
Model Checking the SELENE E-Voting Protocol

in Multi-Agent Logics

Wojciech Jamroga, Michal Knapik, and Damian Kurpiewski

Institute of Computer Science, Polish Academy of Sciences
{w.jamroga,michal.knapik,damian.kurpiewski}@ipipan.waw.pl

Abstract Selene is a recently proposed voting protocol that provides
reasonable protection against coercion. In this paper, we make the �rst
step towards a formalization of selected features of the protocol by means
of formulae and models of multi-agent logics. We start with a very ab-
stract view of the protocol as a public composition of a secret bijec-
tion from tracking numbers to voters and a secret mapping from voters
to their choices. Then, we re�ne the view using multi-agent models of
strategic interaction. The models de�ne the space of strategies for the
voters, the election authority, and the potential coercer. We express se-
lected properties of the protocol using the strategic logic ATLir, and
conduct preliminary veri�cation by model checking. While ATLir allows
for intuitive speci�cation of requirements like coercion-resistance, model
checking of ATLir is notoriously hard. We show that some of the com-
plexity can be avoided by using a recent approach of approximate model
checking, based on �xpoint approximations.

1 Introduction

Designing protocols for secure and veri�able voting is a di�cult task. In this
work, we present an attempt to use the techniques from multi-agent systems
(MAS) in modeling and veri�cation of e-voting. Agents in such systems are
equipped with a larger degree of freedom than typical entities in a security
protocol. They can have clearly de�ned objectives, capabilities, and knowledge
about the world; they can also form coalitions working towards a joint goal. The
bene�ts of MAS become especially noticeable in analysis of scenarios that involve
interaction between human and technical agents, such as electronic voting.

Here, we come up with a simple MAS model of the recently proposed Se-

lene protocol [19], and characterize several variants of coercion resistance with
formulae of Alternating-time Temporal Logic (ATL [1]). Coercion resistance is
essential in modern elections, and relies on the ability of voters to vote as they in-
tend, and avoid the consequences of not obeying the coercer. Such requirements
can be conveniently represented by ATL formulae following the scheme:

¬〈〈Coercer〉〉F
(
election ends ∧ (voters have not obeyed)→ (Coercer knows)

)
,

interpreted as �The Coercer has no strategy to make sure that, when the election

is over, he will detect disobedience of the coerced voters.� We use the semantics

of ATL, based on memoryless imperfect information strategies, where agents'
strategies assign choices of action to the agents' states of knowledge, rather
than global states of the system. This variant of the logic is often referred to as
ATLir [20]. It is well known that model checking of ATLir is ∆P

2 -complete [9,20]
and does not have a natural �xpoint characterization [5]. To overcome the pro-
hibitive complexity, we utilize a recently proposed idea of approximate veri�ca-
tion based on �xpoint approximations of ATLir formulae [10].

The article is organized as follows. We describe Selene, and discuss some
of its formal aspects in Section 2. Then, we propose a multi-agent model of the
protocol in Section 3. In Section 4, we present a brief introduction to ATLir,
and propose some ATLir formalizations of coercion-resistance. Section 5 reports
our attempt at model checking the formulae from Section 4 in the models from
Section 3. We conclude in Section 6, and discuss plans for future work.

1.1 Related Work

Over the years, the properties of receipt-freeness and coercion resistance were
recognized as important for an election to work properly. They were studied and
formalized in [3,7,8,13,18], see also [17,21] for an overview.

A number of papers used variants of epistemic logic to characterize coercion
resistance [11,12]. Moreover, the agent logic CTLK together with the modeling
methodology of interpreted systems was used to specify and verify properties
of cryptographic protocols, including authentication protocols [4,16], and key-
establishment protocols [4]. In particular, [4] used variants of the MCMAS model
checker to obtain and verify models, automatically synthesized from high-level
protocol description languages such as CAPSL, thus creating a bridge between
multi-agent and process-based methods.

Our approach is closest to [21] where ATL-style formulae were used to en-
code di�erent �avors of coercion resistance. However, the encodings in [21] were
rather informal and imprecise, since neither formal semantics nor concrete model
was given to interpret the formulae. In contrast, we use a precise semantics and
provide a scalable class of models. Moreover, we use the formulae, the models,
and the semantics to conduct veri�cation of the protocol by model checking.
Finally, [2] proposed a very simple attempt at model checking of Rivest's Three-
Ballot protocol using ATLir, but the focus was on devising a model equivalence,
and ThreeBallot served only to illustrate the idea.

2 Modeling Selene

We begin with a description of Selene, followed by a very abstract view of
the conceptual backbone of the protocol. After that, we will move on to a more
concrete model in Section 3.

2

2.1 Outline of Selene

Selene [19] has been proposed recently as a protocol for electronic voting
targeted at low-coercion environments. The implemented cryptographic mech-
anisms should allow the voter to convince the coercer that the voter voted ac-
cording to the coercer's request. One of the main advantages of the protocol is
that, from the voter's perspective, the cryptography is put under the bonnet.

