there exists a
propositional formula over AActVars, denoted by enc(F), such that [enc(F)]ActVars = F .

Example 3.10. Let A = {a, b, c}, and ActVars = {Y, Z}, and let: β = (aY ∧bY ∧aZ∧bZ∧
cZ) ∨ (¬aZ ∧ ¬bZ ∧ cZ). As we have: [β] = {{aY , bY , aZ , bZ , cZ}, {aY , bY , cY , aZ , bZ , cZ}}
∪ {A ∪ {cZ} | A ⊆ {aY , bY , cY }}, then f ∈ [β]ActVars iff (1) {a, b} ⊆ f(Y) and f(Z) =
{a, b, c}, or (2) f(Z) = {c} and f(Y) is any subset of A. There are 2 + 23 functions in
[β]ActVars.

Let κ be a conjunction of literals (i.e., propositions or their negations) from A. We assume
that the empty conjunction of literals is equivalent to false. If |= κ =⇒ β, then κ is called
an implicant of β. Notice that the empty conjunction is an implicant of each formula. An
implicant κ is called prime if it does not subsume a shorter implicant of β [Quine 1952]. A
set Cov of prime implicants of β is called its prime covering iff (

∨
κ∈Cov κ) ≡ β. Let val(κ)

denote such action valuation that val(κ)(Y) = {a ∈ A | aY ∈ κ} for each Y ∈ ActVars.

Lemma 3.11. Let φ ∈ pmEARCTL and Cov be a prime covering of enc(fφ(s0)). Then,
Cov is unique, and minVals(fφ(s0)) =

⋃
κ∈Cov{val(κ)}.

Proof. Notice that from the definition of prime covering we have
⋃
κ∈Cov [κ]ActVars =

fφ(s0). Also, notice that if κ ∈ Cov contains a negative literal aY , then none of the valuations
of [κ]ActVars would assign a set of actions containing a to the variable Y . On the other hand,
we know from Lemma 3.9 that pmEARCTL is action-monotone, thus if κ′ denotes κ, where
the literal is removed, then [κ]ActVars ⊆ [κ′]ActVars ⊆ fφ(s0). As |= κ′ =⇒ enc(fφ(s0)) and
κ subsumes κ′, we get a contradiction with the assumption that κ is a prime implicant,
therefore κ can only contain positive literals. This means that enc(fφ(s0)) is monotone (i.e.,
contains only positive literals), hence Cov is unique [Goldsmith et al. 2008]. As val(κ) is
the smallest element of [κ]ActVars with respect to ≺, the proof is complete.

From Lemma 3.11 it follows that in order to build a set of minimal valuations for any formula
of pmEARCTLit suffices to collect prime implicants of its encoding. There are many known
methods for obtaining the set of prime implicants of a boolean function [Coudert et al.
1993]. In our work we employ the facilities built in the CUDD BDD package to iterate
over all the prime implicants. The method can be in practice generalised as follows: if
enc(fφ(s0)) for φ ∈ pmARCTL does not contain negations, then φ is action-monotone and
minVals(fφ(s0)) =

⋃
κ∈Cov{val(κ)}, where Cov is the prime covering of enc(fφ(s0)).

3.3. Complexity

Let us consider the question of whether for a given model M with the initial state s0 and
a formula φ ∈ pmARCTL there exists an action valuation υ such that M, s0 |=υ φ. It is a
well-defined decision problem, called the emptiness problem for pmARCTL.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:11

Theorem 3.12. The emptiness problem for pmARCTL is NP-complete.

Proof. The proof follows via reduction from 3SAT. Let PV be a set of propositional
variables, and let PL = PV ∪ {¬p | p ∈ PV} be the set of literals over PV. Let n ∈ N,
and let µ = (a1

1 ∨ a1
2 ∨ a1

3)∧ . . .∧ (an1 ∨ an2 ∨ an3) be a propositional formula in 3CNF, where
aij ∈ PL for all 1 ≤ i ≤ n, 1 ≤ j ≤ 3.

st3start

p

mst21

p

mst22

p

mst23

p

st2 p sink2

mst11

p

mst12

p

mst13

p

st1

p, tail

sink1

a
¬b

¬c

¬a

b c

¬a
d

¬e

a

¬d e

Fig. 3: A model for 3SAT formula µ = (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ d ∨ ¬e). The dashed arcs are
labelled with jmp.

