Package ‘rmcfs’

October 25, 2016
Title The MCFS-ID Algorithm for Feature Selection and Interdependency Discovery

Version 1.2.1

Date 2016-10-05

Depends rJava (>=0.5-0), R (>=2.70)

Imports yaml, ggplot2, reshape2, dplyr, igraph (>=1.0.1)
SystemRequirements Java (>= 6.0)

Description MCFS-ID (Monte Carlo Feature Selection and Interdependency Discovery) is a
Monte Carlo method-based tool for feature selection. It also allows for the discovery of interde-
pendencies between the relevant features. MCFS-ID is particularly suitable for the analy-
sis of high-dimensional, 'small n large p' transactional and biological data.

License GPL-3

URL http://www.ipipan.eu/staff/m.draminski/mcfs.htm
LazyData yes

R topics documented:

alizadeh e e e 2
artificial.data L 2
build.idgraph L 3
exportresult L 4
filter.data L e e e e e e 5
fix.data e e e e 6
import.resulto e e e e 7
MCES . . . e e e e e e e e e e 8
plotidgraph 12
plotmefs 13
print.mcfs L e 15
read.adX e e e e e e 16
showme e e e 17
write.adX e e e e e e e e e e e e 17
write.arff e e e e 18
Index 19

http://www.ipipan.eu/staff/m.draminski/mcfs.htm

2 artificial.data

alizadeh Loads sample data from a lymphoma/leukemia gene expression study

Description

The sample data for the MCFS-ID algorithm

Usage
data(alizadeh)

Format
A 4026 x 62 gene expression data matrix of log-ratio values. The last column contains the annota-
tions of the 62 samples with respect to the cancer types C, D, F.

Source

The data are from the lymphoma/leukemia study of A. Alizadeh et al., Nature 403:503-511 (2000),
http://llmpp.nih.gov/lymphoma/index.shtml

artificial.data Creates artificial dataset

Description

Creates data.frame with artificial data. The last six columns are nominal and highly correlated
to feature "class’. This data set consists of objects from 3 classes, A, B and C, that contain 40, 20,
10 objects, respectively (70 objects altogether). For each object, 6 binary features (Al, A2, Bl,
B2, CI and C2) are created and they are ’ideally’ or ’almost ideally’ correlated with class feature.
If an object’s ’class’ equals ’A’, then its features A/ and A2 are set to class value ’A’; otherwise
Al = A2 = 0. If an object’s ’class’ is 'B’ or 'C’, the processing is analogous, but some random
corruption is introduced. For 2 observations from class B’ and both attributes B1/B2, their values
'B’ are replaced by ’0’. For 4 observations from class 'C” and both attributes C1/C2, their values
"C’ are replaced by ’0’. The number of corrupted values for each class is defined by corruption
parameter. The data also contains additional rnd_features = 500 random numerical features with
uniformly [0,1] distributed values.

Usage
artificial.data(rnd_features = 500, size = c(40, 20, 10),
corruption = c(@, 2, 4), seed = NA)
Arguments

rnd_features number of numerical random features.

size size of classes A, B, and C.
corruption defines the number of corrupted values for a pairs of columns AI/A2, BI/B2,
cl/cz,

seed seed for random number generator.

build.idgraph 3

Value

data.frame with six important features.

Examples

d <- artificial.data(rnd_features = 500)
showme (d)

build.idgraph Constructs interdependencies graph

Description

Constructs the ID-Graph (igraph/idgraph object) from mcfs_result object returned by mcfs func-
tion. The number of top features included and the number of ID-Graph edges can be customized.

Usage
build.idgraph(mcfs_result,
size = NA,
size_ID = NA,

self_ID = FALSE,
plot_all_nodes = FALSE,
size_ID_mult = 3,
size_ID_max = 100)

Arguments
mcfs_result results returned by mcf's function.
size number of top features to select. If size = NA, then size is defined by
mcfs_result$cutoff_value parameter.
size_ID number of interdependencies (edges in ID-Graph) to be included. If size_ID = NA,
then parameter size_ID is defined by multiplication size_ID_mult*size.
self_ID if self_ID = TRUE, then include self-loops from ID-Graph.

plot_all_nodes if plot_all_nodes = TRUE, then include all nodes, even if they are not con-
nected to any other node (isolated nodes).

size_ID_mult If size_ID_mult = 3 there will be 3 times more edges than features (nodes)
presented on the ID-Graph. It works only if size = NA and size_ID = NA

size_ID_max maximum number of interactions to be included from ID-Graph (the upper

limit).