Roughly speaking, Selene works as follows. The Election Authority executes
the initial setup of the system, which includes generation of the election keys and
preparation of the cryptographic vote trackers, one for each voter. The trackers
are then encrypted and mixed, and published on the Web Bulletin Board (WBB).
The aim is to break any link between the voter and her encrypted tracker. Hence,
the pool of trackers is public, while the assignment of the trackers is secret.

In the voting phase, each voter �lls in, encrypts, and signs her vote. The
signed and encrypted ballot is then collected by the system. After several in-
termediate steps, a pair (Votev , trv) is published in WBB for each v ∈ Voters,
where Votev and trv are, respectively, the decrypted ballot and the tracker of
v . At this stage, no voters know their tracker numbers. All the cast votes are
presented in plaintext in WBB.

The �nal stage consists of the noti�cation of tracker numbers. If the voter is
not coerced, then she requests the special αv term, which allows for obtaining the
correct tracker trv . If some pressure was exerted on the voter to �ll her ballot in
a certain way, she sends a description of the requested vote to the election server.
A fake α′v term is sent, which can be presented to the coercer. The α′v token,
together with the public commitment of the voter, reveals a tracker pointing out
to a vote compatible with the coercer's demand, assuming that there is one.

2.2 An Abstract View of the Protocol

We now propose a convenient way of describing the scheme behind Selene at
the abstract level. Social choice can be seen as a function that, given a set of
voters, produces a collective decision for the society. This can be decomposed
into a mapping between voters and their individual choices, and a mapping from
the choices to the collective decision. End-to-end voter-veri�able protocols strive
to make the former individually veri�able (so that each voter can verify her part
of the function), and the latter universally veri�able (so that the whole function
can be veri�ed by everybody). On the other hand, coercion resistant protocols
strive to make the �rst part secret to anybody except for the voter in question.
Selene's idea of how to combine the two objectives is to further decompose the
connection between voters and their cast ballots by means of the trackers.

Formally, let Voters, Trackers, and Choice be three �nite sets such that
|Voters| = |Trackers|. The �rst part of the protocol corresponds to a random
choice of a secret tracker bijection FT : Voters→ Trackers that assigns a unique
tracker to each voter. We denote the set of all such bijections by T . More-
over, the �nal part of Selene can be presented as a public bulletin function

FP : Trackers→ Choice that assigns to each tr ∈ Trackers the vote FP (tr) cast

3

by the owner of the tracker. The secret choice function FI = FP ◦FT : Voters→
Choice connects voters with their ballots. The Election Authority is the only
entity in the process that can observe the choice function. Note that this view
can be applied to any voting system based on publicly visible trackers.

2.3 Combinatorial Aspects

Let FP , FI , and FT be the public bulletin function, the choice function, and the
tracker bijection. We will now estimate the range of uncertainty of the coercer,
with the intuition that the less he knows about the real tracker assignment FT ,
the more room is available for coercion resistance. For each tr , tr ′ ∈ Trackers,
let tr ≈FP

tr ′ i� FP (tr) = FP (tr ′), i.e., two trackers are �vote-equivalent� if
they point to identical votes. Moreover, let Trackers/ ≈FP

denote the set of
equivalence classes of ≈FP

. The uncertainty of the coercer can be measured by
the number of permutations in the set of trackers, that he cannot distinguish
from the actual tracker assignment.

Formally, let Π(Trackers) denote the set of all permutations of trackers, i.e.,
bijections π : Trackers → Trackers. Now, TFP

= {π ∈ Π(Trackers) | FP =
FP ◦ π} is the set of all permutations of trackers that are consistent with the
public outcome of the election. To see this, observe that for each π ∈ TFP

we
have FI = FP ◦FT = FP ◦π ◦FT . The size of TFP

re�ects the space of defensive
capabilities against coercion, should a part of the secret tracker bijection become
public, under the assumption that voting is one-shot rather than repeated.

De�nition 1 (Anti-coercion space). The anti-coercion space of an election,

given the public bulletin function FP , is de�ned as acspace(FP) = {FP ◦π | π ∈
Π(Trackers)}. Intuitively, acspace(FP) corresponds to all the possible choice

functions FI consistent with FP .
Theorem 1. If the result of the election consists of n votes for candidates

c1, . . . , ck, s.t. each candidate ci got mi votes, then |acspace(FP)| = n!
(m1!)·...·(mk!)

.

Proof. Notice that |TFP
| =

∏
ρ∈Trackers/≈FP

(|ρ|!). By the orbit-stabilizer theo-

rem [14] we have |acspace(FP)| = |T |
|TFP

| , which concludes the proof.

Note that the space is typically vast, unless for very small elections or when
almost all the voters voted for the same candidate. This is good news, as it makes
it potentially hard for the coercer to obtain useful information about the real
choices of the voters. On the other hand, a faithful representation of the coercer's
state of knowledge leads to state-space explosion, which makes veri�cation more
complex. We will see it clearly in the next section.

3 Multi-Agent Model of Selene

In this section we present in detail a multi-agent model of Selene. We start
with de�ning the formal structures used for modeling the entities participating
in the protocol and their interactions, and move on to presenting the model of
Selene, together with selected details of its implementation.

