Information Theory and Statistics Lecture 5: Exponential families

Łukasz Dębowski Idebowsk@ipipan.waw.pl

Ph. D. Programme 2013/2014

Parametric family

Definition (parametric family)

- A parametric family of distributions is a family of probability distributions indexed by parameter θ ∈ Θ, which specify probabilities of a stochastic process (X_i)[∞]_{i=-∞}.
- For discrete variables we write these distributions as

$$\mathsf{P}(\mathsf{X}_1^n=\mathsf{x}_1^n|\theta).$$

• For real variables, we assume that there exists a probability density function $\rho(\mathbf{x}_1^n|\theta)$ which satisfies

$$\mathsf{P}(\mathsf{X}_1^{\mathsf{n}} \in \mathsf{A}|\theta) = \int_{\mathsf{A}} \rho(\mathsf{x}_1^{\mathsf{n}}|\theta) \mathsf{d}\mathsf{x}_1^{\mathsf{n}},$$

where $\int dx_1^n$ is the integral with respect to the n-dimensional Lebesgue measure.

Random samples

- (1) Usually, parameter θ is a single real number or a vector.
- **2** It is also usually assumed that variables X_i are probabilistically independent (given the parameter θ). In that case, we call X_1^n a random sample of length **n** drawn from distribution $P(X_i = x_i | \theta)$ or $\rho(x_i | \theta)$, respectively. The first case will be called a *discrete random sample*, whereas the second will be called a *real random sample*.

Parametric families 000● Exponential families

Maximum entropy

Examples of parametric families

A random sample of length ${\bf n}$ drawn from Bernoulli distributions with success probability ${\boldsymbol \theta}$ has probability distribution

$$\mathsf{P}(\mathsf{X}_1^{\mathsf{n}} = \mathsf{x}_1^{\mathsf{n}}|\theta) = \prod_{i=1}^{\mathsf{n}} \theta^{\mathsf{x}_i} (1-\theta)^{1-\mathsf{x}_i},$$

where $x_i \in \{0,1\}$ and $\theta \in (0,1)$.

A random sample of length **n** drawn from normal (or Gauss) distributions with expectation μ and variance σ^2 has density

$$\rho(\mathbf{x}_1^n|\boldsymbol{\mu},\sigma) = \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(\mathbf{x}_i-\boldsymbol{\mu})^2}{2\sigma^2}\right],$$

where $\mathsf{x}_{\mathsf{i}} \in (-\infty,\infty)$, $\mu \in (-\infty,\infty)$, and $\sigma \in (0,\infty)$.

Discrete exponential families

Definition (exponential family (discrete))

Let function $p:\mathbb{X}\to (0,\infty)$ satisfy $\sum_{x\in\mathbb{X}}p(x)<\infty.$ Having functions $T_{i}:\mathbb{X}\to\mathbb{R},$ we denote the canonical sum

$$Z(\theta) = \sum_{x \in \mathbb{X}} p(x) \exp\left(\sum_{i=1}^{s} \theta_i T_i(x)\right)$$

and define s-parameter exponential family

$$\begin{split} \mathsf{P}(\mathsf{X}_1^{\mathsf{n}} = \mathsf{x}_1^{\mathsf{n}} | \theta) &= \prod_{i=1}^{\mathsf{n}} \mathsf{p}(\mathsf{x}_i) \exp\left(\sum_{l=1}^{\mathsf{s}} \theta_l \mathsf{T}_l(\mathsf{x}_i) - \ln \mathsf{Z}(\theta)\right) \\ \text{for } \theta &= (\theta_1, \theta_2, ..., \theta_{\mathsf{s}}) \in \Theta := \{\omega \in \mathbb{R}^{\mathsf{s}} : \mathsf{Z}(\omega) < \infty\}. \end{split}$$

Bernoulli distributions as exponential family

Example

Bernoulli distributions form an exponential family because

$$\begin{split} \mathsf{P}(\mathsf{X}_{1}^{\mathsf{n}} = \mathsf{x}_{1}^{\mathsf{n}} | \theta) &= \prod_{i=1}^{\mathsf{n}} \theta^{\mathsf{x}_{i}} (1-\theta)^{1-\mathsf{x}_{i}} \\ &= \prod_{i=1}^{\mathsf{n}} \exp\left(\mathsf{x}_{i} \ln \frac{\theta}{1-\theta} + \ln(1-\theta)\right) \\ &= \prod_{i=1}^{\mathsf{n}} \exp\left(\eta \mathsf{x}_{i} - \ln \mathsf{Z}(\eta)\right), \end{split}$$

where $\eta = \ln \frac{\theta}{1-\theta}$ and $Z(\eta) = 1 - \theta$. Function $\eta = \eta(\theta)$ is called the logit function.

