Maximum entropy modeling

1 Introduction

The problem of maximum entropy modeling is:

Problem 1 (maximum entropy) Find the probability distribution p that maximizes entropy

$$H(p) = -\sum_{x \in X} p(x) \ln p(x) \tag{1}$$

given constraints:

$$\sum_{x \in X} p(x) = 1, \tag{2}$$

$$\sum_{x \in X} p(x)T_i(x) = \alpha_i, \quad 1 \le 1 \le m.$$
(3)

The solution of the maximum entropy problem is as follows:

Theorem 1 If there exists distribution

$$p^*(x) = \exp\left[\lambda_0^* + \sum_{i=1}^m \lambda_i^* T_i(x)\right],\tag{4}$$

where λ_i^* are chosen so that p^* satisfies conditions (2)–(3), then p^* maximizes entropy (1) on the space of probability distributions that satisfy (2)–(3).

Theorem 2 Consider the distribution p_{λ} and the Lagrangian function $L(\lambda)$ defined

$$p_{\lambda}(x) = \exp\left[\sum_{i=1}^{m} \lambda_i T_i(x) - \ln Z(\lambda)\right],$$
(5)

$$L(\lambda) = \ln Z(\lambda) - \sum_{i=1}^{\kappa} \lambda_i \alpha_i, \qquad (6)$$

where the canonical sum is

$$Z(\lambda) = \sum_{x \in X} \exp\left[\sum_{i=1}^{m} \lambda_i T_i(x)\right].$$

Function $L(\lambda)$ has a single minimum and $\lambda^* = (\lambda_1^*, ..., \lambda_m^*)$ for which (5) satisfies conditions (3) is the solution of

$$\lambda^* = \operatorname*{arg\,min}_{\lambda} L(\lambda). \tag{7}$$

2 Improved iterative scaling algorithm

Let us assume that

$$T_i(x) \ge 0. \tag{8}$$

In this case we can find the minimum of the Lagrangian function $L(\lambda)$ via the improved iterative scaling algorithm.

Let $\delta = (\delta_1, ..., \delta_m)$. By inequality $\log y \leq y - 1$ we have

$$L(\lambda + \delta) - L(\lambda) \le A(\lambda, \delta) := \frac{Z(\lambda + \delta)}{Z(\lambda)} - 1 - \sum_{i=1}^{m} \delta_i \alpha_i$$

$$= \sum_{x \in X} p_\lambda(x) \exp\left[\sum_{i=1}^{m} \delta_i T_i(x)\right] - 1 - \sum_{i=1}^{m} \delta_i \alpha_i.$$
(9)

Function $y \mapsto \exp y$ is convex, hence $\exp \left[\sum_{i=1}^{m} n_i g_i\right] \leq \sum_{i=1}^{m} n_i \exp g_i$ for $n_i \geq 0$, $\sum_{i=1}^{m} n_i = 1$ by the Jensen inequality. Then putting $T_+(x) = \sum_{i=1}^{m} T_i(x)$ and setting $n_i = T_i(x)/T_+(x)$ and $g_i = \delta_i T_+(x)$ we obtain

$$A(\lambda,\delta) \le B(\lambda,\delta) = \sum_{x \in X} p_{\lambda}(x) \sum_{i=1}^{m} \frac{T_i(x)}{T_+(x)} \exp\left[\delta_i T_+(x)\right] - 1 - \sum_{i=1}^{m} \delta_i \alpha_i.$$
(11)

The derivatives of $B(\lambda, \delta)$ w.r.t δ are

$$\frac{\partial B(\lambda,\delta)}{\partial \delta_i} = B'(\lambda,\delta_i) := \sum_{x \in X} p_\lambda(x) T_i(x) \exp\left[\delta_i T_+(x)\right] - \alpha_i, \qquad (12)$$

$$\frac{\partial^2 B(\lambda,\delta)}{\partial \delta_i^2} = B''(\lambda,\delta_i) := \sum_{x \in X} p_\lambda(x) T_i(x) T_+(x) \exp\left[\delta_i T_+(x)\right].$$
(13)