Value

igraph/idgraph S3 object that can be: plotted in R, exported to graphML (XML format) or saved as
csv or rds files.

4 export.result

Examples

Set up java parameter and load rmcfs package
options(java.parameters = "-Xmx4g")
library(rmcfs)

create input data
adata <- artificial.data(rnd_features = 10)
showme (adata)

Parametrize and run MCFS-ID procedure

result <- mcfs(class~., adata, projections = 300, projectionSize = 4,
cutoffPermutations = @, finalCV = FALSE, finalRuleset = FALSE,
threadsNumber = 2)

build interdependencies graph (all default parameters).
gid <- build.idgraph(result)
plot(gid)

build interdependencies graph for top 6 features

and top 12 interdependencies and plot all nodes

gid <- build.idgraph(result, size = 6, size_ID = 12, plot_all_nodes = TRUE)
plot(gid, label_dist = 1)

Export graph to graphML (XML structure)

path <- tempdir()

igraph::write.graph(gid, file = paste@(path, "/artificial.graphml”),
format = "graphml”, prefixAttr = FALSE)

export.result Saves MCFS-ID result into set csv files

Description

Saves csv files with result obtained by the MCFS-ID.

Usage

export.result(mcfs_result, path, label = "rmcfs”, zip = TRUE)

Arguments
mcfs_result result of the MCFS-ID experiment returned by mcf's function.
path path to the MCFS-ID result *.csv files.
label label of the experiment and common name for output files.
zip if = TRUE, saves all results data as one zip file.

Examples

Set up java parameter and load rmcfs package
options(java.parameters = "-Xmx4g")
library(rmcfs)

filter.data 5

create input data
adata <- artificial.data(rnd_features = 10)
showme (adata)

Parametrize and run MCFS-ID procedure

result <- mcfs(class~., adata, projections = 100, projectionSize = 4,
cutoffPermutations = 3, finalCV = FALSE, finalRuleset = FALSE,
threadsNumber = 2)

Export and import R result to/from files

path <- tempdir()

export.result(result, path = path, label = "artificial”)
result <- import.result(path = path, label = "artificial”)

filter.data Filters input data

Description

Selects columns from input data based on the highest RIs of attributes.

Usage

filter.data(data, mcfs_result, size = NA)

Arguments
data input data.frame.
mcfs_result result from mcf's function.
size number of top features to select from input data. If size = NA, then it is defined
by mcfs_result$cutoff_value parameter.
Value

data.frame with selected columns.

Examples

#i## Set up java parameter and load rmcfs package
options(java.parameters = "-Xmx4g")
library(rmcfs)

create input data
adata <- artificial.data(rnd_features = 10)
showme (adata)

Parametrize and run MCFS-ID procedure

result <- mcfs(class~., adata, projections = 100, projectionSize = 4,
cutoffPermutations = 3, finalCV = FALSE, finalRuleset = FALSE,
threadsNumber = 2)

filter.data(adata, result, size = result$cutoff_value)

6 fix.data

fix.data Fixes input data values, column names and attributes types

Description

Fixes any input data to prepare them to export to ARFF/ADX formats. If after exporting data to
ARFF/ADX formats there are some problems in running Java MCFS or WEKA, try to use this
function before. This function fixes data values (e.g. space " " is replaced by "_") and data types
(e.g. all Date columns converted to character in R).

non

Usage
fix.data(x,
type = c("all”, "names"”, "values"”, "types"),
source—chars = C(” Il, Il,”, Il/”’ 1I|H, ”#II),
destination_char = "_",
numeric_class = c("difftime"),
nominal_class = c("factor”, "logical”, "Date"”, "POSIXct", "POSIXt"))
Arguments
X input data frame to be fixed.
type e all - fixes: column names, data values, data types.

* names - fixes only column names. All characters determined by source_chars
parameter are replaced by destination_char (e.g. space " " is replaced
by "_").

* values - fixes only data values. All characters determined by source_chars
parameter are replaced by destination_char (e.g. space " " is replaced
by "_").

* types - fixes only data types (e.g. all possible nominal columns as (Date or
logical) converted to character).

source_chars characters that will be replaced in column names and data values.

destination_char
character that will be inserted in column names and data values.

numeric_class vector of class labels to be casted as.numeric.

nominal_class vector of class labels to be casted as.character.