Real exponential families

Definition (exponential family (real))

Let function $p:\mathbb{R}\to (0,\infty)$ satisfy $\int p(x)dx<\infty.$ Having functions $T_l:\mathbb{X}\to\mathbb{R},$ we denote the canonical sum

$$Z(\theta) = \int p(x) \exp\left(\sum_{l=1}^{s} \theta_l T_l(x)\right) dx$$

and define s-parameter exponential family

$$\rho(\mathbf{x}_1^n|\boldsymbol{\theta}) = \prod_{i=1}^n p(\mathbf{x}_i) \exp\left(\sum_{l=1}^s \theta_l \mathsf{T}_l(\mathbf{x}_i) - \ln \mathsf{Z}(\boldsymbol{\theta})\right)$$

for $\theta = (\theta_1, \theta_2, ..., \theta_s) \in \Theta := \{\theta' \in \mathbb{R}^s : Z(\theta') < \infty\}$. The s-parameter exponential family is called of *full rank* if the interior of Θ is not empty and T_1 do not satisfy a linear constraint of the form $\sum_{i=1}^s a_i T_i(x_i) = c$ for a constant c.

Normal distributions as exponential family

Example

W

Normal distributions form an exponential family because

$$\rho(\mathbf{x}_{1}^{n}|\mu,\sigma) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(\mathbf{x}_{i}-\mu)^{2}}{2\sigma^{2}}\right]$$
$$= \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{\mathbf{x}_{i}^{2}}{2\sigma^{2}} + \frac{\mu\mathbf{x}_{i}}{\sigma^{2}} - \frac{\mu^{2}}{2\sigma^{2}}\right]$$
$$= \prod_{i=1}^{n} \exp\left(\alpha\mathbf{x}_{i}^{2} + \beta\mathbf{x}_{i} - \ln \mathbf{Z}(\alpha,\beta)\right),$$
where $\alpha = -\frac{1}{2\sigma^{2}}, \beta = \frac{\mu}{\sigma^{2}}$, and $\mathbf{Z}(\alpha,\beta) = \sigma\sqrt{2\pi} \exp\left[\frac{\mu^{2}}{2\sigma^{2}}\right].$

The problem of maximum entropy

The problem of maximum entropy modeling is:

Find the probability density ho that maximizes entropy

$$H(\rho) = -\int \rho(x) \ln \rho(x) dx$$
 (1)

given constraints:

$$\int \rho(\mathbf{x}) d\mathbf{x} = \mathbf{1},\tag{2}$$

$$\int \rho(\mathbf{x}) \mathsf{T}_{\mathbf{i}}(\mathbf{x}) \mathsf{d}\mathbf{x} = \alpha_{\mathbf{i}}, \quad 1 \le 1 \le \mathsf{m}. \tag{3}$$

Similar problems of maximizing entropy given some constraints appear in many applications, in machine learning in particular.

The solution of maximum entropy

Theorem

If there exists density

$$\rho^*(\mathbf{x}) = \exp\left[\lambda_0^* + \sum_{i=1}^m \lambda_i^* \mathsf{T}_i(\mathbf{x})\right],\tag{4}$$

where λ_i^* are chosen so that ρ^* satisfies conditions (2)–(3), then ρ^* maximizes entropy (1) on the space of probability densities that satisfy (2)–(3).

Some remarks

- The solution of the maximum entropy problem for discrete distributions is analogous, with probabilities replacing probability densities.
- 2 In certain maximization problems, there exists no ρ^* that satisfies (2)-(3). In such cases there is no distribution having the maximal entropy. This happens for example for constraints $\int \mathbf{x}^k \rho(\mathbf{x}) d\mathbf{x} = \alpha_k$, where $\mathbf{k} = 0, 1, 2, 3$. In that case we would obtain

$$\rho(\mathbf{x}) = \exp\left[\lambda_0 + \lambda_1 \mathbf{x} + \lambda_2 \mathbf{x}^2 + \lambda_3 \mathbf{x}^3\right],$$

which cannot be normalized for any $\lambda_3 \neq 0$ because $\rho(\mathbf{x})$ tends to infinity for either for $\mathbf{x} \rightarrow \infty$ or $\mathbf{x} \rightarrow -\infty$.