We build a modelM and a formula φµ ∈ pmARCTL such that there is a correspondence
between the valuations satisfying µ and action valuations satisfying φµ in M. In what
follows we fix a proposition p ∈ PV. Let Ci = ai1 ∨ ai2 ∨ ai3 denote the i–th clause of µ for
each 1 ≤ i ≤ n. With a slight notational abuse (i.e., the literals from PL are treated as
actions, and double negations are reduced whenever possible) let:

— Si = {sti, sti+1, sinki,mst
i
1,mst

i
2,mst

i
3},

—Ai = {ai1, ai2, ai3,¬ai1,¬ai2,¬ai3},
— Ti =

⋃3
j=1{(sti+1, a

i
j ,mst

i
j), (mst

i
j ,¬aij , sinki),

(mstij , jmp, sti)}.

Now, let M = (S, s0,A, T ,Vs), where: S =
⋃n
i=1 Si, s

0 = stn+1, A = PL ∪ {jmp}, T =⋃n
i=1 Ti, and Vs(s) = {p} for all s 6∈

⋃n
i=1{sinki} ∪ {stn+1} and Vs(st1) = {p, tail}.

Consider the formula φµ = AYGp ∧ EY F tail and notice that stn+1 |=υ φµ iff (1) υ(Y)
contains the action jmp, (2) for each 1 ≤ i ≤ n the set υ(Y) contains at least one action
aij such that (sti+1, a

i
j ,mst

i
j) ∈ T for some 1 ≤ j ≤ 3, and (3) the set υ(Y) does not

contain a transition labelled with literal and transition labelled with its negation (this

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. Knapik et al.

would create a path leading to sinki, for some 1 < i ≤ n, which is not labelled by p). For
an action valuation υ satisfying conditions 1–3 let ωυ be a valuation (of propositionals) s.t.
ωυ(a) = true iff a ∈ υ(Y) for each a ∈ A, and notice that ωυ |= µ. Conversely, let ω be s.t.
ω |= µ, define the action valuation υω s.t. jmp ∈ υω(Y) and a ∈ υω(Y) iff ω(a) = true for
each a ∈ A, and observe that υω |= φµ.

Note that the presented reduction is polynomial. On the other hand, the ARCTL verifica-
tion can be attained in polynomial time and there is a finite number of possible valuations,
therefore the emptiness problem can be solved in polynomial time by a nondeterministic
Turing machine.

In view of the above, it is not surprising that the time complexity of the presented
algorithms is high. Recall thatM = (S, s0,A, T ,Vs), and let φ ∈ pmARCTL contain k free

variables. In order to estimate the time complexity of parPre∃Y (fφ) let us fix s, s′ ∈ S and

let fφ(s′) = {υ1, . . . , υk}. Let (s, a, s′) ∈ T and notice that parPre∃Y (fφ)(s) gathers such

valuations from fφ(s′) that a ∈ υi(Y). As |fφ(s′)| can be at most of 2|A|k size, the worst

case complexity of parPre∃Y (fφ) is in O(|S|+ |T | ·2|A|k). The proposed algorithms are based
on fixed-point computations in the space consisting of pairs composed of a state and a set
of action valuations. For a fixed state, its associated set of action valuations is altered by
exclusively adding or removing new elements. As there can be at most 2|A|k such changes
for a given state and the preimage computation is the main operation in the body of each
loop, the total complexity of the parameter synthesis for is in O(|S|2 ·2|A|k+ |S||T | ·2|A|2k).
(Note that k corresponds to the number of the parametric modalities in φ).

In general, the problem of computing the full set of minimal action valuations is also
difficult. The time complexity of selection of minimal elements of partially ordered set is
polynomial with respect to the size of the set [Daskalakis et al. 2011]; in our case however,
the size of the set (i.e., ActVals) is exponential with respect to the number of actions.
Concerning the proposed prime implicant - based technique, it is known that there is no
output-polynomial time algorithm for finding all the prime implicants of a given monotone
function unless P = NP [Goldsmith et al. 2008]. Despite these obstacles, the minimisation
algorithm performs very well, as shown in the experimental part of this work.

The complexity of nonparametric ARCTL model checking is equal to that of CTL verifi-
cation, therefore the complexity of the näıve approach, based on enumerative checking of all
the possible action valuations is in O((|S|+ |T |)k · 2|A|k). Note that in the näıve approach,
the worst case complexity is equal to the expected one. The symbolic verification of (non-
parametric) ARCTL is in PSPACE, similarly as in the case of CTL [Schnoebelen 2002],
in this case however the practical complexity is well documented to be lower and symbolic
model checkers typically outperform nonsymbolic verification tools. However, even if effi-
cient symbolic verification methods are used for the verification of instantiations of ARCTL
formulae in the näıve approach, still 2|A|k cases need to be separately analysed. As we show
in the next section, our symbolic algorithm for pmARCTL substantially outperforms the
näıve approach.

