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Entropy rate is the limiting compression rate

Theorem

For a stationary process (Xi)∞i=−∞, let Ln denote the minimal expected
compression rate of a uniquely decodable code Bn : Xn → {0, 1}∗ for the
block of n variables. That is,

Ln := min
Bn

1
n
E |Bn(X1, ...,Xn)| .

We claim that limn→∞ Ln = h.

Proof

Assume that Bn is the Shannon-Fano code for the block (X1, ...,Xn). Then
H(Xn1) ≤ nLn ≤ E |Bn(X1, ...,Xn)| ≤ H(Xn1) + 1. Hence the claim follows.
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The problem of universal compression

To compute the Shannon-Fano code we need to know the probability
distribution of the block.

Such a situation is unlikely in practical applications of data compression,
where we have no prior information about the probability distribution of
blocks.

Fortunately, as an important corollary of the ergodic theorem, there exist
universal codes whose compression rates tend to the entropy rate for any
stationary process.
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Universal codes

Definition (weakly universal code)

A uniquely decodable code B : X∗ → {0, 1}∗ is called weakly universal if for
any stationary process (not necessarily ergodic) we have

lim
n→∞

1
n
E |B(Xn1)| = h.

Definition (strongly universal code)

A uniquely decodable code B : X∗ → {0, 1}∗ is called strongly universal if for
any stationary ergodic process inequality

lim sup
n→∞

1
n
|B(Xn1)| ≤ h.

holds with probability 1.
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Strongly universal codes are better

Theorem

Let code B be strongly universal. If there exists a constant K such that

|B(xn1)| ≤ Kn

for each string xn1 then code B is weakly universal.
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Compression and statistics

The problem of universal compression falls under the scope of statistics.
Indeed, the interest of statisticians lies in identifying parameters of a stochastic
process basing on the data typical for that process. Entropy rate of an ergodic
process is an example of such a parameter. When we have a universal code, we
may estimate the entropy rate as the compression rate.
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Lempel-Ziv code

The code was derived by Abraham Lempel (1936–) and Jacob Ziv (1931–) in
1977 and is partly implemented in gzip and compress.

Definition (LZ code)

For simplicity of the algorithm description we assume that the compressed data
are binary sequences, that is X = {0, 1}. The Lempel-Ziv compression
algorithm is as follows.

1 The compressed sequence is parsed into a sequence of shortest phrases
that have not appeared before (except for the last phrase). For example,
the sequence 001010010011100... is split into phrases
0, 01, 010, 0100, 1, 11, 00, ....

2 In the following, each phrase is described using a binary index of the
longest prefix that appeared earlier and a single bit that follows that
prefix. For the considered sequence, this representation is as follows:
(0, 0)(1, 1)(10, 0)(11, 0)(0, 1)(101, 1)(1, 0).
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The length of the LZ code

Let Cn be the number of phrases in the compressed block Xn1. If we know
Cn, we need log Cn bits to identify the prefix index for each phrase and 1
bit to describe the following bit. Thus the LZ code uses
|B(Xn1)| = Cn [log Cn + O(1)] bits in total.

A splitting of a sequence into distinct phrases will be called a distinct
parsing of the sequence.

Theorem

Let (Xi)∞i=−∞ be a stationary ergodic process and let Cn be the number of
phrases in a distinct parsing of block (X1,X2, ...,Xn). With probability 1 we
have

lim sup
n→∞

Cn [log Cn + O(1)]
n

≤ h.

Remark: Hence the LZ code is strongly universal. It can be also shown that the
LZ code is weakly universal.
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The first lemma

Lemma

The number of phrases Cn in any distinct parsing of block (X1,X2, ...,Xn)
satisfies inequality

lim
n→∞

Cn log n
n

≤ 1.
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Proof of the first lemma

Let nk =
∑k
j=1 j2

j = (k− 1)2k+1 + 2 be the sum of lengths of distinct phrases
that are not longer than k. The number of phrases Cn in a distinct parsing will
be maximal if the phrases are as short as possible. For nk ≤ n < nk+1 this
happens if we take all phrases of length ≤ k and δ/(k + 1) phrases of length
k + 1, where δ = n− nk. Then

Cn ≤
k∑
j=1

2j +
δ

k + 1
≤ nk
k− 1 +

δ

k + 1
≤ n
k− 1 .

In the following we will provide a bound for k given n. We have
n ≥ nk = (k− 1)2k+1 + 2 ≥ 2k, so k ≤ log n. Moreover
n < nk+1 = k2k+2 + 2 ≤ (log n + 2)2k+2. Hence

k + 2 > log
n

log n + 2
.

Further transformations yield k− 1 > log n− log(log n + 2)− 3. Hence we
obtain the claim.
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Ziv inequality

Let Pk denote the measure of the k-th order Markov approximation of the
process (Xi)∞i=−∞. That is

Pk(Xn−k+1|X0−k+1) :=
n∏
i=1

P(Xi|Xi−1i−k).

Moreover, assume that sequence (X1,X2, ...,Xn) is parsed into Cn distinct
phrases (Y1,Y2, ...,YCn). Let Wi denote the k bits preceding Yi. Next, let Clwn
denote the number of phrases Yi that have length l and context Wi = w.