4

3.1 Models of Multi-Agent Interaction

Multi-agent systems are often modeled by a variant of transition systems where
transitions are labeled with combinations of actions, one per agent. Moreover,
epistemic relations are used to indicate states that look the same to a given
agent. Formally, an imperfect information concurrent game structure or iCGS [1]
is given by M = 〈Agt, St, PV, V,Act, d, o, {∼a| a ∈ Agt}〉 which includes a non-
empty �nite set of all agents Agt = {1, . . . , k}, a nonempty set of states St, a set
of atomic propositions PV and their valuation V : PV → 2St, and a nonempty
�nite set of (atomic) actions Act. The protocol function d : Agt × St → 2Act

de�nes nonempty sets of actions available to agents at each state; we will write
da(q) instead of d(a, q), and de�ne dA(q) =

∏
a∈A da(q) for each A ⊆ Agt, q ∈ St.

Furthermore, o is a (deterministic) transition function that assigns the outcome
state q′ = o(q, α1, . . . , αk) to each state q and tuple of actions 〈α1, . . . , αk〉 such
that αi ∈ d(i, q) for i = 1, . . . , k.

Every ∼a⊆ St × St is an epistemic equivalence relation with the intended
meaning that, whenever q ∼a q′, the states q and q′ are indistinguishable to agent
a. The iCGS is assumed to be uniform, i.e., q ∼a q′ implies da(q) = da(q

′).
It should be mentioned that iCGS generalize transition networks as well as

normal form games, repeated games, and extensive form games. Moreover, it is
possible to de�ne the notions of strategic play and strategic ability in iCGS .

3.2 A Multi-Agent Model of Selene

In what follows, we describe our multi-agent model of Selene. The system
consists of the set Voters of voter agents, the single Coercer, the Election Defense
System ElectionDS, and the Environment agent. We denote the set of all these
agents by Agents. The local states of each agent are de�ned by its local variables.
A global state of the system is a valuation of local variables of all the agents.
Each agent can observe its local variables and selected local variables of the
Environment. For simplicity, we assume a single coercer. This precludes the case
when, e.g., two coercers request two di�erent votes from the same voter and then
compare the results. We plan to study this type of interactions in the future.

The model is parameterized by the following natural numbers: n voters; k
possible choices (i.e., the ways that a ballot can be �lled); maxCoerced voters
that can be in�uenced by the coercer; votingWaitTime and helpRequestTime that
re�ect the maximal number of steps the system waits for votes and noti�cations
about being coerced, respectively. We denote such model byM(n, k,maxCoerced,
votingWaitTime, helpRequestTime).

In what follows, we omit auxiliary variables and actions that are not relevant
to understanding the interplay between agents.

Agent Environment. The purpose of the Environment agent is twofold. Firstly,
it serves as a container for variables shared by selected agents. The agents can
have read-only or write-only access to the variables (denoted by Can observe and
Can set, respectively, in agent interfaces in Figures 1, 2, and 3). Secondly, it traces
the passage of time and changes the stage of elections. Namely, the elections start

5

Variables

• vote: 0. . . k
• demandedVote: 0. . . k

Actions

• Votei, for i ∈ {1, . . . , k}
• INeedVotei, for i ∈ {1, . . . , k}
• FetchGoodTracker
• CopyRealTracker
• Wait
• Finish

Can observe

• WBB: public election function
• elections' stage (init/voting/defense)
• his real tracker (when permitted)
• his exposed tracker

Can set

• his exposed tracker (via CopyRealTracker)

Figure 1: A Voter agent

in the initial stage, when the secret bijection is non-deterministically prepared.
Then, the voting phase is open and the clock is started. This phase ends when
either all the voters send their choices or time exceeds votingWaitTime. Then,
the system enters the defense stage and the clock restarts. The defense stage
ends either when the clock exceeds helpRequestTime or all the voters execute
the Finish action. Note that every agent can observe WBB, i.e., public elec-
tion function, the stage, and the clock value. The clock limits are also public
knowledge.

Voter agents. Each Voter shares the same structure, presented in Figure 1.
It is able to record via the vote variable the vote cast for choice i ∈ {1, . . . , k}
by executing the action Votei. This action can be used only once, in the voting
phase. It also records the coercer's request to vote for demandedVote. In both
the cases 0 denotes that the variable is not set, i.e. the agent did not vote yet
and has not been contacted by the coercer, respectively. In addition to the public
variables of Environment, each Voter can observe his real tracker, obtained in the
defense phase by executing action FetchGoodTracker. The agent can also observe
his exposed tracker, i.e., the number assigned by ElectionDS, as presented to
the Coercer agent. This becomes possible after requesting in the defense phase a
tracker that points to a speci�c choice i ∈ {1, . . . , k}, by �ring action INeedVotei.
After obtaining his real tracker a Voter can decide to make it visible to the coercer
by executing action CopyRealTracker. Finally, the agent can always Wait, unless
the clock reaches the limit set for a phase. In the latter case, if it is the voting

6

Variables

• falseTrackerSentToVoter i : Boolean, for i ∈ {1, . . . , n}

Actions

• SetFalseTrackerOfVoter iToj , for 1 ≤ i ≤ n, 1 ≤ j ≤ k
• Wait

Can observe

• WBB: public election function
• the secret bijection
• elections' stage (init/voting/defense)

Can set

• the exposed tracker of every Voter

Figure 2: The ElectionDS agent

phase, then the Voter needs to decide on the vote immediately, and if it is
the defense phase, then it automatically ends his participation by �ring action
Finish. It should be noted that these actions are autonomous, e.g., a Voter can
signal ElectionDS that he is coerced to vote in a selected way, even if coercion
does not take place.