4. IMPLEMENTATION AND EVALUATION

In this section we present an evaluation of our implementation of the theory presented in this
paper. We use parallel compositions of MTSs as models, with disjunctive location labelling,
i.e., a given vector of locations is labelled with a proposition p if any of its components is
labelled with p.

Definition 4.1. Let I = {1, . . . , k} for some k ∈ N be a finite set of indices, and for each
i ∈ I let Mi = (Si, s0

i,Ai, Ti,Vsi) be an MTS. We define the product with the disjunctive
location labelling of a network {Mi}i∈I as an MTS M = (S, s0,A, T ,Vs) such that: S =∏
i∈I Si, and s0 = (s0

1, . . . , s
0
k), and A =

⋃
i∈I Ai, and the transition relation T satisfies:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:13

— (l1, . . . , lk)
a→ (l′1, . . . , l

′
k) iff for each i ∈ I we have li

a→ l′i if a ∈ Ai and li = l′i otherwise,

and the labelling Vs such that for each proposition p ∈ PV: p ∈ Vs((l1, . . . , lk)) iff p ∈ Vsi(li)
for some i ∈ I.

We present a preliminary evaluation of feasibility of the parameter synthesis of action
valuations performed on two scalable examples followed by an analysis of Peterson’s al-
gorithm for mutual exclusion. As a companion to this work, we release a freely available
open-source program SPATULA [Knapik 2014], which implements the parameter synthesis
methods. The tool uses CUDD [Somenzi 2012] package providing operations on Reduced Or-
dered Binary Decision Diagrams (BDD) to represent the state space and action valuations.
SPATULA allows for modelling the input systems in a simple description language. To the
best knowledge of the authors, there is no other tool allowing the parameter synthesis for
pmARCTL, therefore, for the sake of comparison, we implemented a näıve engine, which
enumerates all the possible action valuations and performs non-parametric verification of
resulting substitutions. We also record the speedup times of symbolic parametric synthe-
sis vs. brute-force parametric verification, following in this way the methodology presented
in [Classen et al. 2011]. SPATULA allows to divide the actions into two disjoint sets: fixed
and switchable, and to synthesise only those valuations that contain all the fixed actions.

The memory usage results for the näıve cases are omitted from the figures, as they are
very similar to the results for the parametric ones up to the defined timeout, which was set
to 15 minutes. The experiments have been performed on an Intel P6200 dual core 2.13 GHz
machine with 3.5GB RAM, running Linux operating system.

4.1. Scalability on faulty Train Gate Controller

The system presented in Fig. 4 is a version of the classical model from [Alur et al. 1993]
with the modifications inspired by [Belardinelli et al. 2011]. It consists of k trains and the
controller monitoring the access to the tunnel.

s0

start

green

.

Controller Traini (i 6= j) Faulty Trainj (i = j)

s1

red

s0

start

outi

s1

s2ini

s0

start

outj

s1

s2inj

in1 inkout1
outk

inFj

outFj

appri

ini

outi

apprj

inj

inFj

outj outFj

Fig. 4: Faulty Train Gate Controller.

It is required that there is at most one train at a time in the tunnel. For 1 ≤ i ≤ k,
the i-th train can be either outside the tunnel (outi), approaching the tunnel, or inside
the tunnel (ini). If the controller is in the red state, then no train is allowed to enter
the tunnel, otherwise if the controller is in the green state, then the trains are allowed to
enter the tunnel. The j-th train is assumed to be faulty and its communication with the
controller is malfunctioning, i.e., it can perform a faulty action which does not change the
controller state when entering the tunnel (inFj) or leaving the tunnel (outFj). The network
is described using the SPATULA’s modelling language as shown in Fig. 5. The language is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Knapik et al.

essentially a graph network description language with a set of convenient, C-inspired flow
control constructs.

module Controller:
trainsNo = k;
faultyTrainNo = j;

/* correct behaviour */
bloom("s0");
mark_with("s0", "initial");
mark_with("s0", "green");
bloom("s1");
mark_with("s1", "red");
ctr = 1;
while(ctr <= trainsNo) {

outlabel = "out" + ctr;
inlabel = "in" + ctr;
join_with("s0", "s1", inlabel);
join_with("s1", "s0", outlabel);
ctr = ctr + 1;

