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Parametric family

Definition (parametric family)

@ A parametric family of distributions is a family of probability distributions
indexed by parameter @ € @, which specify probabilities of a stochastic
process (Xi)Z_ oo -

@ For discrete variables we write these distributions as
P(X1 = x1/6).

@ For real variables, we assume that there exists a probability density
function p(x7|@) which satisfies

P(XI € Al0) = / p(x3]0)dx],
A

where [ dx] is the integral with respect to the n-dimensional Lebesgue
measure.
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Random samples

@ Usually, parameter 0 is a single real number or a vector.

@ It is also usually assumed that variables X; are probabilistically
independent (given the parameter ). In that case, we call X} a random
sample of length n drawn from distribution P(Xi = x;|0) or p(xi|0),
respectively. The first case will be called a discrete random sample,
whereas the second will be called a real random sample.
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Examples of parametric families
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A random sample of length n drawn from Bernoulli distributions with success
probability 8 has probability distribution

P(X] =xi|0) = [Jo (1 — 0)' ™,

i=1

where x; € {0,1} and 6 € (0, 1).

A random sample of length n drawn from normal (or Gauss) distributions with
expectation p and variance o2 has density

1 (xi — p)?
oV 2w P [_ 202 ’

p(xi|p, o) = H
i=1

where x; € (—o0, ), u € (—o0,00), and o € (0, co).
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Discrete exponential families

Definition (exponential family (discrete))

Let function p : X — (0, oo) satisfy > 5 p(x) < oo. Having functions
T : X — R, we denote the canonical sum

20) = 3o o0 (om0
xEX I=1
and define s-parameter exponential family

P(X] = x116) = [ [ p(x) exp (Z aTi(x) — In Z(e)>
1

i=1 1=

for 8 = (01,02, ...,6) € O := {w € R®°: Z(w) < oo}
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Bernoulli distributions as exponential family

Bernoulli distributions form an exponential family because

P(X] = x}|6) = HO"‘(I — )

= H exp (x. In—5 + In(1 — o))

= H exp (nxi — InZ(n)),

(7] ) ) .
where 7. = In 77 and Z(n) =1 — 6. Function n = n(0) is called the logit
function.
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Real exponential families

Definition (exponential family (real))

Let function p : R — (0, co) satisfy [ p(x)dx < oco. Having functions
T, : X — R, we denote the canonical sum

Z(0) = /p(x) exp <Z 0|T|(x)> dx

and define s-parameter exponential family

n S

p(x110) = [ [ p(xi) exp (Z OiTi(xi) — In Z(‘9)>
i=1 =1

for 6 = (61,62, ...,0s) € © := {6’ € R*: Z(0’) < co}. The s-parameter

exponential family is called of full rank if the interior of © is not empty and T,

do not satisfy a linear constraint of the form > ; aTi(xi) = c for a constant c.

<
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Normal distributions as exponential family

Normal distributions form an exponential family because

n . 2
p(xilp, o) =] L e {—%}

im oV 2T
4 1 {_ X i uz]

= ﬁexp (ozxi2 + Bxi — InZ(«, ,3)) 5
i=1

where o = —31;, B = 4, and Z(a, B) = oV 2w exp [%]
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The problem of maximum entropy

The problem of maximum entropy modeling is:

Problem (maximum entropy)

Find the probability density p that maximizes entropy
H(p) = = [ p(x)1n p(x)ex 1)
given constraints:
/p(x)dx =1, (2)

/p(x)Ti(x)dx =a, 1<1<m (3)

Similar problems of maximizing entropy given some constraints appear in many
applications, in machine learning in particular.
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The solution of maximum entropy

Theorem

If there exists density

p*(x) = exp [)\3 + Z ATi(x) |, (4)

i=1

where A are chosen so that p* satisfies conditions (2)—(3), then p* maximizes
entropy (1) on the space of probability densities that satisfy (2)—(3).
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Some remarks

@ The solution of the maximum entropy problem for discrete distributions is
analogous, with probabilities replacing probability densities.

