
Maximum entropy modeling

1 Introduction

The problem of maximum entropy modeling is:

Problem 1 (maximum entropy) Find the probability distribution p that
maximizes entropy

H(p) = −
∑
x∈X

p(x) ln p(x) (1)

given constraints: ∑
x∈X

p(x) = 1, (2)∑
x∈X

p(x)Ti(x) = αi, 1 ≤ 1 ≤ m. (3)

The solution of the maximum entropy problem is as follows:

Theorem 1 If there exists distribution

p∗(x) = exp

[
λ∗0 +

m∑
i=1

λ∗i Ti(x)

]
, (4)

where λ∗i are chosen so that p∗ satisfies conditions (2)–(3), then p∗ maximizes
entropy (1) on the space of probability distributions that satisfy (2)–(3).

Theorem 2 Consider the distribution pλ and the Lagrangian function L(λ)
defined

pλ(x) = exp

[
m∑
i=1

λiTi(x)− lnZ(λ)

]
, (5)

L(λ) = lnZ(λ)−
k∑
i=1

λiαi, (6)

where the canonical sum is

Z(λ) =
∑
x∈X

exp

[
m∑
i=1

λiTi(x)

]
.

Function L(λ) has a single minimum and λ∗ = (λ∗1, ..., λ
∗
m) for which (5)

satisfies conditions (3) is the solution of

λ∗ = argmin
λ

L(λ). (7)
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2 Improved iterative scaling algorithm

Let us assume that

Ti(x) ≥ 0. (8)

In this case we can find the minimum of the Lagrangian function L(λ) via the
improved iterative scaling algorithm.

Let δ = (δ1, ..., δm). By inequality log y ≤ y − 1 we have

L(λ+ δ)− L(λ) ≤ A(λ, δ) := Z(λ+ δ)

Z(λ)
− 1−

m∑
i=1

δiαi (9)

=
∑
x∈X

pλ(x) exp

[
m∑
i=1

δiTi(x)

]
− 1−

m∑
i=1

δiαi. (10)

Function y 7→ exp y is convex, hence exp [
∑m
i=1 nigi] ≤

∑m
i=1 ni exp gi for ni ≥ 0,∑m

i=1 ni = 1 by the Jensen inequality. Then putting T+(x) =
∑m
i=1 Ti(x) and

setting ni = Ti(x)/T+(x) and gi = δiT+(x) we obtain

A(λ, δ) ≤ B(λ, δ) =
∑
x∈X

pλ(x)

m∑
i=1

Ti(x)

T+(x)
exp [δiT+(x)]− 1−

m∑
i=1

δiαi. (11)

The derivatives of B(λ, δ) w.r.t δ are

∂B(λ, δ)

∂δi
= B′(λ, δi) :=

∑
x∈X

pλ(x)Ti(x) exp [δiT+(x)]− αi, (12)

∂2B(λ, δ)

∂δ2i
= B′′(λ, δi) :=

∑
x∈X

pλ(x)Ti(x)T+(x) exp [δiT+(x)] . (13)

In the improved iterative scaling algorithm, we approximate finding the min-
imum of L(λ) via stepwise finding of the minima of B(λ, δ) using the Newton’s
method. The minimum of B(λ, δ) corresponds to condition

B′(λ, δi) = 0 (14)

for all i. In the Newton’s method, the zero of the derivative of B′(λ, δi) can be
found by iteration

δi ← δi −
B′(λ, δi)

B′′(λ, δi)
(15)

until sufficient convergence is observed. Hence the improved iterative scaling
algorithm is as follows, cf. Berger (1997); Berger et al. (1996):
procedure Improved iterative scaling
for i ∈ {1, ..., k} do

λi ← 0
end for
repeat
for i ∈ {1, ..., k} do

δi ← 1
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while
∣∣∣∣ B′(λ, δi)B′′(λ, δi)

∣∣∣∣ > ε do

δi ← δi −
B′(λ, δi)

B′′(λ, δi)
end while
λi ← λi + δi

end for
until max

i∈{1,...,k}
|δi| > ε

for i ∈ {1, ..., k} do
return λi

end for
end procedure

3 Task

1. Download some texts, DNA sequences, or other discrete symbolic se-
quences (e.g., music in an appropriate format) in a sufficient amount (say,
about 1MB) from the internet.

2. Let x1, x2, ..., xn be the consecutive bytes of the text and let X be the set
of all possible bytes.

3. Consider the following features for s = 1, ..., 8 and a ∈ X:

Ts(x) =

{
1, the s-th bit of byte x is 1.

0, else.
(16)

Ta(x) =

{
1, x is the character a.
0, else.

(17)

4. Compute the averages

αi =
1

n

n∑
k=1

Ti(xk). (18)

5. Find the maximum entropy model p∗ for features (Ta)a∈X . (This can be
done without numerical minimization of the Langrangian function! Try
to solve the problem analytically as far as possible.) Report p∗(x) for all
x ∈ X.

6. Find the maximum entropy model p∗ for features (Ts)
8
s=1. (This requires

numerical minimization of the Langrangian function.) Report p∗(x) for
all x ∈ X and λ∗s for s = 1, ..., 8.

7. Compute the entropy H(p∗) and cross entropy − 1
n

∑n
k=1 log p

∗(xk) for
these two models.

8. Describe what you have obtained in a report, attach the used scripts, and
send it to me (ldebowsk@ipipan.waw.pl).
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