}

/* faulty behaviour */
inlabelF = "inF" + faultyTrainNo;
outlabelF = "outF" + faultyTrainNo;
join_with("s0", "s0", inlabelF);
join_with("s1", "s1", outlabelF);

module Train_i:
trainNo = i;
faultyTrainNo = j;

bloom("out");
mark_with("out", "initial");
bloom("approaching");
bloom("in");

outlabel = "out" + trainNo;
inlabel = "in" + trainNo;
apprlabel = "appr" + trainNo;
join_with("in", "out", outlabel);
join_with("out", "approaching", apprlabel);
join_with("approaching", "in", inlabel);

/* faulty behaviour */
if(trainNo == faultyTrainNo) {
inlabelF = "inF" + faultyTrainNo;
outlabelF = "outF" + faultyTrainNo;
join_with("in", "out", outlabelF);
join_with("approaching", "in", inlabelF);

}

/* label the nodes */
outmark = "Train" + trainNo + "out";
inmark = "Train" + trainNo + "in";
apprmark = "Train" + trainNo + "approaching";
mark_with("out", outmark);
mark_with("in", inmark);
mark_with("approaching", apprmark);

Fig. 5: SPATULA template for Controller and Traini.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:15

0 5 10 15 20 25 30

0

200

400

600

nodes

ti
m

e
(s

)

ψ1 param.
ψ2 param.
ψ1 näıve
ψ2 näıve

2 4 6 8 10 12 14

0

200

400

600

800

nodes

ti
m

e
(s

)

ψ3 param.
ψ4 param.
ψ3 näıve
ψ4 näıve

0 5 10 15 20 25 30

102

103

nodes

p
ea

k
m

em
o
ry

(M
B

)

ψ1/ψ2 param.
ψ1 näıve
ψ2 näıve

2 4 6 8 10 12 14

102

103

nodes

p
ea

k
m

em
o
ry

(M
B

)

ψ3 param.
ψ4 param.
ψ3 näıve
ψ4 näıve

0 5 10 15 20 25 30

20

40

60

nodes

B
D

D
re

su
lt

si
ze

(M
B

)

ψ1

ψ2

ψ3

ψ4

0 5 10 15 20 25 30
10−3

1015

1033

1051

nodes

sy
n
th

es
is

ed
va

ls

ψ1 SAT
ψ2 SAT
ψ3 SAT
ψ4 SAT

2 4 6 8 10 12 14

0

20

40

60

nodes

m
in

im
al

va
ls

ψ3 min. SAT
ψ4 min. SAT

Fig. 6: Faulty Train Gate Controller results.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Knapik et al.

We have tested the following properties:

(1) ψ1 = AYG(¬
∨

1≤i<l≤k(ini∧ inl))∧
∧

1≤i≤k EY F ini, expressing that it is not possible for
any pair of trains to be in the tunnel at the same time, and each train will eventually
be in the tunnel;

(2) ψ2 = EY FAZG
(
(
∧

1≤i≤k ¬ini) ∧ green
)
, expressing that it is possible for the system to

execute actions from Y in such a way that at some state, in all the possible executions
of the system that use only the actions from Z, all the trains remain outside the tunnel
while the controller remains in the green state;

(3) ψ3 = EωYGEFY (in1 ∧ inj), expressing the existence of an execution such that the first
and the faulty train are infinitely often simultaneously present in the tunnel;

(4) ψ4 = EωYGEFZ(in1∧inj), expressing that there exists an execution of the system labeled
by actions from Y such that the state with the first and the faulty train present in the
tunnel is infinitely often reachable via actions from Z. Note that this is a version of ψ3

with allowed two parameters.

The formulae ψ3 and ψ4 belong to pmEARCTL. The minimisation of the constraints
obtained in these cases was performed similarly as in Section 3.2. In both cases we assume
that the first train is not faulty. The parametric approach typically outperforms the näıve
one (see Fig. 6); this is especially noticeable when comparing the speedup of the method in
Table I.

Property
Speedup (näıve/parametric time)

2 trains 3 trains 4 trains 5 trains 6 trains
ψ1 1250.0 263.93 94.19011 > 5483.020† > 2711.61†

ψ2 3251.31 > 7999.64† > 1358.39† > 1379.55† > 992.42†

ψ3 0.7 17.90 97.07 722.35 > 740.13†

ψ4 10.06 20.07 211.84 > 96.64† > 14.04†

(† - näıve approach exceeds set timeout of 15 minutes)

Table I: Speedup for Faulty Train Gate Controller.