Value

data.frame with fixed values and types (depends on type parameter).

Examples

Load rmcfs library.
library(rmcfs)

Load alizadeh dataset.
data(alizadeh)

Fix data types and data values - remove ","” " " "/" from values and fix data types

import.result

This function may help if mcfs has any problems with input data
alizadeh.fixed <- fix.data(alizadeh)

import.result Reads csv result files produced by the MCFS-ID Java module

Description

Reads csv result files produced by the MCFS-ID Java module.

Usage

import.result(path, label)

Arguments

path path to the MCFS-ID results *.csv files.

label experiment label for results files (name of the data).
Value

the result of the MCFS-ID experiment returned by mcf's function.

Examples

Set up java parameter and load rmcfs package
options(java.parameters = "-Xmx4g")
library(rmcfs)

create input data
adata <- artificial.data(rnd_features = 10)
showme (adata)

Parametrize and run MCFS-ID procedure

result <- mcfs(class~., adata, projections = 100, projectionSize = 4,
cutoffPermutations = 3, finalCV = FALSE, finalRuleset = FALSE,
threadsNumber = 2)

Export and import R result to/from files

path <- tempdir()

export.result(result, path = path, label = "artificial”)
result <- import.result(path = path, label = "artificial”)

8 mcfs
mcfs MCFS-ID (Monte Carlo Feature Selection and Interdependency Dis-
covery)
Description
Performs Monte Carlo Feature Selection (MCFS-ID) on a given data set. The data set should define
a classification problem with discrete/nominal class labels. This function returns features sorted
by RI as well as cutoff value, ID-Graph edges that denote interdependencies (ID), evaluation of
top features and other statistics. For a detailed description of the MCFS-ID algorithm see citation
below. If you want to use dmLab or MCFS-ID in your publication, please cite the paper:
M.Draminski, A.Rada-Iglesias, S.Enroth, C.Wadelius, J. Koronacki, J.Komorowski, "Monte Carlo
feature selection for supervised classification’, BIOINFORMATICS 24(1): 110-117 (2008).
Usage
mcfs(formula, data,
projections = 'auto',
projectionSize = 'auto',
featureFreq = 100,
splits = 5,
splitSetSize = 1000,
balance = 'auto',
cutoffMethod = c("permutations”, "criticalAngle"”, "kmeans”, "mean"),
cutoffPermutations = 20,
buildID = TRUE,
finalRuleset = TRUE,
finalCV = TRUE,
finalCVSetSize = 1000,
finalCVRepetitions = 3,
seed = NA,
threadsNumber = 2)
Arguments
formula specifies decision attribute and relation between class and other attributes (e.g.
class~.). The target attribute can be nominal (then MCFS-ID uses decision
tree) or numerical (then MCFS-ID uses regression tree).
data defines input data.frame containing all features with decision attribute included.
This data.frame must contain proper types of columns. Columns character,
factor, Date, POSIXct, POSIXt are treated as nominal/categorical and remain-
ing columns as numerical/continuous. Decision attribute defined by formula
can be nominal or numerical.
projections defines the number of subsets (projections) with randomly selected features.
This parameter is usually set to a few thousands and is denoted in the paper
as 5. By default is is set to "auto’ and this value is based on size of input data set
and featureFreq parameter.
projectionSize defines the number of features in one subset. It can be defined by an absolute

value (e.g. 100 denotes 100 randomly selected features) or by a fraction of input
attributes (e.g. 0.05 denotes 5% of input features). This parameter is denoted in

mcfs

featureFreq

splits

splitSetSize

balance

cutoffMethod

the paper as m and by default is set to "auto’. It means that projectionSize equals
to square root of number of input features. Minimum number of features in one
subset is 1.

determines how many times each input feature must be randomly selected when
projections = 'auto'.

defines the number of splits of each subset. This parameter is denoted in the
paper as . The size of the training set in the input subset is always set on 66%.

determines whether to limit input dataset size. It helps to speedup computation
for data sets with a large number of objects. If the parameter is larger than 1,
it determines the number of objects that are drawn at random for each of the
s - t decision trees. If splitSetSize = 0 then the mcfs uses all objects in each
iteration.

