Lempel-Ziv code

1 LZ code and switch distribution

Definition 1 (LZ code) For simplicity of the algorithm description we assume that the compressed data are binary sequences, i.e., the input alphabet is $\mathbb{X}=\{0,1\}$. The Lempel-Ziv compression algorithm is as follows.

1. The compressed sequence is parsed into a sequence of shortest phrases that have not appeared before (except for the last phrase). For example, the sequence $001010010011100 \ldots$ is split into phrases $0,01,010,0100,1,11,00, \ldots$.
2. In the following, each phrase is described using a binary index of the longest prefix that appeared earlier and a single bit that follows that prefix. For the considered sequence, this representation is as follows: $(0,0)(1,1)(10,0)(11,0)(0,1)(101,1)(1,0)$.

Now let the input alphabet be $\mathbb{X}=\{0,1, \ldots, D-1\}$. Let the frequency of substring $w_{1}^{k} \in \mathbb{X}^{k}$ in string $z_{1}^{n} \in \mathbb{X}^{n}$ be

$$
c\left(w_{1}^{k} \mid z_{1}^{n}\right)=\sum_{i=0}^{n-k} \mathbf{1}\left\{w_{1}^{k}=z_{i+1}^{i+k}\right\} .
$$

Definition 2 (R measure) Define conditional probabilities $B\left(x_{n+1} \mid x_{1}^{n},-1\right)=$ D^{-1} and

$$
B\left(x_{n+1} \mid x_{1}^{n}, k\right)=\frac{c\left(x_{n+1-k}^{n+1} \mid x_{1}^{n}\right)+B\left(x_{n+1} \mid x_{1}^{n}, k-1\right)}{c\left(x_{n+1-k}^{n} \mid x_{1}^{n-1}\right)+1} .
$$

We write $B\left(x_{1}^{n}, k\right)=\prod_{i=1}^{n} B\left(x_{i} \mid x_{1}^{i-1}, k\right)$. Let $p_{k} \in(0,1)$ satisfy $\sum_{k=-1}^{\infty} p_{k}=1$. The R measure is

$$
Q\left(x_{1}^{n}\right)=\sum_{k=-1}^{\infty} p_{k} B\left(x_{1}^{n}, k\right)
$$

2 Task

1. Download some texts, DNA sequences, or other discrete symbolic sequences (e.g., music in an appropriate format) in a sufficient amount (say, about 1 MB) from the internet.
2. Write a program that computes the Lempel-Ziv code for a text and another program that computes probability $\left[-\log B\left(x_{1}^{n}, k\right)\right]$ for a text x_{1}^{n}.
3. Estimate the entropy rate of natural language as the length of the LempelZiv code for the text divided by the text length. Compare this estimate with estimates of the entropy rate given by $\frac{1}{n}\left[-\log B\left(x_{1}^{n}, k\right)\right]$ for $k=$ $-1,0,1, \ldots, 10$. Which quantity is the lowest?
4. Describe what you have obtained in a report, attach the used scripts, and send it to me (ldebowsk@ipipan.waw.pl).