@ In certain maximization problems, there exists no p* that satisfies
(2)=(3). In such cases there is no distribution having the maximal
entropy. This happens for example for constraints kap(x)dx = o,
where k = 0,1, 2, 3. In that case we would obtain

p(x) = exp [)\o + A1x + Aox + )\3’(3} )

which cannot be normalized for any A3 # 0 because p(x) tends to
infinity for either for x — oo or x — —oo0.
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Let p satisfy constraints (2)—(3). We obtain

H(p) = = [ p(x)In p(x)cx

=D(elle") = [ p(x)In p* (x)ex

— [ ot np" ()ex
Xo + z’“: )\?‘T;(x)] dx

- / p(x)
_ / p*(x) [AE DY Ti(X)] dx
~ [ 500" 9 = H(o"),

IA

with the equality if and only if p and p™* are equal.
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Langrangian function

The remaining problem is to find the suitable \;".

Consider the density px and the Lagrangian function L(\) defined

pr(x) = exp Z ATi(x) —InZ(\) |, (5)

i=1

L(A) = InZ(A) — Xk: i, (6)

where the canonical sum Z(X) = [ exp [, AiTi(x)] dx.
Function L(X) has a single minimum and X* = (A{, ..., Ay) for which (5)
satisfies conditions (3) is the solution of

A* = argmin L()\). (7)
A
v
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We have

AL(A 1 "

/ PpA()Ti(x)dx — .

Hence the Lagrangian has an extremum if and only if px satisfies conditions
(3). Further analysis shows that there is only one extremum and it is a
minimum because the Lagrangian is convex.
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Indeed we obtain

L) _ 9
ONOX — O

Z )\iTi(X)
i=1

dx]

1
m / Ti(x) exp

1 m
= —-—" Tk (x) ex AiTi(x) | dx
ZO)P [ Toes 2T ]
X /Tj(x) exp [i AiTi(x) dx:|

1
+ 205 / Te(x)Ti(x) exp dx.

Z AiTi(x)

Writing ET = [ pa(x)T(x)dx, we have

a’L(\)
—E(TTe) —ET,ETc=E [T —ET;] [T« — ET4].
AN O
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Proof (finished)

We observe that the second derivative of the Lagrangian is a covariance matrix,
which is nonnegative definite, i.e.,

2

m

8L(N)
Za’axax a=E ZaJ[T ET;]| >0.

Hence the Lagrangian is convex and the there is only one extremum.
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Recapitulation

@ Coefficients A{" can be found by minimizing Lagrangian L().
@ In many problems of machine learning this can be only done numerically.

@ The suitable minimization can be performed using generic minimization
algorithms, e.g. minimization by conjugate gradients, or algorithms
dedicated for the Lagrangian, e.g. the iterative scaling.
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Improved iterative scaling

Let us assume that
Ti(X) 2 0

Then we can minimize Lagrangian L(A) via the improved iterative scaling.

Let 8 = (d1,...,0m). By inequality logy <y — 1 we have

Z(»)

= /p)\(x) exp [Z 6;Ti(x)] —1- Z diaidx.
i=1 i=1

LA +0) — L) < A, 0) = 2O+ N,
i=1
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Improved iterative scaling (continued)

Function y — expy is convex, hence exp [>" ) mgi| < >, niexpgi for
m >0, 3" ni = 1 by the Jensen inequality. Then putting

T+(x) = Y it; Ti(x) and setting ny = Ti(x)/T+(x) and g = &T4(x) we
obtain

AN, 8) < B(A,0) := /p)\(x) > TTL((’;)) exp [Ty (x)]dx — 1 — ) G
i=1

i=1

The derivatives of B(A, d) w.r.t § are

%ﬁ;‘:é) =B'(\, &) = /pA(X)Ti(X) exp [6: T4 (x)] dx — o,
2
%{;’6) =B"(\, &) = /pA(X)Ti(X)T+(X) exp [6i T4 (x)] dx.

In the improved iterative scaling algorithm, we approximate finding the
minimum of L(A) via stepwise finding of the minima of B(A, §) using the
Newton’s method.
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Improved iterative scaling (continued)

The minimum of B(X, d) corresponds to condition
B'(\,86)=0

for all i. In the Newton's method, the zero of the derivative of B’(\, &i) can be
found by iteration

5 & — B 0)
i [N 7 3
B (\, &)
until sufficient convergence is observed.
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Improved iterative scaling (finished)

procedure IMPROVED ITERATIVE SCALING
forie {1,...,k} do
>\i +~—0
end for
repeat
fori e {1,...,k} do
5i ~—1 ,( 6)
. B’(A, 6
while 7B"()\,6i)
B’(X, &)
6 — & — B (A, 01
end while

Ai <— XN+ 6
end for
until max || > €
ie{1,...,k}
forie {1,...,k} do
return \;
end for
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