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Abstract

Properties of the regular multidimensional grid graphs from the point of view of the analytical foundations for studying the clustering behavior of the GSA (Graph Spectral Analysis) clustering algorithms
are investigated. From the theoretical point of view, the regular grid graph has no structure, and therefore the properties of spectra of the corresponding Laplacians may be indicative of a missing

structure in the data. The range of eigenvalues is determined and it is shown that the eigenvalues are not distributed uniformly. This contradicts assumptions made in many GSA applications. The
complexity of eigenvector elements distributions is shown.

Introduction

(a) (b) (c)
Figure: 1. Examples of grid graphs. (a) 1-dimensional grid graph, (b) 2-dimensional grid graph, (c)
3-dimensional grid graph.

Regular graph structures (Fig. 1) allow to study analytically Laplacian based graph
algorithm (Notarstefano,2012). Applications include: (1) graph embedding
without crossings on the spectrum of its Laplacian (Stankiewicz,2017), (2)
gonality of curves via grid Laplacians (Cornelissen et al.,2015), (3) image
processing (Cheung et al. ,2018), (4) chemistry studies (Merris, 1994). (5)
mechanics (membrane vibration) (Cetkovic et al., 1980). (6) robotic swarms
(Ramachandran and Berman, 2016).
We have investigated such graphs mainly from the point of view of properties of
Graph Spectral Clustering algorithms. The study of regular grids is useful for the
validation of some assumptions made for algorithms clustering via GSA large
datasets, like Laplacian eigenvalue uniformity.

Method

Clustering via GSA: Be given a similarity matrix of objects S. (1) Compute
the combinatorial Laplacian as L = D − S, where D is a diagonal matrix with
components being row sums of S. (2) Embed the objects in a low-dimensional
Euclidean space spanned by lowest eigenvectors of L. (3) Cluster in this
embedding using e.g. k-means algorithm. See e.g. (von Luxburg, 2007) for details.

Quest for Analytical Embedding: Define the path graph Pn as a tree with
two nodes of vertex degree 1, and the other n − 2 nodes of vertex degree 2. A
graph G(n1, . . . , nd) is called a d-dimensional grid if it is the Cartesian product
of d paths Pn1

, . . . , , , Pnd
, (Spie,2019). Such a graph can be embedded into an

d dimensional Euclidean space with nodes having only consecutive integer
coordinates (see Fig. 1). The nodes of a grid graph are linked with coordinates
differing only by 1 at only one axis. Those graphs are of special interest because
they can be used for practical implementation of parallel algorithms. In the
similarity matrix, the entry is equal to 1, if there is a link between nodes.
We have shown that for such a regular grid structure, the combinatorial Laplacian
eigenvalues λ and eigenvectors v are analytically given as:

λ[z1,...,zd] =
d∑

j=1

(
2 sin

(
πzj

2nj

))2

(1)

where, for each j = 1, . . . , d, zj is an integer such that 0 ≤ zj ≤ nj − 1.

Denoting λ(j,zj) =
(
2 sin

(
πzj
2nj

))2

the above formula can be rewritten as

λ[z1,...,zd] =
∑d

j=1 λ(j,zj). Define

ν[z1,...,zd],[x1,...,xd] =
d∏

j=1

cos

(
πzj

nj

(xj − 0.5)

)
(2)

where, for each j = 1, . . . , d, xj is an integer such that 1 ≤ xj ≤ nj.
And finally define the n dimensional vector v[z1,...,zd] such that

v[z1,...,zd],i = ν[z1,...,zd],[x1,...,xd] (3)

Theorem

If zj ∈ [−nj + 1,−1], then v[z1,...,zj,...,zd] = v[z1,...,z
′
j,...,zd]

where

z′
j ∈ [0, nj − 1], and z′

j = −zj. If zj = nj, then v[z1,...,zj,...,zd] = 0. If
zj ∈ [nj + 1, 2nj − 1], then v[z1,...,zj,...,zd] = −v[z1,...,z

′
j,...,zd]

where

z′
j ∈ [0, nj − 1], and z′

j = 2nj − zj.

Results
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Figure: 2. The histograms of eigenvalues of combinatorial Laplacians of grid graphs of
approximately 1,000 nodes. (a) 1-dimensional grid graph, (b) 2-dimensional grid graph, (c)
3-dimensional grid graph, (d) 4-dimensional grid graph.

Fig. 2 shows: (1) the distribution of eigenvalues differs significantly from uniform
distribution, contrary to common assumptions, (2) one-dimensional grid
distribution differs significantly in shape from higher dimensions. Same in Fig. 3.
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Figure: 3. The histograms of eigenvalues of combinatorial Laplacians of grid graphs of
approximately 10,000 nodes. (a) 1-dimensional grid graph, (b) 2-dimensional grid graph, (c)
3-dimensional grid graph, (d) 4-dimensional grid graph.
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Figure: 4. The in the limit cumulative distribution function of eigenvalues of combinatorial
Laplacians of grid graphs. (a) 1-dimensional grid, (b) 2-dimensional grid, (c) 3-dimensional grid,
(d) 4-dimensional grid graph. Blue line – the uniform distribution function

Cumulative distribution functions of eigenvalues of combinatorial Laplacians of 1,
2, 3, and 4-dimensional grid graphs with the number of nodes ”in the limit” are
depicted in Figure 4. The multidimensional grid graph exhibits no similarity to
uniform eigenvalue distribution though it is structureless.
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Figure: 5. The plots of sample eigenvectors of combinatorial Laplacians of grid graphs of
approximately 1,000 nodes. (a) 1-dimensional grid graph, z = [1], (b) 2-dimensional grid graph,
z = [1, 1], (c) 3-dimensional grid graph, z = [1, 1, 1], (d) 4-dimensional grid graph,
z = [1, 1, 1, 1]. X coordinates: identifiers of nodes.

Figure 5 visualizes the shapes of sample eigenvectors of the grids elaborated on in
Fig.2. A clear cosine shape can be recognized for a 1-dimensional graph. One
recognizes the cosine product for two-dimensional grids. The patterns are not so
easily classified by eye inspection in higher dimensions. This behavior questions
assumptions of some GSA on piece-wise linearity of eigenvector entries.

Conclusions

Shapes of eigenvalue spectra seem to be kept with growing number of nodes and
they are in no way uniform. Such a study should be a clear warning sign for those
who develop approximate procedures for clustering large scale graphs, like CSC
(Tremblay,2016), as the common assumption of uniformity is not valid.
Entries in eigenvectors form a clear cosine line for 1-dimensional graph, but shapes
in higher dimensions do not seem to be obvious. This should be a concern when
utilizing GSA methods for large graphs like Nyström like approaches, (Li,2015).
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