
Prefix-free complexity Properties of Kolmogorov complexity

Information Theory and Statistics
Lecture 7: Prefix-free Kolmogorov complexity

Łukasz Dębowski
ldebowsk@ipipan.waw.pl

Ph. D. Programme 2013/2014

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Towards algorithmic information theory

In Shannon’s information theory, the amount of information carried by
a random variable depends on the ascribed probability distribution.

Andrey Kolmogorov (1903–1987), the founding father of modern
probability theory, remarked that it is extremely hard to imagine
a reasonable probability distribution for utterances in natural language
but we can still estimate their information content.

For that reason Kolmogorov proposed to define the information content
of a particular string in a purely algorithmic way.

A similar approach has been proposed a year earlier by Ray Solomonoff
(1926–2009), who sought for optimal inductive inference.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Kolmogorov complexity—analogue of Shannon entropy

The fundamental object of algorithmic information theory is Kolmogorov
complexity of a string, an analogue of Shannon entropy.

It is defined as the length of the shortest program for a Turing machine
such that the machine prints out the string and halts.

The Turing machine itself is defined as a deterministic finite state
automaton which moves along one or more infinite tapes filled with
symbols from a fixed finite alphabet and which may read and write
individual symbols.

The concrete value of Kolmogorov complexity depends on the used Turing
machine but many properties of Kolmogorov complexity are universal.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Prefix-free Kolmogorov complexity

A particular definition of Kolmogorov complexity, called prefix-free
Kolmogorov complexity, is convenient to discuss links between
Kolmogorov complexity and entropy.

The fundamental idea is to force that the accepted programs form
a prefix-free set.

Here we will use the construction by Gregory Chaitin (1947–), introduced
in 1975.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Prefix-free Turing machine

We will consider a machine that has two tapes:

1 a bidirectional tape (Xi)i∈Z filled with symbols 0, 1, and B,

2 a unidirectional tape (Yk)k∈N filled with symbols 0 and 1.

The machine head moves in both directions along tape (Xi)i∈Z and only in the
direction of growing k along tape (Yk)k∈N.
Tape (Xi)i∈Z is both read and written, tape (Yk)k∈N is read only.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Formal definition

Formally, a Turing machine is defined as a 6-tuple T = (Q, s, h, Γ,B, δ),
where

1 Q is a finite, nonempty set of states,

2 s ∈ Q is the start state,

3 h ∈ Q is the halt state,

4 Γ = {0, 1} is a finite, nonempty set of symbols,

5 B ∈ Γ is the blank symbol,

6 δ : Q \ {h} × Γ× Γ ∪ {B} → Q× {0,R} × Γ ∪ {B} × {L, 0,R} is a
function called a transition function.

The set of such machines is denoted S.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

From formal description to machine operation

The machine operation is as follows:

Initially, the machine is in state s and reads Y1 and X1.

Subsequently, the machine shifts in discrete steps along the tape in the
way prescribed by the transition function:

If the machine is in state a and reads symbols y and x then, for
δ(a, y, x) = (a′,MY, x′,MX), the machine:

moves along tape (Yi)i∈Z one symbol to the right or does not
move if MY = R or MY = 0,
writes symbol x′ on tape (Xi)i∈Z,
moves along tape (Xi)i∈Z one symbol to the left, to the right
or does not move if MX = L, MX = R, or MX = 0,
assumes state a′ in the next step.

This procedure takes place until the machine reaches the halt state h.
Then the computation stops.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Halting on an input

We say that machine S ∈ S halts on input (p, q) ∈ Γ∗ × (Γ∗ ∪ ΓN) and
returns w ∈ Γ∗ if:

(A) The head in the start state reads symbols Y1 and X1, and the initial state
of the tapes is Y|p|1 = p and X|q|+11 = qB or X∞1 = q if q is an infinite
sequence. Besides we put Xi = 0 for i < 1 and i > |q| + 1 if q is finite.

(B) The head in the halt state reads symbols Y|p| and Xj, and the final state

of the tape (Xi)i∈Z is X|w|+jj = wB.

Assuming that condition (A) is satisfied, we write

S(p|q) =

{
w, if condition (B) is satisfied,

∞, if condition (B) is not satisfied for any w ∈ Γ∗.

It can be easily seen that for a given q the set of strings p such that machine S
halts on input (p, q) is prefix-free. Such strings are called self-delimiting
programs.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Prefix-free Turing machine (II)

0 0 0 0 0 1 1 B 0 0

S

01 1 01 1

0 0 01 1 B 0

S

01 1 01 1

1 1B

The initial and the final state of machine S for S(11010|011) = 01.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Prefix-free complexity

Definition (prefix-free complexity)

Prefix-free conditional Kolmogorov complexity KS(w|q) of a string w ∈ Γ∗

given string q ∈ Γ∗ and machine S ∈ S is defined as

KS(w|q) := min
p∈Γ∗
{|p| : S(p|q) = w} .