Parametric families

Maximum entropy

Proof

Let ρ satisfy constraints (2)–(3). We obtain

$$\begin{split} \mathsf{H}(\rho) &= -\int \rho(\mathsf{x}) \ln \rho(\mathsf{x}) \mathsf{d}\mathsf{x} \\ &= -\mathsf{D}(\rho || \rho^*) - \int \rho(\mathsf{x}) \ln \rho^*(\mathsf{x}) \mathsf{d}\mathsf{x} \\ &\leq -\int \rho(\mathsf{x}) \ln \rho^*(\mathsf{x}) \mathsf{d}\mathsf{x} \\ &= -\int \rho(\mathsf{x}) \left[\lambda_0^* + \sum_{i=1}^m \lambda_i^* \mathsf{T}_i(\mathsf{x}) \right] \mathsf{d}\mathsf{x} \\ &= -\int \rho^*(\mathsf{x}) \left[\lambda_0^* + \sum_{i=1}^m \lambda_i^* \mathsf{T}_i(\mathsf{x}) \right] \mathsf{d}\mathsf{x} \\ &= -\int \rho^*(\mathsf{x}) \ln \rho^*(\mathsf{x}) \mathsf{d}\mathsf{x} = \mathsf{H}(\rho^*), \end{split}$$

with the equality if and only if ho and ho^* are equal.

Langrangian function

The remaining problem is to find the suitable λ_i^* .

Theorem

Consider the density ho_{λ} and the Lagrangian function $L(\lambda)$ defined

$$\rho_{\lambda}(\mathbf{x}) = \exp\left[\sum_{i=1}^{m} \lambda_{i} \mathsf{T}_{i}(\mathbf{x}) - \ln \mathsf{Z}(\lambda)\right], \qquad (5)$$

$$L(\lambda) = \ln Z(\lambda) - \sum_{i=1}^{k} \lambda_i \alpha_i, \qquad (6)$$

where the canonical sum $Z(\lambda) = \int exp \left[\sum_{i=1}^{m} \lambda_i T_i(x)\right] dx$. Function $L(\lambda)$ has a single minimum and $\lambda^* = (\lambda_1^*, ..., \lambda_m^*)$ for which (5) satisfies conditions (3) is the solution of

$$\lambda^* = \operatorname*{arg\,min}_{\lambda} \mathsf{L}(\lambda). \tag{7}$$

We have

$$\begin{split} \frac{\partial \mathsf{L}(\lambda)}{\partial \lambda_{j}} &= \frac{1}{\mathsf{Z}(\lambda)} \int \mathsf{T}_{j}(\mathsf{x}) \exp\left[\sum_{i=1}^{m} \lambda_{i} \mathsf{T}_{i}(\mathsf{x})\right] \mathsf{d}\mathsf{x} - \alpha_{j} \\ &= \int \rho_{\lambda}(\mathsf{x}) \mathsf{T}_{j}(\mathsf{x}) \mathsf{d}\mathsf{x} - \alpha_{j}. \end{split}$$

Hence the Lagrangian has an extremum if and only if ρ_{λ} satisfies conditions (3). Further analysis shows that there is only one extremum and it is a minimum because the Lagrangian is convex.

Parametric families

Exponential families 0000

Maximum entropy

Proof (continued)

Indeed we obtain

$$\begin{split} \frac{\partial^2 \mathsf{L}(\lambda)}{\partial \lambda_j \partial \lambda_k} &= \frac{\partial}{\partial \lambda_k} \left[\frac{1}{\mathsf{Z}(\lambda)} \int \mathsf{T}_j(x) \exp\left[\sum_{i=1}^m \lambda_i \mathsf{T}_i(x)\right] \mathsf{d}x \right] \\ &= -\frac{1}{[\mathsf{Z}(\lambda)]^2} \left[\int \mathsf{T}_k(x) \exp\left[\sum_{i=1}^m \lambda_i \mathsf{T}_i(x)\right] \mathsf{d}x \right] \\ &\times \left[\int \mathsf{T}_j(x) \exp\left[\sum_{i=1}^m \lambda_i \mathsf{T}_i(x)\right] \mathsf{d}x \right] \\ &+ \frac{1}{\mathsf{Z}(\lambda)} \int \mathsf{T}_k(x) \mathsf{T}_j(x) \exp\left[\sum_{i=1}^m \lambda_i \mathsf{T}_i(x)\right] \mathsf{d}x. \end{split}$$

Writing $\mathbf{E} \mathbf{T} = \int \rho_{\lambda}(\mathbf{x}) \mathbf{T}(\mathbf{x}) d\mathbf{x}$, we have $\frac{\partial^2 \mathbf{L}(\lambda)}{\partial \lambda_j \partial \lambda_k} = \mathbf{E} (\mathbf{T}_j \mathbf{T}_k) - \mathbf{E} \mathbf{T}_j \mathbf{E} \mathbf{T}_k = \mathbf{E} [\mathbf{T}_j - \mathbf{E} \mathbf{T}_j] [\mathbf{T}_k - \mathbf{E} \mathbf{T}_k].$

We observe that the second derivative of the Lagrangian is a covariance matrix, which is nonnegative definite, i.e.,

$$\sum_{j,k=1}^m a_j \frac{\partial^2 L(\lambda)}{\partial \lambda_j \partial \lambda_k} a_k = \mathsf{E} \, \left[\sum_{j=1}^m a_j \left[\mathsf{T}_j - \mathsf{E} \, \mathsf{T}_j \right] \right]^2 \geq 0.$$

Hence the Lagrangian is convex and the there is only one extremum.