The observed state space explosion combined with the exponential blowup of the space
of the solutions makes the iterative approach infeasible for the considered properties, as it
is able to compute the results for the systems only with up to five trains. The parametric
approach is clearly superior as the results for the system consisting of five trains are obtained
in less than ten seconds, and within the specified time bound the tool managed to obtain
the results for the systems with up to 28 trains, with the state space of size ≈ 4.6 · 1013 and
the space of possible solutions of size ≈ 2172 (for the properties with two free variables).
Notice that the space of solutions (correct (SAT) action valuations in Fig. 6) grows at an
exponential rate with respect to the number of nodes. The minimisation of the constraints
took less than one second in both the cases, therefore it is omitted from Fig. 6.

4.2. Scalability on Generic Pipeline Paradigm

The network in Fig. 7, inspired by the Generic Pipeline Paradigm [Peled 1993], consists of
k > 3 processing nodes. A node can synchronise via shared actions with up to four other
surrounding ones, depending on its position in the pipeline (if 1 ≤ i ≤ k then the i–th node
admits all the actions from the set {reti, acti, actmin(i+1,k), actmin(i+2,k)}).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:17

s0out1

start

s1in1

s0out2

start

s1in2

.

s0outk−1

start

s1ink−1

s0outk

start

s1ink

act1 act2 act3ret1 act2 act3 act4ret2 actk−1 actkretk−1 actkretk

Fig. 7: Generic Pipeline Paradigm Network.

We have tested the following properties:

(1) φ1 = AY F (
∧

1≤i≤b k2 c
outi ∧

∧
d k2 e<j≤k

inj) that describes the unavoidability of the con-

figuration in which the first half of the nodes is in out and the other half is in in
states;

(2) φ2 = EY FAYG(
∧

1≤i≤d k2 e
in2i−1 ∧

∧
1≤i≤b k2 c

out2i), describing that the configuration

such that the odd nodes are in their in and the even are in their out states becomes
persistent starting from some state in the future;

(3) φ3 = EωYGEY F (
∧

1≤i≤k ini), expressing that the configuration with all the nodes simul-
taneously in their in states is Y –reachable infinitely often;

(4) φ4 = EωYGEZF (
∧

1≤i≤k ini), a version of φ3 with two parameters.

The parametric synthesis for φ1, φ2, and φ3 was interrupted after reaching the set time
limit, and the synthesis for φ4 has been stopped due to exceeding 3.5GB of memory usage.
The näıve synthesis has been stopped due to timeout in all the cases.

Property
Speedup (näıve/parametric time)

4 proc. 5 proc. 6 proc. 7 proc. 8 proc. 9 proc. 10 proc.
φ1 5.46 20.04 49.73 76.18 380.68 1306.71 > 3687.69†

φ2 12.2 29.56 149 204.15 977.92 2213 > 5424.1†

φ3 6.52 11.6 22.53 169.41 880.06 1468.03 > 1640.05†

φ4 345.89 > 429† > 83.72† > 7.6† > 1.24†

(† - the näıve approach exceeded set timeout of 15 minutes)

Table II: Speedup for Generic Pipeline Paradigm.

In the case of φ1, φ2, and φ3, the näıve approach becomes infeasible for more than 9
nodes, whereas the parametric approach managed to compute the results for φ1, φ2 up
to 48 nodes. For the formula φ4 the timeout of the näıve approach is almost immediate
(i.e., reached at 5 processes) while the parametric approach allows to compute solutions
up to 8 processes. The model with k nodes consists of 2k states and there are 2k separate
actions, which gives ≈ 22k possible action valuations for the single-parameter formulae and
≈ 24k for two-parameter properties. The huge size of the space of the valuations explains
why the enumerative approach quickly becomes infeasible. On the other hand, the symbolic
fixed-point verification scales reasonably well.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Knapik et al.

0 10 20 30 40 50

0

100

200

300

400

nodes

ti
m

e
(s

)

φ1/φ2 param.
φ1 näıve
φ2 näıve

0 10 20 30 40 50

0

200

400

600

800

nodes

ti
m

e
(s

)

φ3 param.
φ4 param.
φ3 näıve
φ4 näıve

0 10 20 30 40 50

104

105

106

nodes

p
ea

k
m

em
or

y
(M

B
)

φ1/φ2 param.
φ1 näıve
φ2 näıve

0 10 20 30 40 50

104

105

106

nodes

p
ea

k
m

em
or

y
(M

B
)

φ3 param.
φ3 näıve
φ4 param.
φ4 näıve

0 10 20 30 40 50

101

101.5

nodes

B
D

D
re

su
lt

si
ze

(M
B

)