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Universal machines

Definition (universal machine)

Machine V ∈ S is called universal if for each machine S ∈ S there exists
a string u ∈ Γ∗ such that

V(up|q) = S(p|q)

for all p ∈ Γ∗ and q ∈ Γ∗ ∪ ΓN.

Universal machines exist. The proof is simple but tedious.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Invariance theorem

Theorem (invariance theorem)

For any two universal machines V and V′ there exists a constant c such that

|KV(w|q)− KV′(w|q)| ≤ c

for any w ∈ Γ∗ and q ∈ Γ∗ ∪ ΓN.

Proof

We have V(up|q) = V′(p|q) and V′(u′p|q) = V(p) for certain strings u and
u′. Hence KV(w|q) ≤ KV′(w|q) + |u| and KV′(w|q) ≤ KV(w|q) + |u′|.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Prefix-free complexity

Definition (prefix-free complexity II)

Let V ∈ S be a certain universal machine. We put

K(w|q) := KV(w|q).

This quantity is called prefix-free conditional Kolmogorov complexity.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Unconditional complexity

Unconditional complexities are defined as

KS(w) := KS(w|λ),

K(w) := K(w|λ),

where λ is the empty string.

Similarly, we use V(p) := V(p|λ) for any other function V.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Towards complexity of arbitrary objects

We want to discuss of objects such as numbers or tuples of numbers and
sequences.

We will define the complexity of such object as the complexity of the
corresponding sequence, where the sequence is given by a fixed encoding
of the object.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Complexities of objects defined

Let A be a set of discrete objects, such as A = Q∗, and let φ : A→ Γ∗

be some bijection.

Additionally, we put φ(∞) :=∞, where∞ denotes the indefinite value.

Let B be a set of not necessarily discrete objects, such as B = RN, and
let ψ : B→ Γ∗ ∪ ΓN be some bijection.

Additionally, we put ψ(∞) :=∞.

For a machine S ∈ S, a ∈ A, and b ∈ B, we define

S(a|b) := S(φ(a)|ψ(b)).

The Kolmogorov complexity of objects will be defined as

KS(a|b) := KS(φ(a)|ψ(b)),

K(a|b) := K(φ(a)|ψ(b)).

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Computable discrete functions

The Kolmogorov complexity of a discrete partial function f : B→ A ∪ {∞} is
defined as

K(f) := min
p∈Γ∗
{|p| : ∀u∈BV(p|u) = f(u)} .

Definition (computable discrete function)

A function f : B→ A ∪ {∞} is called computable if K(f) <∞.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Semi-computable real functions

Definition (lower semicomputable real function)

A function f : B→ R is called lower semicomputable if there is a computable
function A : B× N→ Q which satisfies A(x, k + 1) ≥ A(x, k) and

∀x∈B lim
k→∞

A(x, k) = f(x).

Definition (upper semicomputable real function)

A function f : B→ R is called upper semicomputable if there is a computable
function A : B× N→ Q which satisfies A(x, k + 1) ≤ A(x, k) and

∀x∈B lim
k→∞

A(x, k) = f(x).

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Computable real functions

Definition (computable real function)

A function f : B→ R is called computable if there is a computable function
A : B× N→ Q which satisfies

∀x∈B |f(x)− A(x, k)| < 1/k.

We put

K(f) := min
A
K(A).

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Further notations

We will write p(x)
+
< q(x) and p(x)

+
> q(x) if there exists a constant c such

that p(x) ≤ q(x) + c and p(x) ≥ q(x) + c holds respectively for all x. We will

write p(x)
+
= q(x) when we have both p(x)

+
< q(x) and p(x)

+
> q(x).

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

A bound for Kolmogorov complexity

Theorem

K(w|q)
+
< |w| + 2 log |w| .

Proof

There is a prefix-free machine S which satisfies S(bw|q) = w, where b is a
prefix-free binary code for |w|. The length of this code can be made as small as
2 log |w|. The machine works as follows. First it reads the binary codeword b
from the unidirectional tape. Then it copies string w to the bidirectional tape.
After copying the last symbol of w the machine halts because it knows its
length from reading codeword b. Hence we have the desired bound.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Further inequalities (I)

Theorem

K(w|u)
+
< K(w)

+
< K(〈u,w〉).

Proof

K(w|u)
+
< K(w) because a certain program that computes w given u has form

“ignore u and execute the shortest program that computes w”.

