Information Theory and Statistics Lecture 8: Complexity and entropy

Łukasz Dębowski
Idebowsk@ipipan.waw.pl

Ph. D. Programme 2013/2014

Kolmogorov complexity and entropy

- Prefix-free complexity is the length of a prefix-free code.
- Hence we may expect that it can be related to entropy.

Distribution of random variables

- Let $\left(\mathbf{X}_{\mathbf{i}}\right)_{i \in \mathbb{N}}$ be a sequence of random variables, $\mathbf{X}_{\mathbf{i}}: \boldsymbol{\Omega} \rightarrow \boldsymbol{\Gamma}$.
- We denote its a probability distribution

$$
\mathbf{P}\left(\mathrm{X}_{1}^{\mathrm{m}}\right)=\mathbf{P}\left(\mathbf{X}_{1}^{\mathrm{m}}=\mathrm{x}_{1}^{\mathrm{m}}\right) .
$$

- We will consider Kolmogorov complexity $\mathbf{K}\left(\mathbf{x}_{1}^{m} \mid \mathbf{P}\right)$, which is the prefix-free Kolmogorov complexity of x_{1}^{m} given the definition of distribution of \mathbf{P} on the infinite tape.
- If \mathbf{P} is computable then

$$
\mathrm{K}\left(\mathrm{x}_{1}^{\mathrm{m}} \mid \mathrm{P}\right) \stackrel{+}{<} \mathrm{K}\left(\mathrm{x}_{1}^{\mathrm{m}}\right) \stackrel{+}{<} \mathrm{K}\left(\mathrm{x}_{1}^{\mathrm{m}} \mid \mathrm{P}\right)+\mathrm{K}(\mathrm{P}) .
$$

Shannon-Fano coding

Theorem

For any distribution \mathbf{P},

$$
K\left(x_{1}^{m} \mid P\right) \stackrel{+}{<}-\log P\left(x_{1}^{m}\right)+2 \log m .
$$

Proof

The inequality follows from the fact that a certain program that computes \mathbf{x}_{1}^{m} has form "having the definition of \mathbf{P} and the length of string \mathbf{x}_{1}^{m}, take the Shannon-Fano code word for \mathbf{x}_{1}^{m} with respect to \mathbf{P} and compute \mathbf{x}_{1}^{m} from it."

Source coding inequality

Theorem (source coding inequality)

Let $\mathbf{B}: \boldsymbol{\Gamma}^{\mathbf{m}} \rightarrow \boldsymbol{\Gamma}^{*}$ be a prefix-free code. For any distribution \mathbf{P},

$$
\sum_{x_{1}^{m}} P\left(x_{1}^{m}\right)\left[\left|B\left(x_{1}^{m}\right)\right|+\log P\left(x_{1}^{m}\right)\right] \geq 0
$$

Since prefix-free Kolmogorov complexity is the length of a prefix-free code, we obtain the following result:

Theorem

$$
0 \leq \sum_{x_{1}^{m}} P\left(x_{1}^{m}\right)\left[K\left(x_{1}^{m} \mid P\right)+\log P\left(x_{1}^{m}\right)\right] \stackrel{+}{<} 2 \log m
$$

Barron theorem

Theorem (Barron theorem)

Let $\mathbf{B}: \boldsymbol{\Gamma}^{*} \rightarrow \boldsymbol{\Gamma}^{*}$ be a prefix-free code. For any distribution \mathbf{P},

$$
\lim _{m \rightarrow \infty}\left[\left|B\left(X_{1}^{m}\right)\right|+\log P\left(X_{1}^{m}\right)\right]=\infty
$$

holds with P-probability 1.
Since prefix-free Kolmogorov complexity is the length of a prefix-free code, we obtain the following result:

Theorem

$$
0 \leq\left[K\left(X_{1}^{m} \mid P\right)+\log P\left(X_{1}^{m}\right)\right] \stackrel{+}{<} 2 \log m
$$

holds for sufficiently large \mathbf{m} with \mathbf{P}-probability 1.