Agent ElectionDS. The structure of ElectionDS agent is presented in Figure 2.
The agent can, in addition to the public variables of Environment, observe the
secret bijection function. This gives ElectionDS the full knowledge of the secret
election function. The boolean variables falseTrackerSentToVoter i record that
a voter i ∈ {1, . . . , n} requested and has been provided with a false tracker.
This request is ful�lled by executing an action SetFalseTrackerOfVoter iToj that
sets the exposed tracker of voter 1 ≤ i ≤ n to choice 1 ≤ j ≤ k. Note that
while ElectionDS can set the value of the exposed tracker of any Voter, it cannot
read the current value of the variable. Therefore, each Voter can �rst request
a false tracker pointing to any choice and expose his real tracker afterwards,
unknowingly to ElectionDS. Finally, ElectionDS can always Wait.

Agent Coercer. The structure of Coercer is presented in Figure 3. Starting from
the initial phase until the votes are published, the agent can demand from any
voter 1 ≤ j ≤ n to vote for 1 ≤ i ≤ k, by executing ReqVoteiFromVoterj action.
Such a request can be made at most once per voter and the total number of
requests cannot exceed maxCoerced. These choices are recorded using variables
voteDemandedFromVoteri, where 1 ≤ i ≤ n. As previously, the value of 0 signi�es
that no request has been made. The agent can observe all public variables of
Environment and all the exposed trackers of all voters. At any step, the Coercer
agent can Wait.

7

Variables

• voteDemandedFromVoteri : 0, . . . , k, for i ∈ {1, . . . , n}

Actions

• ReqVoteiFromVoterj , for 1 ≤ i ≤ k, 1 ≤ j ≤ n
• Wait

Can observe

• WBB: public election function
• elections' stage (init/voting/defense)
• the exposed tracker of every Voter

Figure 3: The Coercer agent

Atomic propositions. In order to construct formulae that can be interpreted
in the model, we need some atomic propositions. We set PV = {finished} ∪
{votev,i | 1 ≤ v ≤ n, 1 ≤ i ≤ k}. Proposition finished denotes that the execution
of the protocol has come to an end, and it holds i� all the voters have executed
Finish or the clock has exceeded helpRequestTime. Formula votev,i says that
voter v has voted for candidate i; it holds i� v's variable vote contains i.

3.3 Implementation of the Model

We have used two di�erent model checkers to verify properties of the model pre-
sented in Section 3.2. For exact model checking, we used MCMAS [15], which is
the only publicly available tool for ATLir. MCMAS is based on the Interpreted
Systems Programming Language (ISPL), which allows for higher-level descrip-
tions of agents and their interaction. In Figure 4, we present the ISPL code
implementing the Coercer agent. The local variables of the agent are denoted by
Vars, Lobsvars denotes the set of the environment variables that the agent can
observe, and Actions are action labels. The protocol section speci�es which ac-
tions are available at what states; the evolution section de�nes the consequences
of their execution. We refer to [15] for more details about MCMAS and ISPL. Un-
fortunately, exact model checking of abilities under imperfect information works
only for very small models. To overcome this, we used the approximate model
checking technique from [10]. We have developed a prototype tool implementing
the technique, in which the explicit state variant of the model from Section 3.2 is
hard-coded. The explicit state representation is completely isomorphic with the
ISPL code. Both the ISPL code generator and the prototype tool are available
online at https://github.com/SeleneMC16/SeleneModelChecker.

8

Agent Coercer

Lobsvars = {exposedTrackerOfVoter1 , exposedTrackerOfVoter2 } ;

Vars :
coercedVoters : 0 . . 2 ;
voteDemandedFromVoter1 : 0 . . 2 ;
voteDemandedFromVoter2 : 0 . . 2 ;

end Vars

Actions = {ReqVote1FromVoter1 , ReqVote2FromVoter1 ,
ReqVote1FromVoter2 , ReqVote2FromVoter2 , Wait } ;

Protoco l :
coercedVoters < maxCoerced and voteDemandedFromVoter1 = 0
and Environment . votesPubl i shed = f a l s e :
{ReqVote1FromVoter1 , ReqVote2FromVoter1 , Wait } ;

coercedVoters < maxCoerced and voteDemandedFromVoter2 = 0
and Environment . votesPubl i shed = f a l s e :
{ReqVote1FromVoter2 , ReqVote2FromVoter2 , Wait } ;