φ1

φ2

φ3

φ4

0 10 20 30 40 50
10−2

108

1018

1028

nodes

sy
n
th

es
is

ed
va

ls

φ1 SAT
φ2 SAT
φ3 SAT
φ4 SAT

5 10 15 20 25

10−3

10−1

101

103

nodes

m
in

im
al

sy
n
th

.
ti

m
e

(s
)

φ3

φ4

5 10 15 20 25

101

102

103

104

105

nodes

m
in

im
al

va
ls

φ3

φ4

Fig. 8: Generic Pipeline Paradigm synthesis results.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:19

Variable initialisation

B0 := False;B1 := False

Process 0

B0 := True
B2 := True
while B1 = True and B2 = True do

pass {busy wait}
end while
{critical section}
B0 := False

Process 1

B1 := True
B2 := False
while B0 = True and B2 = False do

pass {busy wait}
end while
{critical section}
B1 := False

Fig. 9: Peterson’s algorithm.

4.3. Peterson’s algorithm analysis

In this section we analyse a solution to the mutual exclusion problem for two processes,
proposed in [Peterson 1981]. For reference, we include (Fig. 9) a pseudocode for Peterson’s
solution to the mutual exclusion problem for two processes. Both the processes from Fig. 9
are placed in infinite loops, omitted from the figure for clarity.

The algorithm employs three binary variables: B0, B1, B2, where B0, B1 are used as
red/green lights allowing a process 0, 1 (respectively) to enter the critical section; the entry
of i–th process can also be granted by setting the B2 variable to i. The process 0 can read
the state of B1 and write on B0, the process 1 can read the state of B0 and write on B1,
and both processes can read and write the variable B2. All the operations on the variables
are atomic.

We model Peterson’s algorithm as a network of MTSs (see Figure 10). The process com-
ponents do not share any actions (apart from the interrupt calls) and synchronise solely via
the shared variables B0, B1, B2 modelled as two-state MTSs (s0 and s1 correspond to True
and False, respectively). In order to analyse more in-depth properties of the algorithm,
each state sj of each process is joined by the interrupt request irq (transitions with dashed
arcs) with its static counterpart isj that preserves the labelling; the returning transition is
labelled with irqret and marked with dotted arc. The dm (dummy) nodes are unreachable
and used for the variable access consistency. The monitor is a component that activates
with the irq request. After this, there exists a determined, unique three transitions long
sequence that ends in an internal state marked with the current values of B0, B1, B2. The
wavy lines in Figure 10 marked with HI are used to cover parts of monitor omitted due
to its size: a wavy line between awk and di0i1i2 means that the latter is reached from
the former via a sequence of actions B0hdnisi0 , B1hdnisi1 , B2hdnisi2 . After establishing
the current state of variables the monitor sets new values of B0, B1, B2; this is done in a
manner similar to the earlier state detection. A wavy line marked with HS and joining atk
and ei0i1i2 means that in order to reach the latter from the former, the sequence of actions
B0hdnseti0 , B1hdnseti1 , B2hdnseti2 should be fired. After this, the monitor terminates by
firing the irqret transition. The labels on remaining unmarked arcs are not relevant to the
example. Using the non-parametric component of the tool, we have verified that the model
with the interrupts turned off satisfies the basic properties of mutual exclusion, the lack of
deadlocks, liveness, non-blocking, and no strict sequencing [Baier and Katoen 2008]. The
synthesis has taken only 0.07 sec. and 5.02 MB of BDD memory (as reported by CUDD).

Now we move to the parameter synthesis for Peterson’s algorithm. Denote Ahdnis =
{Bihdnisj | i, j ∈ {0, 1}} and Ahdnset = {Bihdnsetj | i, j ∈ {0, 1}}. Let us also denote
Anorm =

⋃
i,j∈{0,1}{Bisetj , Biis0} ∪ {B2is1}. We first analyse the property:

φdtct = EAnorm
FAYG(dtct =⇒ (trying0 ∨ trying1 ∨ critical0 ∨ critical1)) ∧ EY Fdtct

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. Knapik et al.

s0

start

s1

s2trying0

s3

critical0

dm is0

is1

is2

trying0

is3

critical0

Process 0

s0

start

s1

s2trying1

s3

critical1

dm is0

is1

is2

trying1

is3

critical1

Process 1

slpstart

awk

d000

dtct

d001

dtct

d010

dtct

.

.

.

atk

e000

nfrc

e001

nfrc

e010

nfrc

.

.