determines the way to balance classes. It should be set to 2 or higher if input
dataset contains heavily unbalanced classes. Each subset s will contain all the
objects from the least frequent class and randomly selected set of objects from
each of the remaining classes. This option helps to select features that are impor-
tant for discovering a relatively rare class. The parameter defines the maximal
imbalance ratio. If the ratio is set to 2, then subset s will contain the number of
objects from each class (but the least frequent one) proportional to the square
root of the class size size(c)'/2. If balance = @ then balancing is turned off.
If balance = 1 itis on but does not change the size of classes. Default value is
“auto’.

determines the final cutoff method. Default value is ’permutations’. The meth-
ods of finding cutoff value between important and unimportant attributes are the
following:

* mean - cutoff value is set on mean values obtained from all the implemented
methods.

* kmeans - the method is based on clustering the RI values into two clusters
by the k-means algorithm. It sets the cutoff where the two clusters are
separated. This method is quite valuable when data contains a subset of
very informative features.

e criticalAngle - critical angle method is based on the plot of the features’
RIs in decreasing order of size, with the corresponding features equally
spaced along the abscissa. The plot can be seen as piecewise linear function,
where each linear segment joins two neighboring RIs. Roughly speaking,
the cutoff (placed on the abscissa) corresponds to this point on the plot
where the slope of consecutive segments changes significantly.

* permutations - the method consists in permuting the decision attribute at
least 20 times and running the mcfs algorithm for each permutation. The set
of the maximal RIs from all these experiments is assumed approximately
normally distributed and a critical value based on the the one-sided (upper-
tailed) Student’s t-test (at 95% significance level) is provided. A feature is
declared informative if its RI in the original ranking (without any permu-
tation) exceeds the obtained critical value. A more detailed description of
this method is included in the paper.

cutoffPermutations

determines the number of permutation runs. It needs at least 20 permutations
(cutoffPermutations = 20) for a statistically significant result. Minimum
value of this parameter is 3, however if it is 0 then permutations method is turned
off.

10 mcfs

buildID if = TRUE, Interdependencies Discovery is on and all ID-Graph edges are col-
lected.

finalRuleset if = TRUE, classification rules (by ripper algorithm) are created on the basis of
the final set of features.

finalcCVv if = TRUE, it runs cross validation (cv) experiments on the final set of features.
The following set of classifiers is used: C4.5, NB, SVM, kNN, logistic regres-
sion and Ripper.

finalCVSetSize limits the number of objects used in the final cv experiment. For each cv repeti-
tion, the objects are selected randomly from the uniform distribution.

finalCVRepetitions
defines the number of repetitions of the cv experiment. The more repetitions,
the more stable result.

seed seed for random number generator in Java. By default the seed is random. Repli-
cation of the result is possible only if threadsNumber = 1.

threadsNumber number of threads to use in computation. More threads needs more CPU cores
as well as memory usage is a bit higher. It is recommended to set this value
equal to or less than CPU available cores.

Value

target decision attribute name.

RI data.frame that contains all features with relevance scores sorted from the most
relevant to the least relevant. This is the ranking of features.

1D data.frame that contains features interdependencies as graph edges. It can be
converted into a graph object by build. idgraph function.

distances data.frame that contains convergence statistics of subsequent projections.

cmatrix confusion matrix obtained from all s - ¢ decision trees.

cutoff data.frame that contains cutoff values obtained by the following methods: mean,

kmeans, criticalAngle, permutations (max RI). Disregard the forth value (con-
trastAttributes), since its calculation is not fully developed.

cutoff_value the number of features chosen as informative by the method defined by param-
eter cutoffMethod.

cv_accuracy data.frame that contains classification results obtained by cross validation per-
formed on cutoff_value features. This data.frame exists if finalCV = T.

permutations this data.frame contains the following results of permutation experiments:

* perm_x all RI values obtained from all permutation experiments;

* RI_norm RI obtained for reference MCFS experiment (i.e, the experiment
on the original data); p-values from Anderson-Darling normality test ap-
plied separately for each feature to the cutoffPermutations RI set;

* t_test_p p-values from Student-t test applied separately for each feature
to the cutoffPermutations RI vs. reference RI. This data.frame exists if
parameter cutoffPermutations > @.

jrip classification rules produced by ripper algorithm and related cross validation
result obtained for top features.

exec_time execution time of MCFS-ID.