Other : {Wait } ;
end Protoco l

Evolut ion :
coercedVoters = coercedVoters + 1 i f
(Action = ReqVote1FromVoter1
or Action = ReqVote2FromVoter1
or Action = ReqVote1FromVoter2
or Action = ReqVote2FromVoter2) ;

voteDemandedFromVoter1 = 1 i f Action = ReqVote1FromVoter1 ;
voteDemandedFromVoter1 = 2 i f Action = ReqVote2FromVoter1 ;
voteDemandedFromVoter2 = 1 i f Action = ReqVote1FromVoter2 ;
voteDemandedFromVoter2 = 2 i f Action = ReqVote2FromVoter2 ;

end Evolut ion

end Agent

Figure 4: ISPL code of the Coercer agent

4 Speci�cation of Properties

In this section, we provide a list of example coercion-related speci�cations, for-
mulated in the strategic logic ATLir. We reduce vulnerability to coercion to the
ability of the coercer to learn about the value of the voter's vote. We also assume
that the voter prefers to evade coercion, rather than cooperate with the coercer.
Intuitively, this re�ects the typical voters' attitude towards intimidation, rather
than vote buying and bribery. We begin by a brief introduction to the logic.

4.1 Alternating-time Temporal Logic

Alternating-time temporal logic with imperfect information and imperfect recall

(ATLir [1,20]) generalizes the branching-time temporal logic CTL by replac-
ing the path quanti�ers E,A with strategic modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ

9

expresses that the coalition A has a collective strategy to enforce the temporal
property γ. The formulae make use of temporal operators: �X� (�next�), �G�
(�always from now on�), �F� (�now or sometime in the future�), and U (�until�).

Syntax. The language of ATLir formulae is de�ned by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉Fϕ | 〈〈A〉〉ϕUϕ,

where p stands for atomic propositions, and A ⊆ Agt for any coalition of agents.

Strategies. A strategy of agent a ∈ Agt is a conditional plan that speci�es what
a is going to do in every possible situation. Formally, it can be represented by
a function sa : St → Act satisfying sa(q) ∈ da(q) for each q ∈ St. Moreover,
we require that sa(q) = sa(q

′) whenever q ∼a q′, i.e., strategies specify same
choices in indistinguishable states. A collective strategy sA for coalition A ⊆ Agt
is a tuple of individual strategies, one per agent from A. By sA[a] we denote the
strategy of agent a ∈ A selected from sA.

Outcome paths. A path λ = q0q1q2 . . . is an in�nite sequence of states such
that there is a transition between each qi, qi+1. We use λ[i] to denote the ith
position on path λ (starting from i = 0). Function out(q, sA) returns the set of all
paths that can result from the execution of strategy sA from state q. Formally:

out(q, sA) = {λ = q0, q1, q2 . . . | q0 = q and for each i = 0, 1, . . . there exists
〈αia1 , . . . , α

i
ak
〉 such that αia ∈ da(qi) for every a ∈ Agt, and αia = sA[a](qi)

for every a ∈ A, and qi+1 = o(qi, α
i
a1 , . . . , α

i
ak
)}.

Function outir(q, sA) =
⋃
a∈A

⋃
q∼aq′

out(q′, sA) collects all the outcome paths
that start from states indistinguishable from q to at least one agent in A.

Semantics. Let M be an iCGS and q its state. The semantics of ATL can
be de�ned by the clauses below. We omit all the clauses for temporal operators
except for �sometime�, as they are not relevant for this paper.

� M, q |= p i� q ∈ V (p), and M, q |= ¬ϕ i� M, q 6|= ϕ,
� M, q |= ϕ ∧ ψ i� M, q |= ϕ and M, q |= ψ, and i ∈ N we have M,λ[i] |= ϕ,
� M, q |= 〈〈A〉〉Fϕ i� there exists a collective strategy sA such that for all
λ ∈ out ir(q, sA) there exists i ∈ N such that M,λ[i] |= ϕ.

In order to reason about the knowledge of agents, we add modalities Ka:

� M, q |= Kaϕ i� M, q′ |= ϕ for all q such that q ∼a q′.

That is, Kaϕ says that ϕ holds in all the states that agent a considers possible
at the current state of the world q.

4.2 Formulae for Coercion

Let us consider a coercer attempting to force a group of voters A ⊆ Agt to
vote for his preferred candidate. We can assume w.l.o.g. that the number of
the candidate is 1. The formulae in Figure 5 express di�erent ��avors� of the
coercer's coercive ability, with the following reading:

10

Φ1 ≡ 〈〈Coercer〉〉F
(
finished ∧ (

∧
v∈A

¬votev,1 → KCoercer(
∨
v∈A

¬votev,1)
)

Φ2 ≡ 〈〈Coercer〉〉F
(
finished ∧ (

∨
v∈A

¬votev,1 →
∨
v∈A

KCoercer(¬votev,1)
)

Figure 5: Formulae for model checking

con�guration #states tgen
Lower approx. Upper approx. Approx. Exact
tverif result tverif result result (tg+tv) result

(2, 1, 1, 1, 1) 427 <1 <1 False <1 True ? <1 True

(2, 1, 1, 4, 4) 16777 1 <1 False <1 True ? 249 True

(2, 1, 2, 4, 4) 22365 1 <1 True <1 True True timeout

(2, 2, 1, 4, 4) 331441 19 1 False 16 True ? timeout

(2, 2, 2, 4, 4) 596577 36 2 True 31 True True timeout

(3, 2, 1, 1, 1) 281968 40 <1 False 4 True ? timeout

(4, 1, 1, 1, 1) 146001 2 <1 False 2 True ? timeout

(4, 2, 1, 1, 1) memout timeout

Figure 6: Experimental results for formula Φ1

� Φ1 expresses that the coercer can enforce a state where the elections are over
and, if no one in A followed his orders, then the coercer knows that at least
one of them disobeyed (but does not necessarily know who);

� Φ2 says that if some of the voters did not vote as ordered, then the coercer
will identify at least one of them.

