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Kolmogorov complexity and entropy

Prefix-free complexity is the length of a prefix-free code.

Hence we may expect that it can be related to entropy.
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Distribution of random variables

Let (Xi)i∈N be a sequence of random variables, Xi : Ω→ Γ.

We denote its a probability distribution

P(xm1 ) = P(Xm1 = xm1 ).

We will consider Kolmogorov complexity K(xm1 |P), which is the
prefix-free Kolmogorov complexity of xm1 given the definition of
distribution of P on the infinite tape.

If P is computable then

K(xm1 |P)
+
< K(xm1 )

+
< K(xm1 |P) + K(P).
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Shannon-Fano coding

Theorem

For any distribution P,

K(xm1 |P)
+
< − log P(xm1 ) + 2 log m.

Proof

The inequality follows from the fact that a certain program that computes xm1
has form “having the definition of P and the length of string xm1 , take the
Shannon-Fano code word for xm1 with respect to P and compute xm1 from it.”
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Source coding inequality

Theorem (source coding inequality)

Let B : Γm → Γ∗ be a prefix-free code. For any distribution P,∑
xm1

P(xm1 ) [|B(xm1 )| + log P(xm1 )] ≥ 0.

Since prefix-free Kolmogorov complexity is the length of a prefix-free code, we
obtain the following result:

Theorem

0 ≤
∑
xm1

P(xm1 ) [K(xm1 |P) + log P(xm1 )]
+
< 2 log m.
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Barron theorem

Theorem (Barron theorem)

Let B : Γ∗ → Γ∗ be a prefix-free code. For any distribution P,

lim
m→∞

[|B(Xm1 )| + log P(Xm1 )] =∞

holds with P-probability 1.

Since prefix-free Kolmogorov complexity is the length of a prefix-free code, we
obtain the following result:

Theorem

0 ≤ [K(Xm1 |P) + log P(Xm1 )]
+
< 2 log m

holds for sufficiently large m with P-probability 1.
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Markov inequality

Theorem (Markov inequality)

Let ε > 0 be a fixed constant and let Y be a random variable such that
Y ≥ 0. We have

P(Y ≥ ε) ≤ EY
ε
.

Proof

Consider random variable Z = Y/ε. We have

P(Y ≥ ε) =

∫
Z≥1
dP ≤

∫
Z≥1
ZdP ≤

∫
ZdP =

EY
ε
.

Project co-financed by the European Union
within the framework of the European Social Fund



Links with entropy Symmetry of algorithmic information

Borel-Cantelli lemma

Denote

lim sup
n→∞

An = {ω : ω ∈ Am for infinitely many m} .

We have (
lim sup
n→∞

An

)c
= {ω : ω 6∈ Am for sufficiently large m} .

For proving that some events hold with probability 1, the following proposition
is particularly useful.

Theorem (Borel-Cantelli lemma)

If
∑∞
m=1 P(Am) <∞ for a family of events A1,A2,A3, ... then

P
(
lim sup
n→∞

An

)
= 0.
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Proof of the Borel-Cantelli lemma

Notice that
∑∞
m=1 P(Am) <∞ implies

lim
m→∞

∞∑
k=m

P(Ak) = 0.

Hence we obtain

P({ω : ω ∈ Am for infinitely many m})
= P(

{
ω : ∀m≥1∃k≥m ω ∈ Ak

}
)

= P

(
∞⋂
m=1

∞⋃
k=m

Ak

)

≤ inf
m≥1
P

(
∞⋃
k=m

Ak

)
≤ inf
m≥1

∞∑
k=m

P(Ak) = 0.
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Proof of Barron theorem

Let us write

W(xm1 ) =
2−|B(xm1 )|

P(xm1 )2−n
.

By the Markov inequality we obtain

∞∑
m=1

P (|B(Xm1 )| + log P(Xm1 ) ≤ n)

=
∞∑
m=1

P (W(Xm1 ) ≥ 1)

≤
∞∑
m=1

∑
xm1

P(xm1 )W(xm1 ) =
∞∑
m=1

∑
xm1

2−|B(xm1 )|+n
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Proof (continued)

Continuing, by the Kraft inequality we obtain,

∞∑
m=1

P (|B(Xm1 )| + log P(Xm1 ) ≤ n)

≤
∞∑
m=1

∑
xm1

2−|B(xm1 )|+n ≤ 2n <∞.

Hence from the Borel-Cantelli lemma we obtain that

|B(Xm1 )| + log P(Xm1 ) > n for sufficiently large m

holds with P-probability 1.

The n in this statement is arbitrary so the claim follows.
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An analogue of the chain rule

The parallels between prefix-free complexity and entropy can be drawn further.
The following theorem is an analogue of the chain rule
H(X,Y) = H(X) + H(Y|X).

Theorem

K(〈u,w〉) +
= K(u) + K(w| 〈u,K(u)〉).

In the proposition above, it is easy to show that the left hand side is smaller
than the right hand side. The proof of the converse inequality is harder.
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Partial proof of the chain rule

We will demonstrate that

K(〈u,w〉)
+
< K(u) + K(w| 〈u,K(u)〉).

Let p be the shortest program that satisfies V(p) = u and let p′ be the shortest
program that satisfies V(p′| 〈u,K(u)〉) = w. Then there exists a prefix-free
machine S that satisfies S(pp′) = 〈u,w〉. Hence we obtain the claim.
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Incomplete analogy

In the algorithmic chain rule there appears term K(w| 〈u,K(u)〉) rather than
K(w|u). Although K(w| 〈u,K(u)〉) differs from K(w|u), we can see that
K(〈u,K(u)〉) and K(u) are approximately equal.

Theorem

K(〈w,K(w)〉) +
= K(w).

Proof

From the shortest program that computes w, we may reconstruct both w and

K(w). Hence K(〈w,K(w)〉)
+
< K(w). On the hand, we have

K(〈w,K(w)〉)
+
> K(w) from a previous theorem.
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Algorithmic information

Definition

We define algorithmic information between strings u and w as

I(u;w) = K(w)− K(w| 〈u,K(u)〉).
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Symmetry of algorithmic information

Theorem

I(u;w)
+
= I(w; u).

Proof

Observe that

I(u;w) = K(w)− K(w| 〈u,K(u)〉)
+
= K(w) + K(u)− K(〈u,w〉)
+
= K(u)− K(u| 〈w,K(w)〉) = I(w; u).
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