mcfs

Examples

A
A Artificial data ##HHHHEHEHE
S

Set up java parameter and load rmcfs package
options(java.parameters = "-Xmx4g")
library(rmcfs)

create input data
adata <- artificial.data(rnd_features = 10)
showme (adata)

result <- mcfs(class~., adata, projections = 100, projectionSize = 4,
cutoffPermutations = 3, finalCV = FALSE, finalRuleset = TRUE,
threadsNumber = 2)

Print basic information about mcfs result.
print(result)

Review cutoff values for all methods
print(result$cutoff)

Review cutoff value used in plots
print(result$cutoff_value)

Plot & print out distances between subsequent projections.
These are convergence MCFS-ID statistics.

plot(result, type = "distances")

print(result$distances)

Plot & print out 50 most important features and show max RI values from
permutation experiment.

plot(result, type = "ri", size = 50)
print(head(result$RI, 50))

Plot & print out 50 strongest feature interdependencies.
plot(result, type = "id", size = 50)
print(head(result$ID, 50))

Plot features ordered by RI_norm. Parameter 'size' is the number of

top features in the chart. We set this parameter a bit larger than cutoff_value.
plot(result, type = "features”, size = result$cutoff_value * 1.1, cex = 1)

Here we set 'size' at fixed value 10.

plot(result, type = "features”, size = 10)

Plot cv classification result obtained on top features.
In the middle of x axis red label denotes cutoff_value.

n n

plot(result, type = "cv", measure = "wacc”, cex = 0.8)

Plot & print out confusion matrix. This matrix is the result of
all classifications performed by all decision trees on all s*t datasets.
plot(result, type = "cmatrix")

build interdependencies graph (all default parameters).
gid <- build.idgraph(result)

11

12

plot.idgraph

plot(gid)

build interdependencies graph for top 6 features

and top 12 interdependencies and plot all nodes

gid <- build.idgraph(result, size = 6, size_ID = 12, plot_all_nodes = TRUE)
plot(gid, label.dist = 1)

Export graph to graphML (XML structure)

path <- tempdir()

igraph::write.graph(gid, file = paste@(path, "/artificial.graphml”),
format = "graphml”, prefixAttr = FALSE)

Export and import results to/from csv files
export.result(result, path = path, label = "artificial”)
result <- import.result(path = path, label = "artificial”)

Not run:

HHHHHEHE A
#H# A Alizadeh data #HHEHEHEE
B
Load Alizadeh dataset.
data(alizadeh)

showme (alizadeh)

nononon u/n

Fix data types and data values - replace characters such as etc.
from values and column names and fix data types
This function may help if mcfs has any problems with input data

alizadeh <- fix.data(alizadeh)

Run MCFS-ID procedure on default parameters.

For larger data (thousands of features) default 'auto' settings are the best.

This example may take around 10 minutes but this one is a real dataset with 4026 features.
result <- mcfs(class~., alizadeh, threadsNumber = 4)

Print basic information about mcfs result.
print(result)

Plot & print out distances between subsequent projections.
plot(result, type="distances")

Show max RI values from permutation experiment.
plot(result, type = "ri", size = 500, ri_permutations = TRUE)

build interdependencies graph.
gid <- build.idgraph(result, size = 20)
plot.idgraph(gid, label_dist = 0.3)

Plot cv classification result obtained on top features.
In the middle of x axis red label denotes cutoff_value.

n

plot(result, type = "cv", measure = "wacc”", cex = 0.8)

End(Not run)

plot.idgraph Plots interdependencies graph

plot.mcfs 13

Description

Invokes plot.igraph with predefined parameters to visualize interdependencies graph (ID-Graph).
Standard plot function with custom parameters may be used instead of this one.

Usage
S3 method for class 'idgraph'
plot(x,
label_dist = 0.5,
cex =1, ...)
Arguments
X idgraph/igraph S3 object representing feature interdependencies. This object is
produced by build. idgraph function.
label_dist space between the node’s label and the corresponding node in the plot.
cex size of fonts.
additional plotting parameters.
Examples

Set up java parameter and load rmcfs package
options(java.parameters = "-Xmx4g")
library(rmcfs)

create input data
adata <- artificial.data(rnd_features = 10)
showme (adata)

Parametrize and run MCFS-ID procedure

result <- mcfs(class~., adata, projections = 300, projectionSize = 4,
cutoffPermutations = @, finalCV = FALSE, finalRuleset = FALSE,
threadsNumber = 2)

build interdependencies graph (all default parameters).
gid <- build.idgraph(result)
plot(gid)

build interdependencies graph for top 6 features

and top 12 interdependencies and plot all nodes

gid <- build.idgraph(result, size = 6, size_ID = 12, plot_all_nodes = TRUE)
plot(gid, label_dist = 1)

plot.mcfs Plots various MCFS result components

Description

Plots various aspects of the MCFS-ID result.