.

fin done

Monitor

s0

start

s1

Variable Bk, where k ∈ {0, 1, 2}

B0set1

B2set1

B1is0B2is0

B0set0

B1is1

B1set1

B2set0

B0is0B2is1

B1set0

B0is1

HI HI
HI

HS HS HS

Bkhdnis0Bkis0

Bkhdnset0Bkset0

Bkhdnset1Bkset1Bkhdnset0 Bkset0

B0hdnis1B0is1

B0hdnset1B0set1

Fig. 10: Peterson’s algorithm with monitor network.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:21

with the switchable actions set Ahdnis. The meaning of φdtct is whether the monitor can
infer only by looking at the values of B0, B1, B2 if any of the two processes is attempting to
enter or have already entered the critical section. The synthesis took 0.04 sec. and 5.40 MB
of BDD memory, and the näıve approach took 1.06 sec. and 5.56 MB of BDD memory. The
resulting set is empty. In practice, this means that Peterson’s protocol is not susceptible
to eavesdropping, i.e., a third party cannot tell just by looking at the values of the shared
variables what the current state of the involved processes is.

In what follows we assume the set Ahdnis ∪Ahdnset of switchable actions. We move to the
active monitor mode, where the monitor during the interrupt first detects the current state
of the variables, and then sets them to arbitrary values. The next property we analyse is:

φnfrcAX = EAnorm
FAYG(nfrc =⇒ A{irqret}XAAnorm

X

(trying0 ∨ trying1 ∨ critical0 ∨ critical1)) ∧ EY Fdone.

In this way we pose the question whether the monitor can test and set B0, B1, B2 in such a
way that after the return from the interrupt and a single step of the algorithm at least one
of the processes attempts to enter or have already entered the critical section. The synthesis
took 0.07 sec. and 5.56 MB of BDD memory, and the näıve approach took 87.41 sec. and
5.72 MB of BDD memory. Again, the set of resulting valuations is empty. This means that
despite the full control over the shared variables, a third party is not able to ensure in any
circumstances that any of the processes is in a labelled location in an immediate successor
to the current state of the system.

We alter the previous property by allowing an arbitrary number of steps after the return
from the interrupt. After trying out all the possible configurations of joins of propositions
from

⋃
i∈{0,1}{tryingi, criticali} we found a single one that yields a nonempty set of valua-

tions:

φnfrcAF = EAnorm
FAYG(nfrc =⇒ A{irqret}XAAnorm

F (trying0 ∧ trying1)) ∧ EY Fdone.

The φnfrcAF poses a question whether the monitor can test and set the shared variables in
such a way that, in the case of a positive test, after the return from the interrupt it will be
unavoidable that both processes simultaneously attempt to enter the critical section. The
synthesis took 0.08 sec. and 5.52 MB of BDD memory, and the näıve approach took 79.36
sec. and 6.04 MB of BDD memory. There are 21 possible substitutions for Y (of 4095) under
which φnfrcAF holds. Some of these substitutions are redundant from the practical point of
view, e.g., in the set of solutions there is an action valuation υ that contains both B2hdnset0
and B2hdnset1 actions, and there are action valuations υ′ and υ′′ that differ from υ only
in that they contain B2hdnseti for a single i ∈ {0, 1}. The υ action is therefore not needed,
as it expresses a nondeterministic choice where the deterministic one is possible. After the
removal of unnecessary actions we obtain 8 deterministic substitutions for Y , analysis of
which enables a concise recipe for malicious monitor behavior shown in Fig. 11.

if (B0, B1, B2) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0)} then
set (B0, B1) to (1, 1)

end if

Fig. 11: Malicious active monitor.

The above program guarantees that in 50% of the cases (i.e., possible configurations) after
interrupt the situation in which both the processes are simultaneously trying to enter the
critical section is unavoidable. Note that among all the possible internal states of Peterson’s
protocol, this one is arguably the most volatile and prone to attacks.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. Knapik et al.

5. CONCLUSIONS

In this paper we proposed a new symbolic approach to the parameter synthesis for
pmARCTL. The action valuations under which a given property holds are typically se-
lected from a huge set, which makes the exhaustive enumeration intractable. We showed
that despite this, the BDD-based implementation of fixed-point algorithms presented in this
work can deal with small- to medium-sized models reasonably fast. This observation is in
line with the results presented in [Classen et al. 2011] in the context of model checking
of software product lines. Our experimental results also demonstrate that our approach is
promissing for the industrial system designers.
Acknowledgements: Micha l Knapik is supported by the Foundation for Polish Science un-
der Int. PhD Projects in Intelligent Computing. Project financed from the EU within the
Innovative Economy OP 2007-2013 and ERDF.