K(w)
+
< K(〈u,w〉) because a certain program that computes w has form

“execute the shortest program that computes 〈u,w〉 and compute w from
〈u,w〉”.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Further inequalities (II)

Theorem

K(uw)
+
< K(〈u,w〉)

+
< K(u) + K(w|u)

+
< K(u) + K(w).

Proof

K(uw)
+
< K(〈u,w〉) because a certain program that computes uw has form

“execute the shortest program that computes 〈u,w〉 and compute uw from
〈u,w〉”.

Similarly, K(〈u,w〉)
+
< K(u) + K(w|u) because a certain program that

computes 〈u,w〉 has form “execute the shortest program that computes u and
the shortest program that computes w given u and from that compute 〈u,w〉”.

The last inequality follows from K(w|u)
+
< K(w).

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Further inequalities (III)

Theorem

K(f(w))
+
< K(w) + K(f).

Proof

The inequality follows from the fact that a certain program that computes f(w)
has form “execute the shortest program that computes w and to the result
apply the program that computes f(w) given w”.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Incompressible strings

A string xn1 will be called c-incompressible if K(xn1) ≥ n− c.
There are infinitely many incompressible strings.

Theorem

There are at least 2n − 2n−c + 1 distinct c-incompressible strings of length n.

Proof

There are at most 2n−c − 1 programs of length smaller than n− c and there
are 2n strings of length n. Subtracting the latter from the former, we obtain
the desired bound.

In particular, there is at least one 0-incompressible string of length n and at
least a half of strings of length n is 1-incompressible.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Halting probability

Lemma

Consider halting probability

Ω =
∑

p: V(p)6=∞

2−|p|.

Let Ωn1 be the first n digits of Ω and let p be a string of a length smaller than
n. Given Ωn1 we may decide whether machine V stops on input p.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Proof of the lemma

We have 0.Ωn1 ≤ Ω < 0.Ωn1 + 2−n. Let us simulate the computation of
machine V on all inputs shorter than n. Namely, in the i-th step we execute the
j-th step of computations for all k-th inputs which satisfy j + k = i. In the
beginning of the simulations, we set the approximation of Ω as Ω′ := 0. When
V halts for a certain input p, we improve the approximation by setting
Ω′ := Ω′ + 2−|p|. At a certain instant, Ω′ becomes equal or greater than
0.Ωn1. Then it becomes clear that machine V will not halt on any other input
shorter than n and we may decide on the halting problem.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Ω is incompressible

Theorem

We have K(Ωn1)
+
> n.

Proof

By the previous lemma, we can enumerate, given Ωn1, all programs shorter than
n for which machine V halts. For any w which is not computed by these
programs we have K(w) > n. We can construct a computable function φ
which computes one of these w given Ωn1. Hence K(φ(Ωn1)) ≥ n, which implies
K(Ωn1) ≥ n− c for a certain c.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Incomputability of Kolmogorov complexity

Theorem

Kolmogorov complexity K(·) is not a computable function.

Proof

Assume that there exists a program q which computes K(w) for any w. Then
there exists a program p which uses q as a subroutine to print out the shortest
string w such that K(w) > |p|. Namely, such a program p inspects strings w
sorted according to their length, computes K(w) using subroutine q and checks
whether K(w) > |p|. It is obvious that this inequality will hold for a certain w
because K(w) is unbounded. But by the definition of Kolmogorov complexity,
we have K(w) ≤ |p| for the same string. Hence our assumption about the
existence of program q was false.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Towards information-theoretic Gödel theorem

A similar search for the shortest element appears in the proof of the
information-theoretic Gödel theorem, another fundamental result in the
algorithmic information theory.

A formal inference system is a finite collection of axioms and inference
rules. The system is called consistent if it is not possible to prove both
a statement and its negation, whereas the system is called sound if only
true propositions can be proved. (Thus a sound system is consistent.)

According to the information-theoretic Gödel theorem, in any sound
formal inference system it is not possible to prove incompressibility of any
string which is substantially longer than the definition of this formal
system.

Project co-financed by the European Union
within the framework of the European Social Fund

Prefix-free complexity Properties of Kolmogorov complexity

Information-theoretic Gödel theorem

Theorem (information-theoretic Gödel theorem)

For a sound formal inference system, there exists a constant M such that
propositions “K(w) > M” are unprovable in the system.

Proof

Suppose that for any number M there exists a proof of proposition
“K(w) > M”. Then we may construct a program of length of L which searches
all proofs of the formal system to find the first proof that a certain string w has
the complexity greater than M and then prints out that string. Then we have

K(w) ≤ L. Since L
+
< 2 logM, we obtain contradiction for sufficiently large M.

Project co-financed by the European Union
within the framework of the European Social Fund

	Prefix-free complexity
	Properties of Kolmogorov complexity