14

Usage

S3
plot(x,

Arguments

X

type

size

plot.mcfs
method for class 'mcfs'
type = c("ri"”, "id", "distances”, "features"”, "cv"”, "cmatrix", "heatmap"),
size = NA,
ri_permutations = c("max”, "all", "sorted”, "none"),
diff_bars =T,
features_margin = 10,
cv_measure = c("wacc”, "acc", "pearson”, "MAE", "RMSE", "SMAPE"),
heatmap_norm = c('none', 'norm', 'scale'),
heatmap_fun = c('median', 'mean'),
heatmap_colors = c('white', 'red'),
cex =1, ...)

"mcefs’ S3 object - result of the MCFS-ID experiment returned by mcf's function.
* ri plots top features set with their RIs as well as max RI obtained from
permutation experiments. Red color denotes important features.
* id plots top ID values obtained from the MCFS-ID.

* distances plots distances (convergence diagnostics of the algorithm) be-
tween subsequent feature rankings obtained during the MCFS-ID experi-
ment.

» features plots top features set along with their RI. It is a horizontal barplot
that shows important features in red color and unimportant in grey.

* cv plots cross validation results based on top features.

* cmatrix plots the confusion matrix obtained on all s - ¢ trees.

* heatmap plots heatmap results based on top features. Only numeric features
can be presented on the heatmap.

number of features to plot.

ri_permutations

n n

if type = "ri” and ri_permutations = "max", then it additionally shows
horizontal lines that correspond to max RI values obtained from each single
permutation experiment.

diff_bars if type = "ri" or type = "id" and diff_bars = T, then it shows offset by 1
for RI or ID values.
features_margin
if type = "features”, then it determines the size of the left margin of the plot.
cv_measure if type = "cv", then it determines the type of accuracy shown in the plot:

heatmap_

heatmap_

heatmap_

cex

weighted or unweighted accuracy ("wacc" or "acc"). If target attribute is nu-
meric it is possible to review one of the following prediction quality measures:
("pearson”, "MAE", "RMSE", "SMAPE")

norm if type = "heatmap”, then it defines type of input data normalization 'none"' -
without any normalization, 'norm' - normalization within range [-1,1], 'scale’
- standardization/centering by mean and stdev.

fun if type = "heatmap"”, then it determines calculation 'mean' or 'median'’
within the class to be shown as heatmap color intensity.

colors if type = "heatmap”, then it defines low and hi colors on the heatmap.
size of fonts.

additional plotting parameters.

print.mcfs 15

Examples

Set up java parameter and load rmcfs package
options(java.parameters = "-Xmx4g")
library(rmcfs)

Create input data.
adata <- artificial.data(rnd_features = 10)
showme (adata)

Parametrize and run MCFS-ID procedure.

result <- mcfs(class~., adata, projections = 100, projectionSize = 4,
cutoffPermutations = 3, finalCV = FALSE, finalRuleset = TRUE,
threadsNumber = 2)

Plot & print out distances between subsequent projections.
These are convergence MCFS-ID statistics.

plot(result, type = "distances")

print(result$distances)

Plot & print out 50 most important features and show max RI values from
permutation experiment.

plot(result, type = "ri", size = 50)
print(head(result$RI, 50))

Plot & print out 50 strongest feature interdependencies.
plot(result, type = "id", size = 50)
print(head(result$ID, 50))

Plot features ordered by RI_norm. Parameter 'size' is the number of

top features in the chart. We set this parameter a bit larger than cutoff_value.
plot(result, type = "features”, size = result$cutoff_value * 1.1, cex = 1)

Here we set 'size' at fixed value 10.

plot(result, type = "features”, size = 10)

Plot cv classification result obtained on top features.
In the middle of x axis red label denotes cutoff_value.

n n —

plot(result, type = "cv”, measure = "wacc”, cex = 0.8)

Plot & print out confusion matrix. This matrix is the result of
all classifications performed by all decision trees on all s*t datasets.
plot(result, type = "cmatrix")

print.mcfs Prints mcfs result

Description
Prints basic information about the MCFS-ID result: top features, cutoff values, confusion matrix
obtained for s - ¢ trees and classification rules obtained by Ripper (jrip) algorithm.