References

R. Alur, K. Etessami, S. La Torre, and D. Peled. 2001. Parametric temporal logic for ”model measuring”.
ACM Trans. on Computational Logic 2, 3 (2001), 388–407.

R. Alur, T. Henzinger, and M. Vardi. 1993. Parametric Real-Time Reasoning. In Proc. of the 25th Ann.
Symp. on Theory of Computing. ACM, 592–601.

É. André, L. Fribourg, U. Kühne, and R. Soulat. 2012. IMITATOR 2.5: A Tool for Analyzing Robustness
in Scheduling Problems. In Proc. of 18th Int. Symp. on Formal Methods (FM’12) (LNCS), Vol. 7436.
Springer-Verlag, 33–36.

C. Baier and J.-P. Katoen. 2008. Principles of model checking. MIT Press. I–XVII, 1–975 pages.

Francesco Belardinelli, Andrew V. Jones, and Alessio Lomuscio. 2011. Model Checking Temporal-Epistemic
Logic Using Alternating Tree Automata. Fundam. Inform. 112, 1 (2011), 19–37.

V. Bruyére, E. Dall’Olio, and J. Raskin. 2008. Durations and Parametric Model-Checking in Timed Au-
tomata. ACM Trans. on Computational Logic 9, 2 (2008), 1–23.

E. Clarke and E. A. Emerson. 1981. Design and Synthesis of Synchronization Skeletons for Branching-Time
Temporal Logic. In Proc. of Workshop on Logic of Programs (LNCS), Vol. 131. Springer-Verlag, 52–71.

A. Classen, P. Heymans, P-Y. Schobbens, and A. Legay. 2011. Symbolic Model Checking of Software Product
Lines. In Proc. of the 33rd Int. Conf. on Software Engineering (ICSE ’11). ACM, 321–330.

O. Coudert, J. C. Madre, H. Fraisse, and H. Touati. 1993. Implicit Prime Cover Computation: An Overview.
In Proc. of Synthesis and Simulation Meeting and International Interchange (SASIMI).

C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld, and E. Verbin. 2011. Sorting and Selection in Posets.
SIAM J. Comput. 40, 3 (2011), 597–622.

B. Di Giampaolo, S. La Torre, and M. Napoli. 2010. Parametric metric interval temporal logic. In Proc. of
the 4th Int. Conf. on Language and Automata Theory and Applications (LNCS), Vol. 6031. Springer-
Verlag, 249–260.

J. Goldsmith, M. Hagen, and M. Mundhenk. 2008. Complexity of DNF minimization and isomorphism
testing for monotone formulas. Inf. Comput. 206, 6 (2008), 760–775.

T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. 2002. Linear Parametric Model Checking of Timed
Automata. J. Log. Algebr. Program. 52-53 (2002), 183–220.

A. V. Jones, M. Knapik, A. Lomuscio, and W. Penczek. 2012. Group Synthesis for Parametric Temporal-
Epistemic Logic. In Proc. of the 11th Int. Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS’12). IFAAMAS, 1107–1114.

G. Katz and D. Peled. 2010. Code Mutation in Verification and Automatic Code Correction. In Proc. of
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’10) (LNCS), Vol. 6015.
Springer-Verlag, 435–450.

M. Knapik. 2014. SPATULA, Simple Parametric Verification Tool. https://michalknapik.github.io/spatula.
(2014).

C. Pecheur and F. Raimondi. 2006. Symbolic Model Checking of Logics with Actions. In Proc. of MoChArt
2006 (LNCS), Vol. 4428. Springer-Verlag, 113–128.

D. Peled. 1993. All From One, One For All: On Model Checking Using Representatives. In Proc. of the 5th
Int. Conf. on Computer Aided Verification (CAV’93) (LNCS), Vol. 697. Springer-Verlag, 409–423.

G. L. Peterson. 1981. Myths About the Mutual Exclusion Problem. Inf. Process. Lett. 12, 3 (1981), 115–116.

W. Quine. 1952. The Problem of Simplifying Truth Functions. Amer. Math. Monthly 59, 8 (1952), 521–531.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Action Synthesis for Branching Time Logic A:23

P. Schnoebelen. 2002. The Complexity of Temporal Logic Model Checking. Advances in Modal Logic 4
(2002), 393–436.

F. Somenzi. 2012. CUDD: CU Decision Diagram Package. http://vlsi.colorado.edu/∼fabio/CUDD/
cuddIntro.html. (2012).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