Conceptually, the formulae capture the extent to which the coercer can iden-
tify the disobedience of the coerced voters, and hence knows when to execute
his threats. Note that, when A = {v}, then both formulae are equivalent.

5 Veri�cation

Selene is supposed to provide protection against coercion, so the formulae in
Section 4 should in principle be all false. However, every protection mechanism
has its limits. As noted in [19], even a single coercer can defeat the election de-
fense system if the number of ballots is small or the coerced voter is particularly
unlucky and the vote demanded by the coercer is not present in WBB. Also, the
coercer's power intuitively increases with the number of voters he can simulta-
neously coerce. Finally, the exact limits of the coercer's ability to coerce become
unclear when we consider more complex models, due to their combinatorial com-
plexity. This is exactly when model checking can help to detect threats or verify
correctness. In this section, we provide a preliminary attempt at model checking
of the properties speci�ed in Section 4.2 with respect to the models proposed in
Section 3.2.

11

5.1 Exact and Approximate Model Checking of ATLir

Synthesis and veri�cation of strategies under partial observability is hard. More
precisely, model checking of ATL variants with imperfect information has been
proved ∆P

2 - to PSPACE-complete for agents that play memoryless strate-
gies [9,20]. In our case, the following result applies.

Proposition 1 ([9,20]). Model checking ATLir is ∆P
2 -complete with respect to

the number of the transitions in the model and length of the formula.

The only publicly available tool for veri�cation of imperfect information
strategies is MCMAS [15], which essentially searches through the space of all
the possible strategies. Nevertheless, no better algorithm is currently known,
despite some recent attempts [6]. We employ MCMAS for exact model checking
of our coercion speci�cations for Selene. An interesting alternative has been
proposed recently in the form of approximate model checking based on �xpoint
approximations of formulae [10]. The idea is to model check, instead of formula
ϕ ≡ 〈〈A〉〉Fp, its upper and lower approximations trU (ϕ) and trL(ϕ):

� trU (ϕ) veri�es the existence of a perfect information strategy that achieves
Fp. Clearly, when there is no perfect information strategy to achieve it, then
〈〈A〉〉Fp must also be false;

� trL(ϕ) is a more sophisticated property, expressed in Alternating Epistemic
µ-Calculus with Steadfast Next Step, with the property that the truth of
trL(ϕ) always implies ϕ. We refer the interested readers to [10] for details.

We have implemented the approximate algorithm from [10], together with a
model generator for Selene, and ran a number of experiments with both exact
and approximate model checking. The setup of the experiments, as well as the
results, are presented in the rest of the section.

5.2 Experiments and Results

We collect the results of the evaluation for each of the speci�ed formulae in tables
presented in Figures 6 to 7. We show performance results for the approximation
algorithms, both for the lower and the upper bound, and compare them to the
exact veri�cation done with MCMAS. Each row in a table corresponds to a single
run of an experiment over the selected model. The columns contain the following
information:

� the parameters of the model (con�guration), consisting of the numbers of
voters and available candidates, the maximal numbers of voters that the
coercer can try to coerce and the clock steps that the system waits for in-
coming votes and for noti�cations from the voters about coercion attempts.
E.g., con�guration (2,2,2,4,4) describes the model with 2 voters, 2 candi-
dates, the coercer coercing up to 2 voters, and the maximal time units for
the system to wait for votes and coercion noti�cations being both set to 4;

12

con�guration #states tgen
Lower approx. Upper approx. Approx. Exact
tverif result tverif result result (tg+tv) result

(2, 1, 1, 1, 1) 427 <1 <1 False <1 True ? <1 True

(2, 1, 1, 4, 4) 16777 1 <1 False 1 True ? 257 True

(2, 1, 2, 4, 4) 22365 1 <1 True <1 True True timeout

(2, 2, 1, 4, 4) 331441 19 1 False 4 False False timeout

(2, 2, 2, 4, 4) 596577 36 1 False 7 False False timeout

(3, 2, 1, 1, 1) 281968 40 <1 False 1 False False timeout

(4, 1, 1, 1, 1) 146001 2 <1 False 3 True ? timeout

(4, 2, 1, 1, 1) memout timeout

Figure 7: Experimental results for formula Φ2

� The size of the state space (#states) and the time that the algorithm spent
on generating the data structures for the model (tgen);

� The running time and output of the veri�cation algorithm (tver, result) for
model checking the lower approximation trL(φ), and similarly for the upper
approximation trU (φ);

� The result of the approximation (Approx. result), with �?� in case of incon-
clusive output;

� The total running time (tg+tv) and the result (result) of the exact ATLir

model checking with MCMAS.