Usage

S3 method for class 'mcfs'
print(x, ...)

16 read.adx

Arguments
X ’mcfs’ object - result of the MCFS-ID experiment returned by mcf's function.
additional printing parameters.
Examples

Set up java parameter and load rmcfs package
options(java.parameters = "-Xmx4g")
library(rmcfs)

create input data
adata <- artificial.data(rnd_features = 10)
showme (adata)

Parametrize and run MCFS-ID procedure

result <- mcfs(class~., adata, projections = 100, projectionSize = 4,
cutoffPermutations = 3, finalCV = FALSE, finalRuleset = TRUE,
threadsNumber = 2)

Print basic information about mcfs result.
print(result)

read. adx Reads data from ADX

Description

Imports data from ADX format.

Usage
read.adx(file = "")

Arguments

file exported filename

Examples

Load rmcfs library.
library(rmcfs)

Load alizadeh dataset.
data(alizadeh)
d <- alizadeh

write.adx(d, file = paste@(tempdir(), "/alizadeh.adx"), target = "class")
d <- read.adx(file = paste@(tempdir(), "/alizadeh.adx"))

showme 17

showme Basic data information

Description

Prints basic information about the data.frame.

Usage
showme(x, size = 10, show = c("tiles”, "head”, "tail"”, "none"))
Arguments
X input data frame.
size number of rows/columns to be printed.
show parameters that controls print content.
e tiles - shows top left and bottom right cells (size of both subsets is con-
trolled by size parameter)
* head - shows top size rows
e tail - shows bottom size rows
* none - does not show the content
Examples

Load rmcfs library.
library(rmcfs)

Load alizadeh dataset.
data(alizadeh)
showme (alizadeh)

write.adx Writes data to ADX

Description

Exports data into ADX format.

Usage
write.adx(x, file = "", target = NA, chunk_size = 100000)
Arguments
X data frame with data
file exported filename
target sets target attribute in ADX format. Default value is NA what refers to the last
column.
chunk_size defines size of chunk (number of cells) that are processed and exported. The

bigger the value, the function is faster for small data and slower for big data.

18 write.arff

Examples

Load rmcfs library.
library(rmcfs)

Load alizadeh dataset.
data(alizadeh)
d <- alizadeh

#Fix input data to be consistent with ARFF and ADX formats.

#It is not necessary but for some data can help to export in proper format.
d <- fix.data(d)

write.adx(d, file = paste@(tempdir(), "/alizadeh.adx"), target = "class")

write.arff Writes data to ARFF

Description

Exports data into ARFF format. This format is used by Weka Data Mining software http://www.
cs.waikato.ac.nz/ml/weka/.

Usage
write.arff(x, file = "", target = NA, chunk_size=100000)
Arguments
X data frame with data
file exported filename
target sets target attribute in ARFF format. Default value is NA what refers to the last
column.
chunk_size it defines size of chunk (number of cells) that are processed and exported. The
bigger the value, the function is faster for small data and slower for big data.
Examples

Load rmcfs library.
library(rmcfs)

Load alizadeh dataset.
data(alizadeh)
d <- alizadeh

#Fix input data to be consistent with ARFF and ADX formats.

#It is not necessary but for some data can help to export in proper format.
d <- fix.data(d)

write.arff(d, file = paste@(tempdir(), "/alizadeh.arff"), target = "class")

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

Index

*Topic datasets
alizadeh, 2

alizadeh, 2
artificial.data, 2

build.idgraph, 3, 10, 13
export.result, 4

filter.data, 5
fix.data, 6

import.result, 7
mcfs, 3-5,7,8, 14, 16
plot.idgraph, 12
plot.mcfs, 13
print.mcfs, 15
read.adx, 16

showme, 17

write.adx, 17
write.arff, 18

19

	alizadeh
	artificial.data
	build.idgraph
	export.result
	filter.data
	fix.data
	import.result
	mcfs
	plot.idgraph
	plot.mcfs
	print.mcfs
	read.adx
	showme
	write.adx
	write.arff
	Index

