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Parametric family

Definition (parametric family)

A parametric family of distributions is a family of probability distributions
indexed by parameter θ ∈ Θ, which specify probabilities of a stochastic
process (Xi)∞i=−∞.

For discrete variables we write these distributions as

P(Xn1 = xn1|θ).

For real variables, we assume that there exists a probability density
function ρ(xn1|θ) which satisfies

P(Xn1 ∈ A|θ) =

∫
A
ρ(xn1|θ)dxn1,

where
∫
dxn1 is the integral with respect to the n-dimensional Lebesgue

measure.
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Random samples

1 Usually, parameter θ is a single real number or a vector.

2 It is also usually assumed that variables Xi are probabilistically
independent (given the parameter θ). In that case, we call Xn1 a random
sample of length n drawn from distribution P(Xi = xi|θ) or ρ(xi|θ),
respectively. The first case will be called a discrete random sample,
whereas the second will be called a real random sample.
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Examples of parametric families

A random sample of length n drawn from Bernoulli distributions with success
probability θ has probability distribution

P(Xn1 = xn1|θ) =
n∏
i=1

θxi(1− θ)1−xi ,

where xi ∈ {0, 1} and θ ∈ (0, 1).

A random sample of length n drawn from normal (or Gauss) distributions with
expectation µ and variance σ2 has density

ρ(xn1|µ, σ) =
n∏
i=1

1

σ
√
2π
exp

[
− (xi − µ)2

2σ2

]
,

where xi ∈ (−∞,∞), µ ∈ (−∞,∞), and σ ∈ (0,∞).
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Discrete exponential families

Definition (exponential family (discrete))

Let function p : X→ (0,∞) satisfy
∑
x∈X p(x) <∞. Having functions

Tl : X→ R, we denote the canonical sum

Z(θ) =
∑
x∈X

p(x) exp

(
s∑
l=1

θlTl(x)

)

and define s-parameter exponential family

P(Xn1 = xn1|θ) =
n∏
i=1

p(xi) exp

(
s∑
l=1

θlTl(xi)− ln Z(θ)

)

for θ = (θ1, θ2, ..., θs) ∈ Θ := {ω ∈ Rs : Z(ω) <∞}.
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Bernoulli distributions as exponential family

Example

Bernoulli distributions form an exponential family because

P(Xn1 = xn1|θ) =
n∏
i=1

θxi(1− θ)1−xi

=
n∏
i=1

exp
(
xi ln

θ

1− θ + ln(1− θ)

)

=
n∏
i=1

exp (ηxi − ln Z(η)) ,

where η = ln
θ

1− θ and Z(η) = 1− θ. Function η = η(θ) is called the logit

function.
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Real exponential families

Definition (exponential family (real))

Let function p : R→ (0,∞) satisfy
∫
p(x)dx <∞. Having functions

Tl : X→ R, we denote the canonical sum

Z(θ) =

∫
p(x) exp

(
s∑
l=1

θlTl(x)

)
dx

and define s-parameter exponential family

ρ(xn1|θ) =
n∏
i=1

p(xi) exp

(
s∑
l=1

θlTl(xi)− ln Z(θ)

)

for θ = (θ1, θ2, ..., θs) ∈ Θ := {θ′ ∈ Rs : Z(θ′) <∞}. The s-parameter
exponential family is called of full rank if the interior of Θ is not empty and Tl
do not satisfy a linear constraint of the form

∑s
l=1 alTl(xi) = c for a constant c.
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Normal distributions as exponential family

Example

Normal distributions form an exponential family because

ρ(xn1|µ, σ) =
n∏
i=1

1

σ
√
2π
exp

[
− (xi − µ)2

2σ2

]

=
n∏
i=1

1

σ
√
2π
exp

[
− x

2
i

2σ2
+
µxi
σ2
− µ2

2σ2

]

=
n∏
i=1

exp
(
αx2i + βxi − ln Z(α, β)

)
,

where α = − 1
2σ2 , β = µ

σ2
, and Z(α, β) = σ

√
2π exp

[
µ2

2σ2

]
.

Project co-financed by the European Union
within the framework of the European Social Fund



Parametric families Exponential families Maximum entropy

The problem of maximum entropy

The problem of maximum entropy modeling is:

Problem (maximum entropy)

Find the probability density ρ that maximizes entropy

H(ρ) = −
∫
ρ(x) ln ρ(x)dx (1)

given constraints: ∫
ρ(x)dx = 1, (2)∫

ρ(x)Ti(x)dx = αi, 1 ≤ 1 ≤ m. (3)

Similar problems of maximizing entropy given some constraints appear in many
applications, in machine learning in particular.
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The solution of maximum entropy

Theorem

If there exists density

ρ∗(x) = exp

[
λ∗0 +

m∑
i=1

λ∗i Ti(x)

]
, (4)

where λ∗i are chosen so that ρ∗ satisfies conditions (2)–(3), then ρ∗ maximizes
entropy (1) on the space of probability densities that satisfy (2)–(3).
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Some remarks

1 The solution of the maximum entropy problem for discrete distributions is
analogous, with probabilities replacing probability densities.

2 In certain maximization problems, there exists no ρ∗ that satisfies
(2)–(3). In such cases there is no distribution having the maximal
entropy. This happens for example for constraints

∫
xkρ(x)dx = αk,

where k = 0, 1, 2, 3. In that case we would obtain

ρ(x) = exp
[
λ0 + λ1x + λ2x

2 + λ3x
3
]
,

which cannot be normalized for any λ3 6= 0 because ρ(x) tends to
infinity for either for x→∞ or x→ −∞.
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Proof

Let ρ satisfy constraints (2)–(3). We obtain

H(ρ) = −
∫
ρ(x) ln ρ(x)dx

= −D(ρ||ρ∗)−
∫
ρ(x) ln ρ∗(x)dx

≤ −
∫
ρ(x) ln ρ∗(x)dx

= −
∫
ρ(x)

[
λ∗0 +

m∑
i=1

λ∗i Ti(x)

]
dx

= −
∫
ρ∗(x)

[
λ∗0 +

m∑
i=1

λ∗i Ti(x)

]
dx

= −
∫
ρ∗(x) ln ρ∗(x)dx = H(ρ∗),

with the equality if and only if ρ and ρ∗ are equal.
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Langrangian function

The remaining problem is to find the suitable λ∗i .