In the improved iterative scaling algorithm, we approximate finding the minimum of $L(\lambda)$ via stepwise finding of the minima of $B(\lambda, \delta)$ using the Newton's method. The minimum of $B(\lambda, \delta)$ corresponds to condition

$$B'(\lambda, \delta_i) = 0 \tag{14}$$

for all *i*. In the Newton's method, the zero of the derivative of $B'(\lambda, \delta_i)$ can be found by iteration

$$\delta_i \leftarrow \delta_i - \frac{B'(\lambda, \delta_i)}{B''(\lambda, \delta_i)} \tag{15}$$

until sufficient convergence is observed. Hence the improved iterative scaling algorithm is as follows, cf. Berger (1997); Berger et al. (1996):

```
procedure IMPROVED ITERATIVE SCALING
for i \in \{1, ..., k\} do
\lambda_i \leftarrow 0
end for
repeat
for i \in \{1, ..., k\} do
\delta_i \leftarrow 1
```

$$\begin{split} \mathbf{while} & \left| \frac{B'(\lambda, \delta_i)}{B''(\lambda, \delta_i)} \right| > \epsilon \ \mathbf{do} \\ & \delta_i \leftarrow \delta_i - \frac{B'(\lambda, \delta_i)}{B''(\lambda, \delta_i)} \\ & \mathbf{end} \ \mathbf{while} \\ & \lambda_i \leftarrow \lambda_i + \delta_i \\ & \mathbf{end} \ \mathbf{for} \\ & \mathbf{until} \max_{i \in \{1, \dots, k\}} |\delta_i| > \epsilon \\ & \mathbf{for} \ i \in \{1, \dots, k\} \ \mathbf{do} \\ & \mathbf{return} \ \lambda_i \\ & \mathbf{end} \ \mathbf{for} \end{aligned}$$

3 Task

- 1. Download some texts, DNA sequences, or other discrete symbolic sequences (e.g., music in an appropriate format) in a sufficient amount (say, about 1MB) from the internet.
- 2. Let $x_1, x_2, ..., x_n$ be the consecutive bytes of the text and let X be the set of all possible bytes.
- 3. Consider the following features for s = 1, ..., 8 and $a \in X$:

$$T_s(x) = \begin{cases} 1, & \text{the s-th bit of byte } x \text{ is } 1. \\ 0, & \text{else.} \end{cases}$$
(16)

$$T_a(x) = \begin{cases} 1, & x \text{ is the character } a. \\ 0, & \text{else.} \end{cases}$$
(17)

4. Compute the averages

$$\alpha_i = \frac{1}{n} \sum_{k=1}^n T_i(x_k). \tag{18}$$

- 5. Find the maximum entropy model p^* for features $(T_a)_{a \in X}$. (This can be done without numerical minimization of the Langrangian function! Try to solve the problem analytically as far as possible.) Report $p^*(x)$ for all $x \in X$.
- 6. Find the maximum entropy model p^* for features $(T_s)_{s=1}^8$. (This requires numerical minimization of the Langrangian function.) Report $p^*(x)$ for all $x \in X$ and λ_s^* for s = 1, ..., 8.
- 7. Compute the entropy $H(p^*)$ and cross entropy $-\frac{1}{n}\sum_{k=1}^n \log p^*(x_k)$ for these two models.
- 8. Describe what you have obtained in a report, attach the used scripts, and send it to me (ldebowsk@ipipan.waw.pl).

References

- Berger, A. L., 1997. The improved iterative scaling algorithm: A gentle introduction, Carnegie Mellon University.
- Berger, A. L., Della Pietra, S. A., Della Pietra, V. J., 1996. A maximum entropy approach to natural language processing. Computational Linguistics 22, 39–71.