Markov inequality

Theorem (Markov inequality)

Let $\boldsymbol{\epsilon}>\mathbf{0}$ be a fixed constant and let \mathbf{Y} be a random variable such that $\mathbf{Y} \geq \mathbf{0}$. We have

$$
P(Y \geq \epsilon) \leq \frac{E Y}{\epsilon} .
$$

Proof

Consider random variable $\mathbf{Z}=\mathbf{Y} / \boldsymbol{\epsilon}$. We have

$$
\mathrm{P}(\mathrm{Y} \geq \epsilon)=\int_{\mathrm{Z} \geq 1} \mathrm{dP} \leq \int_{\mathrm{Z} \geq 1} \mathrm{ZdP} \leq \int \mathrm{ZdP}=\frac{\mathrm{E} Y}{\epsilon}
$$

Borel-Cantelli lemma

Denote

$$
\limsup _{n \rightarrow \infty} A_{n}=\left\{\omega: \omega \in A_{m} \text { for infinitely many } m\right\} .
$$

We have

$$
\left(\limsup _{n \rightarrow \infty} A_{n}\right)^{c}=\left\{\omega: \omega \notin A_{m} \text { for sufficiently large } \mathbf{m}\right\}
$$

For proving that some events hold with probability 1, the following proposition is particularly useful.

Theorem (Borel-Cantelli lemma)

If $\sum_{m=1}^{\infty} \mathbf{P}\left(\mathbf{A}_{\mathbf{m}}\right)<\infty$ for a family of events $\mathbf{A}_{1}, \mathbf{A}_{\mathbf{2}}, \mathbf{A}_{3}, \ldots$ then

$$
P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0
$$

Proof of the Borel-Cantelli lemma

Notice that $\sum_{m=1}^{\infty} \mathbf{P}\left(\mathbf{A}_{\mathbf{m}}\right)<\infty$ implies

$$
\lim _{m \rightarrow \infty} \sum_{k=m}^{\infty} P\left(A_{k}\right)=0
$$

Hence we obtain

$$
\begin{aligned}
& \mathbf{P}\left(\left\{\omega: \omega \in \mathbf{A}_{\boldsymbol{m}} \text { for infinitely many } \mathbf{m}\right\}\right) \\
& \quad=\mathbf{P}\left(\left\{\omega: \forall_{m \geq 1} \exists_{k \geq m} \omega \in \mathbf{A}_{k}\right\}\right) \\
& \quad=\mathbf{P}\left(\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} \mathbf{A}_{k}\right) \\
& \quad \leq \inf _{m \geq 1} \mathbf{P}\left(\bigcup_{k=m}^{\infty} \mathbf{A}_{k}\right) \leq \inf _{\mathbf{m} \geq 1} \sum_{k=m}^{\infty} \mathbf{P}\left(\mathbf{A}_{k}\right)=\mathbf{0} .
\end{aligned}
$$

Proof of Barron theorem

Let us write

$$
\mathbf{W}\left(\mathrm{x}_{1}^{\mathrm{m}}\right)=\frac{2^{-\left|\mathrm{B}\left(\mathrm{x}_{1}^{m}\right)\right|}}{\mathbf{P}\left(\mathrm{x}_{1}^{m}\right) 2^{-\mathrm{n}}} .
$$

By the Markov inequality we obtain

$$
\begin{aligned}
\sum_{m=1}^{\infty} \mathbf{P} & \left(\left|\mathrm{B}\left(\mathrm{X}_{1}^{\mathrm{m}}\right)\right|+\log \mathrm{P}\left(\mathrm{X}_{1}^{\mathrm{m}}\right) \leq \mathrm{n}\right) \\
& =\sum_{\mathrm{m}=1}^{\infty} \mathbf{P}\left(\mathbf{W}\left(\mathrm{X}_{1}^{m}\right) \geq 1\right) \\
& \leq \sum_{\mathrm{m}=1}^{\infty} \sum_{x_{1}^{m}} \mathbf{P}\left(\mathrm{x}_{1}^{m}\right) \mathbf{W}\left(\mathrm{x}_{1}^{m}\right)=\sum_{m=1}^{\infty} \sum_{x_{1}^{m}} 2^{-\left|\mathrm{B}\left(\mathrm{x}_{1}^{m}\right)\right|+\mathrm{n}}
\end{aligned}
$$

Proof (continued)

Continuing, by the Kraft inequality we obtain,

$$
\begin{aligned}
& \sum_{m=1}^{\infty} P\left(\left|B\left(X_{1}^{m}\right)\right|+\log P\left(X_{1}^{m}\right) \leq n\right) \\
& \quad \leq \sum_{m=1}^{\infty} \sum_{x_{1}^{m}} 2^{-\left|B\left(x_{1}^{m}\right)\right|+n} \leq 2^{n}<\infty
\end{aligned}
$$

Hence from the Borel-Cantelli lemma we obtain that

$$
\left|\mathbf{B}\left(\mathbf{X}_{1}^{m}\right)\right|+\log \mathbf{P}\left(\mathbf{X}_{1}^{m}\right)>n \text { for sufficiently large } \mathbf{m}
$$

holds with P-probability 1.
The \mathbf{n} in this statement is arbitrary so the claim follows.