Theorem

Consider the density ρλ and the Lagrangian function L(λ) defined

ρλ(x) = exp

[
m∑
i=1

λiTi(x)− ln Z(λ)

]
, (5)

L(λ) = ln Z(λ)−
k∑
i=1

λiαi, (6)

where the canonical sum Z(λ) =
∫
exp

[∑m
i=1 λiTi(x)

]
dx.

Function L(λ) has a single minimum and λ∗ = (λ∗1 , ..., λ
∗
m) for which (5)

satisfies conditions (3) is the solution of

λ∗ = arg min
λ
L(λ). (7)
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Proof

We have

∂L(λ)

∂λj
=
1
Z(λ)

∫
Tj(x) exp

[
m∑
i=1

λiTi(x)

]
dx− αj

=

∫
ρλ(x)Tj(x)dx− αj.

Hence the Lagrangian has an extremum if and only if ρλ satisfies conditions
(3). Further analysis shows that there is only one extremum and it is a
minimum because the Lagrangian is convex.
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Proof (continued)

Indeed we obtain

∂2L(λ)

∂λj∂λk
=

∂

∂λk

[
1
Z(λ)

∫
Tj(x) exp

[
m∑
i=1

λiTi(x)

]
dx

]

= − 1

[Z(λ)]2

[∫
Tk(x) exp

[
m∑
i=1

λiTi(x)

]
dx

]

×
[∫
Tj(x) exp

[
m∑
i=1

λiTi(x)

]
dx

]

+
1
Z(λ)

∫
Tk(x)Tj(x) exp

[
m∑
i=1

λiTi(x)

]
dx.

Writing ET =
∫
ρλ(x)T(x)dx, we have

∂2L(λ)

∂λj∂λk
= E (TjTk)− ETjETk = E [Tj − ETj] [Tk − ETk] .
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Proof (finished)

We observe that the second derivative of the Lagrangian is a covariance matrix,
which is nonnegative definite, i.e.,

m∑
j,k=1

aj
∂2L(λ)

∂λj∂λk
ak = E

 m∑
j=1

aj [Tj − ETj]

2 ≥ 0.
Hence the Lagrangian is convex and the there is only one extremum.
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Recapitulation

Coefficients λ∗i can be found by minimizing Lagrangian L(λ).

In many problems of machine learning this can be only done numerically.

The suitable minimization can be performed using generic minimization
algorithms, e.g. minimization by conjugate gradients, or algorithms
dedicated for the Lagrangian, e.g. the iterative scaling.
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Improved iterative scaling

Let us assume that

Ti(x) ≥ 0.

Then we can minimize Lagrangian L(λ) via the improved iterative scaling.

Let δ = (δ1, ..., δm). By inequality log y ≤ y − 1 we have

L(λ + δ)− L(λ) ≤ A(λ, δ) :=
Z(λ + δ)

Z(λ)
− 1−

m∑
i=1

δiαi

=

∫
ρλ(x) exp

[
m∑
i=1

δiTi(x)

]
− 1−

m∑
i=1

δiαidx.
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Improved iterative scaling (continued)

Function y 7→ exp y is convex, hence exp
[∑m

i=1 nigi
]
≤
∑m
i=1 ni exp gi for

ni ≥ 0,
∑m
i=1 ni = 1 by the Jensen inequality. Then putting

T+(x) =
∑m
i=1 Ti(x) and setting ni = Ti(x)/T+(x) and gi = δiT+(x) we

obtain

A(λ, δ) ≤ B(λ, δ) :=

∫
ρλ(x)

m∑
i=1

Ti(x)
T+(x)

exp [δiT+(x)] dx− 1−
m∑
i=1

δiαi.

The derivatives of B(λ, δ) w.r.t δ are

∂B(λ, δ)

∂δi
= B′(λ, δi) :=

∫
ρλ(x)Ti(x) exp [δiT+(x)] dx− αi,

∂2B(λ, δ)

∂δ2i
= B′′(λ, δi) :=

∫
ρλ(x)Ti(x)T+(x) exp [δiT+(x)] dx.

In the improved iterative scaling algorithm, we approximate finding the
minimum of L(λ) via stepwise finding of the minima of B(λ, δ) using the
Newton’s method.
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Improved iterative scaling (continued)

The minimum of B(λ, δ) corresponds to condition

B′(λ, δi) = 0

for all i. In the Newton’s method, the zero of the derivative of B′(λ, δi) can be
found by iteration

δi ← δi −
B′(λ, δi)
B′′(λ, δi)

until sufficient convergence is observed.
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Improved iterative scaling (finished)

procedure Improved iterative scaling
for i ∈ {1, ..., k} do
λi ← 0

end for
repeat
for i ∈ {1, ..., k} do
δi ← 1
while

∣∣∣∣ B′(λ, δi)B′′(λ, δi)

∣∣∣∣ > ε do

δi ← δi −
B′(λ, δi)
B′′(λ, δi)

end while
λi ← λi + δi

end for
until max

i∈{1,...,k}
|δi| > ε

for i ∈ {1, ..., k} do
return λi

end for
end procedureProject co-financed by the European Union
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