Lempel-Ziv code

1 LZ code and switch distribution

Definition 1 (LZ code) For simplicity of the algorithm description we assume that the compressed data are binary sequences, i.e., the input alphabet is $\mathbb{X} = \{0, 1\}$. The Lempel-Ziv compression algorithm is as follows.

- 1. The compressed sequence is parsed into a sequence of shortest phrases that have not appeared before (except for the last phrase). For example, the sequence 001010010011100... is split into phrases 0,01,010,0100,1,11,00,....
- In the following, each phrase is described using a binary index of the longest prefix that appeared earlier and a single bit that follows that prefix. For the considered sequence, this representation is as follows: (0,0)(1,1)(10,0)(11,0)(0,1)(101,1)(1,0).

Now let the input alphabet be $\mathbb{X} = \{0, 1, ..., D-1\}$. Let the frequency of substring $w_1^k \in \mathbb{X}^k$ in string $z_1^n \in \mathbb{X}^n$ be

$$c(w_1^k|z_1^n) = \sum_{i=0}^{n-k} \mathbf{1} \big\{ w_1^k = z_{i+1}^{i+k} \big\}.$$

Definition 2 (R measure) Define conditional probabilities $B(x_{n+1}|x_1^n, -1) = D^{-1}$ and

$$B(x_{n+1}|x_1^n, k) = \frac{c(x_{n+1-k}^{n+1}|x_1^n) + B(x_{n+1}|x_1^n, k-1)}{c(x_{n+1-k}^n|x_1^{n-1}) + 1}$$

We write $B(x_1^n, k) = \prod_{i=1}^n B(x_i|x_1^{i-1}, k)$. Let $p_k \in (0, 1)$ satisfy $\sum_{k=-1}^{\infty} p_k = 1$. The R measure is

$$Q(x_1^n) = \sum_{k=-1}^{\infty} p_k B(x_1^n, k).$$

2 Task

- 1. Download some texts, DNA sequences, or other discrete symbolic sequences (e.g., music in an appropriate format) in a sufficient amount (say, about 1MB) from the internet.
- 2. Write a program that computes the Lempel-Ziv code for a text and another program that computes probability $[-\log B(x_1^n, k)]$ for a text x_1^n .

- 3. Estimate the entropy rate of natural language as the length of the Lempel-Ziv code for the text divided by the text length. Compare this estimate with estimates of the entropy rate given by $\frac{1}{n} \left[-\log B(x_1^n, k) \right]$ for k = -1, 0, 1, ..., 10. Which quantity is the lowest?
- 4. Describe what you have obtained in a report, attach the used scripts, and send it to me (ldebowsk@ipipan.waw.pl).