The running times are given in seconds. Timeout indicates that the process did
not terminate in 2 hours. Memout indicates that the process is terminated by
the system due to allocating too much memory.

The exact ATLir model checking is performed with MCMAS 1.3.0. To per-
form the approximate veri�cation, we used the explicit representations of models
from Section 3.2, and an implementation of the �xpoint algorithms from [10] in
a stand-alone tool written in C++. The models used in both approaches were iso-
morphic. The tests were conducted on a Intel Core i7-6700 CPU with dynamic
clock speed of 2.60 � 3.50 GHz, 32 GB RAM, running 64bit Ubuntu 16.04 Linux.

5.3 Discussion of the Results

As con�rmed by the experiments, the question posed by formula Φ2 is the most
restrictive. Namely, in Φ2 we ask whether the coercer has a general strategy to
�nd out exactly which voter voted against his demands, assuming that there
was a disobedient one. The answer to this question is true only in special cases
of a single candidate. On the other hand, the results of veri�cation of Φ1 reveal
that the system is sometimes not able to fully defend a coerced group and the
coercer can detect that at least one of the members did not follow the demands.
To illustrate this on a simple example, in a model of two voters and two ballots
the coercer has a trivial strategy: request a vote for candidate 1 from both the
voters. Moreover, in this case the coercer has even more knowledge, as he knows
which one of the voters deceived (they both did).

13

Φ
distA′
2 ≡〈〈Coercer〉〉F

(
finished ∧ ((

∨
v∈A

¬votev,1 ∧
∧

v′∈Agents\A

distA′(v′))→
∨
v∈A

KCoercer(¬votev,1)
)

Figure 8: A formula for quantitative analysis

Exact model checking with MCMAS seems infeasible in most of the cases,
except for the small models up to hundreds of states. The approximations o�er a
dramatic speedup, enabling veri�cation of models up to hundreds of thousands
of states. Although the approximate method is faster, the results can be incon-
clusive; namely, we observe cases where the truth value of trL(ϕ) di�ers from
the value of trU (ϕ). It should be noted that in the approximate approach the
graphs are represented explicitely in memory, unlike in the case of BDD-based
symbolic methods. Still, memory is cheaper and easier to buy than time.

5.4 Counting Coercion-Friendly Con�gurations

The validity of a property is a strong result: if a formula is true in the model,
then the coercer has a strategy to achieve his goal under all possible circum-
stances. The system is therefore completely insecure against the considered type
of attack. If, however, the formula turns out false, it does not mean that the
system is always able to defend itself. In such case we only know that there is no
uniform strategy that allows the coercer to break the system's defenses, given no
information about the initial state of a�airs (e.g., a partially uncovered choice
function). We thus attempt to quantitatively estimate the extent to which our
model is safe from the attacks expressed by Φ2. To this end we inspect in detail
all the possible distributions DA′ of votes of voters outside of the coerced group
A and check under which of these the coercer can precisely point to a disobedient
voter. Formally, distA′ ∈ DA′ i� distA′ is a function from Agents \A to PV such
that for each v ∈ Agents \A there exists 1 ≤ i ≤ k such that distA′(v) = votev,i.

To perform quantitative analysis we utilise the formula Φ
distA′
2 presented in

Figure 8. Note that the formula depends on distA′ ∈ DA′ and A ⊆ Agents.
Intuitively, it expresses the ability of the coercer to enforce that if some of the
agents in A did not vote for candidate 1 and the remaining voters voted according
to distA′ , then the coercer can identify a voter in A that did not vote for 1.

The process of quantitative analysis is performed as follows. For a given
model con�guration, we �x an arbitrary coalition A. Then, for each distribution

distA′ ∈ DA′ the formula Φ
distA′
2 is veri�ed. Our approach is based on state-

labelling, hence we can inspect all the states reached just after publishing votes.
In Fig. 9 by #vote we denote the aggregate number of such states that are
consistent with any distA′ ∈ DA′ and #rvote collects the count of how many of

these states satisfy Φ
distA′
2 . As we can observe, there are cases where the coercer

can gain advantage in nearly half of considered distributions.

14

con�guration #states tgen result #vote #rvote pvote = #rvote
#vote

× 100%

(2, 2, 1, 4, 4) 331441 14 False 200 50 25%

(2, 2, 2, 1, 1) 9651 <1 False 144 36 25%

(2, 2, 2, 4, 4) 596577 24 False 360 90 25%

(2, 3, 1, 2, 2) 289423 10 False 378 168 44%

(2, 3, 2, 1, 1) 64829 1 False 576 256 44%

(2, 3, 2, 2, 2) 661501 22 False 864 384 44%

(2, 3, 2, 2, 2) 281968 15 False 672 84 12%

(2, 3, 2, 2, 2) 765232 41 False 1824 228 12%

(4, 1, 1, 1, 1) 146001 2 False 240 0 0%

Figure 9: Experimental results for formula Φ
distA′
2 with percentage coverage

It should be emphasized that approximate algorithms are used for model

checking Φ
distA′
2 . Thus, the pvote shows only the percentage of con�rmed cases

where a successful coercion strategy exists. The actual counts may be larger,
since the approximations provide only guaranteed lower bound estimation.