An analogue of the chain rule

The parallels between prefix-free complexity and entropy can be drawn further.
The following theorem is an analogue of the chain rule $H(X, Y)=H(X)+H(Y \mid X)$.

Theorem

$$
K(\langle\mathbf{u}, \mathbf{w}\rangle) \stackrel{ \pm}{=} \mathrm{K}(\mathbf{u})+\mathrm{K}(\mathbf{w} \mid\langle\mathbf{u}, \mathrm{K}(\mathbf{u})\rangle) .
$$

In the proposition above, it is easy to show that the left hand side is smaller than the right hand side. The proof of the converse inequality is harder.

Partial proof of the chain rule

We will demonstrate that

$$
\mathrm{K}(\langle\mathbf{u}, \mathbf{w}\rangle) \stackrel{+}{<} \mathrm{K}(\mathrm{u})+\mathrm{K}(\mathbf{w} \mid\langle\mathbf{u}, \mathrm{K}(\mathrm{u})\rangle) .
$$

Let \mathbf{p} be the shortest program that satisfies $\mathbf{V}(\mathbf{p})=\mathbf{u}$ and let \mathbf{p}^{\prime} be the shortest program that satisfies $\mathbf{V}\left(\mathbf{p}^{\prime} \mid\langle\mathbf{u}, \mathbf{K}(\mathbf{u})\rangle\right)=\mathbf{w}$. Then there exists a prefix-free machine \mathbf{S} that satisfies $\mathbf{S}\left(\mathbf{p p}^{\prime}\right)=\langle\mathbf{u}, \mathbf{w}\rangle$. Hence we obtain the claim.

Incomplete analogy

In the algorithmic chain rule there appears term $\mathbf{K}(\mathbf{w} \mid\langle\mathbf{u}, \mathbf{K}(\mathbf{u})\rangle)$ rather than $\mathbf{K}(\mathbf{w} \mid \mathbf{u})$. Although $\mathbf{K}(\mathbf{w} \mid\langle\mathbf{u}, \mathbf{K}(\mathbf{u})\rangle)$ differs from $\mathbf{K}(\mathbf{w} \mid \mathbf{u})$, we can see that $\mathbf{K}(\langle\mathbf{u}, \mathbf{K}(\mathbf{u})\rangle)$ and $\mathbf{K}(\mathbf{u})$ are approximately equal.

Theorem

$$
K(\langle w, K(w)\rangle) \stackrel{ \pm}{=} K(w) .
$$

Proof

From the shortest program that computes \mathbf{w}, we may reconstruct both \mathbf{w} and $\mathbf{K}(\mathbf{w})$. Hence $\mathbf{K}(\langle\mathbf{w}, \mathbf{K}(\mathbf{w})\rangle) \stackrel{+}{<} \mathbf{K}(\mathbf{w})$. On the hand, we have $K(\langle\mathbf{w}, \mathbf{K}(\mathbf{w})\rangle) \stackrel{+}{>} \mathbf{K}(\mathbf{w})$ from a previous theorem.

Algorithmic information

Definition

We define algorithmic information between strings \mathbf{u} and \mathbf{w} as

$$
\mathbf{I}(\mathbf{u} ; \mathbf{w})=K(w)-K(w \mid\langle u, K(u)\rangle) .
$$

Symmetry of algorithmic information

Theorem

$$
\mathrm{I}(\mathrm{u} ; \mathrm{w}) \stackrel{ \pm}{=} \mathrm{I}(\mathrm{w} ; \mathrm{u})
$$

Proof

Observe that

$$
\begin{aligned}
\mathrm{I}(\mathbf{u} ; \mathbf{w}) & =\mathrm{K}(\mathbf{w})-\mathrm{K}(\mathbf{w} \mid\langle\mathbf{u}, \mathrm{K}(\mathbf{u})\rangle) \\
& \pm \mathrm{K}(\mathbf{w})+\mathrm{K}(\mathbf{u})-\mathrm{K}(\langle\mathbf{u}, \mathbf{w}\rangle) \\
& \pm \mathrm{K}(\mathbf{u})-\mathrm{K}(\mathbf{u} \mid\langle\mathbf{w}, \mathrm{K}(\mathbf{w})\rangle)=\mathrm{I}(\mathbf{w} ; \mathbf{u})
\end{aligned}
$$