Recapitulation

- Coefficients λ_i^* can be found by minimizing Lagrangian $L(\lambda)$.
- In many problems of machine learning this can be only done numerically.
- The suitable minimization can be performed using generic minimization algorithms, e.g. minimization by conjugate gradients, or algorithms dedicated for the Lagrangian, e.g. the iterative scaling.

Improved iterative scaling

Let us assume that

 $T_i(x) \geq 0.$

Then we can minimize Lagrangian $L(\lambda)$ via the improved iterative scaling. Let $\delta = (\delta_1, ..., \delta_m)$. By inequality $\log y \leq y - 1$ we have

$$\begin{split} \mathsf{L}(\lambda+\delta)-\mathsf{L}(\lambda) &\leq \mathsf{A}(\lambda,\delta) := \frac{\mathsf{Z}(\lambda+\delta)}{\mathsf{Z}(\lambda)} - 1 - \sum_{i=1}^{m} \delta_{i} \alpha_{i} \\ &= \int \rho_{\lambda}(\mathsf{x}) \exp\left[\sum_{i=1}^{m} \delta_{i} \mathsf{T}_{i}(\mathsf{x})\right] - 1 - \sum_{i=1}^{m} \delta_{i} \alpha_{i} \mathsf{d} \mathsf{x}. \end{split}$$

Exponential families

Maximum entropy

Improved iterative scaling (continued)

Function $y\mapsto exp\,y$ is convex, hence $exp\left[\sum_{i=1}^m n_ig_i\right]\leq \sum_{i=1}^m n_i\,exp\,g_i$ for $n_i\geq 0,\,\sum_{i=1}^m n_i=1$ by the Jensen inequality. Then putting $T_+(x)=\sum_{i=1}^m T_i(x)$ and setting $n_i=T_i(x)/T_+(x)$ and $g_i=\delta_iT_+(x)$ we obtain

$$\mathsf{A}(\lambda,\delta) \leq \mathsf{B}(\lambda,\delta) := \int \rho_{\lambda}(\mathsf{x}) \sum_{i=1}^{m} \frac{\mathsf{T}_{i}(\mathsf{x})}{\mathsf{T}_{+}(\mathsf{x})} \exp\left[\delta_{i}\mathsf{T}_{+}(\mathsf{x})\right] \mathsf{d}\mathsf{x} - 1 - \sum_{i=1}^{m} \delta_{i}\alpha_{i}.$$

The derivatives of $\mathsf{B}(\lambda, \delta)$ w.r.t δ are

$$\begin{split} &\frac{\partial \mathsf{B}(\lambda,\delta)}{\partial \delta_{i}}=\mathsf{B}'(\lambda,\delta_{i}):=\int \rho_{\lambda}(\mathsf{x})\mathsf{T}_{i}(\mathsf{x})\exp\left[\delta_{i}\mathsf{T}_{+}(\mathsf{x})\right]\mathsf{d}\mathsf{x}-\alpha_{i},\\ &\frac{\partial^{2}\mathsf{B}(\lambda,\delta)}{\partial \delta_{i}^{2}}=\mathsf{B}''(\lambda,\delta_{i}):=\int \rho_{\lambda}(\mathsf{x})\mathsf{T}_{i}(\mathsf{x})\mathsf{T}_{+}(\mathsf{x})\exp\left[\delta_{i}\mathsf{T}_{+}(\mathsf{x})\right]\mathsf{d}\mathsf{x}. \end{split}$$

In the improved iterative scaling algorithm, we approximate finding the minimum of $L(\lambda)$ via stepwise finding of the minima of $B(\lambda, \delta)$ using the Newton's method.

Improved iterative scaling (continued)

The minimum of $\mathsf{B}(\lambda,\delta)$ corresponds to condition

$$\mathsf{B}'(\lambda,\delta_{\mathsf{i}})=0$$

for all i. In the Newton's method, the zero of the derivative of $\mathsf{B}'(\lambda,\delta_i)$ can be found by iteration

$$\delta_{\mathsf{i}} \leftarrow \delta_{\mathsf{i}} - rac{\mathsf{B}'(\lambda,\delta_{\mathsf{i}})}{\mathsf{B}''(\lambda,\delta_{\mathsf{i}})}$$

until sufficient convergence is observed.

Parametric families 0000 Maximum entropy

Improved iterative scaling (finished)