6 Conclusions

In this paper, we present our �rst step towards model checking of e-voting proto-
cols with respect to strategic abilities of their participants. We propose a simple
multi-agent model of Selene, together with several formulae of ATLir express-
ing coercion, and conduct preliminary experiments with model checking.

Our construction of the model is based on a natural pattern of dividing the
outcome of an election into the public bulletin and the secret choice function,
together with a secret bijection. We argue that the MAS approach provides a
�exible framework for modelling security properties of voting protocols. In par-
ticular, it o�ers a natural separation of social and technical components and
their interactions. Moreover, ATLir o�ers a sensible trade-o� between expres-
sivity and veracity as the property speci�cation language.

Model checking is done in two variants: exact, using MCMAS [15], and
approximate, using the recently proposed methodology of �xpoint approxima-
tions [10]. As the experiments show, despite the prohibitive complexity of model
checking with ATLir, the approximate method enables the analysis of many
instances of our models, even in the presence of combinatorial explosion.

In the future, we plan to apply some recent developments in model reduction
methods for strategic logics and allow for veri�cation of more complex models.
These include techniques such as abstraction, bisimulation-based reduction, and
partial-order reduction. Moreover, we would like to extend the model of Selene
with additional actors, such as coercers with con�icting goals.

Acknowledgements. The authors acknowledge the support of the National
Centre for Research and Development (NCBR), Poland, under the PolLux project
VoteVerif (POLLUX-IV/1/2016).

15

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Journal of the ACM, 49:672�713, 2002.

2. F. Belardinelli, R. Condurache, C. Dima, W. Jamroga, and A.V. Jones. Bisimu-
lations for veri�cation of strategic abilities with application to ThreeBallot voting
protocol. In Proc. of AAMAS, pages 1286�1295. IFAAMAS, 2017.

3. J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In Proc. of the
26th ann. ACM symp. on Theory of Computing, pages 544�553. ACM, 1994.

4. I. Boureanu, P. Kouvaros, and A. Lomuscio. Verifying security properties in un-
bounded multiagent systems. In Proceedings of AAMAS, pages 1209�1217, 2016.

5. N. Bulling and W. Jamroga. Alternating epistemic mu-calculus. In Proceedings of
IJCAI-11, pages 109�114, 2011.

6. S. Busard, C. Pecheur, H. Qu, and F. Raimondi. Reasoning about memoryless
strategies under partial observability and unconditional fairness constraints. In-
formation and Computation, 242:128�156, 2015.

7. S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance and receipt-freeness in
electronic voting. In Computer Security Foundations Workshop, 2006. 19th IEEE,
pages 12�pp. IEEE, 2006.

8. J. Dreier, P. Lafourcade, and Y. Lakhnech. A formal taxonomy of privacy in
voting protocols. In Communications (ICC), 2012 IEEE International Conference
on, pages 6710�6715. IEEE, 2012.

9. W. Jamroga and J. Dix. Model checking ATLir is indeed ∆
P
2 -complete. In Proceed-

ings of EUMAS'06, volume 223 of CEUR Workshop Proc. CEUR-WS.org, 2006.
10. W. Jamroga, M. Knapik, and D. Kurpiewski. Fixpoint approximation of strategic

abilities under imperfect information. In Proc. of AAMAS, pages 1241�1249, 2017.
11. H. L. Jonker and W. Pieters. Receipt-freeness as a special case of anonymity in

epistemic logic. Proc. of the 19th Comp. Sec. Found. workshop, pages 28�42, 2006.
12. R. Kusters and T. Truderung. An epistemic approach to coercion-resistance for

electronic voting protocols. In Security and Privacy, pages 251�266, 2009.
13. R. Küsters, T. Truderung, and A. Vogt. A game-based de�nition of coercion-

resistance and its applications. In 2010 23rd IEEE Computer Security Foundations
Symposium, pages 122�136. IEEE, 2010.

14. S. Lang. Algebra. Addison-Wesley, 1993.
15. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: An open-source model checker

for the veri�cation of multi-agent systems. Int. Journal on Software Tools for
Technology Transfer, 2015. Available online.

16. Alessio Lomuscio and Wojciech Penczek. LDYIS: a framework for model checking
security protocols. Fundamenta Informaticae, 85(1-4):359�375, 2008.

17. Bo Meng. A critical review of receipt-freeness and coercion-resistance. Information
Technology Journal, 8(7):934�964, 2009.

18. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In
Security Protocols, pages 25�35. Springer, 1998.

19. P.Y.A. Ryan, P.B. Rønne, and V. Iovino. Selene: Voting with transparent ver-
i�ability and coercion-mitigation. In Proc. of Financial Cryptography and Data
Security, volume 9604 of LNCS, pages 176�192. Springer, 2016.

20. P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science, 85(2):82�93, 2004.

21. M. Tabatabaei, W. Jamroga, and P. Y. A. Ryan. Expressing receipt-freeness and
coercion-resistance in logics of strategic ability: Preliminary attempt. In Proc. of
the PrAISe@ECAI Workshop, pages 1:1�1:8. ACM, 2016.

16