Lemma (Ziv inequality)

We have inequality

− log Pk(X1,X2, ...,Xn|W1) ≥
∑
l,w

Clwn log C
lw
n .

Project co-financed by the European Union
within the framework of the European Social Fund



Universal compression Lempel-Ziv code R measure

Proof of Ziv inequality

Proof

Observe that

− log Pk(X1,X2, ...,Xn|W1) = −
Cn∑
j=1

log P(Yj|Wj)

= −
∑
l,w

Clwn ·
1
Clwn

∑
j:|Yj|=l,Wj=w

log Pk(Yj|Wj)

≥ −
∑
l,w

Clwn log

 1
Clwn

∑
j:|Yj|=l,Wj=w

Pk(Yj|Wj)

 ,
where the inequality follows from the Jensen inequality because the logarithm
function is concave. Because the phrases Yj under the sum are distinct, we
have

∑
j:|Yj|=l,Wj=w P

k(Yj|Wj) ≤ 1. Hence the claim follows.
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Third lemma

Lemma

Let L be a nonnegative random variable taking values in integers and having
expectation E L. Then entropy H(L) is bounded by inequality

H(L) ≤ (E L + 1) log (E L + 1)− E L log E L.

The proof of this lemma will be discussed after the lecture on maximum
entropy modeling as an easy exercise.
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Proof that LZ code is universal

Let L and W be random variables such that

P(L = l,W = w) =
Clwn
Cn
.

The expectation of L is

E L =
∑
l,w

lClwn
Cn

=
n
Cn
.

Hence by the third lemma, we obtain

H(L) ≤ (E L + 1) log (E L + 1)− E L log E L

= log
n
Cn

+

(
n
Cn

+ 1
)
log
(
Cn
n

+ 1
)
.
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Proof that LZ code is universal (continued)

On the other hand, H(W) ≤ k, so

H(L,W) ≤ H(L) + H(W)

≤ log n
Cn

+

(
n
Cn

+ 1
)
log
(
Cn
n

+ 1
)

+ k.

Then by the first lemma, we have

lim
n→∞

Cn
n
H(L,W) = 0.
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Proof that LZ code is universal (finished)

Now using the first lemma again, the Ziv inequality, and the ergodic theorem,
we obtain

lim sup
n→∞

Cn [log Cn + O(1)]
n

= lim sup
n→∞

(
Cn log Cn
n

− Cn
n
H(L,W)

)

= lim sup
n→∞

1
n

Cn log Cn + Cn∑
l,w

Clwn
Cn
log
Clwn
Cn


= lim sup

n→∞

1
n

∑
l,w

Clwn log C
lw
n ≤ − lim

n→∞

1
n
log Pk(Xn1|X0−k+1)

= − lim
n→∞

1
n

n∑
i=1

log P(Xi|Xi−1i−k) = H(Xi|Xi−1i−k).

with probability 1. This inequality holds for any k. Considering k→∞, we
obtain the claim.
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Motivation for the R measure

We can estimate the entropy rate of a stationary process as the length of
the Lempel-Ziv code for a sequence of symbols drawn for the process
divided by the sequence length.

This method of estimation is far from satisfactory since the estimate of
the entropy rate converges very slow as a function of the sequence length.

We will present a method which seems to be better in case of empirical
sources such as the natural language.
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R measure

Let the frequency of substring wk1 in string zn1 ∈ {0, 1, ...,D− 1}n be

c(wk1|zn1) =

n−k∑
i=0

1
{
wk1 = z

i+k
i+1

}
.

Definition (R measure)

Define conditional probabilities B(xn+1|xn1,−1) = D−1 and

B(xn+1|xn1, k) =
c(xn+1n+1−k|x

n
1) + B(xn+1|xn1, k− 1)

c(xnn+1−k|x
n−1
1 ) + 1

.

We write B(xn1, k) =
∏n
i=1 B(xi|x

i−1
1 , k). Let pk ∈ (0, 1) satisfy∑∞

k=−1 pk = 1. The R measure is

Q(xn1) =
∞∑
k=−1

pkB(x
n
1, k).
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Universality of R measure

A probability distribution Q is called weakly universal if for any stationary
process (not necessarily ergodic) we have

lim
n→∞

1
n
E [− log Q(Xn1)] = h.

A probability distribution Q is called is called strongly universal if for any
stationary ergodic process inequality

lim sup
n→∞

1
n
[− log Q(Xn1)] ≤ h.

holds with probability 1.

Theorem

The R measure is both strongly and weakly universal.
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Proof of universality

Let P be a stationary ergodic distribution. Since the alphabet of Xi is finite, by
the ergodic theorem differences B(Xn|Xn−11 , k)− P(Xn|Xn−1n−k−1) converge to 0
with P-probability 1. Hence

lim
n→∞

1
n
[− log B(Xn1, k)] = lim

n→∞

1
n

[
−

n∑
i=k+1

log P(Xi|Xi−1i−k−1)
]
.

Applying the ergodic theorem again, we obtain

lim
n→∞

1
n

[
−

n∑
i=k+1

log P(Xi|Xi−1i−k−1)
]
= E

[
− log P(Xk+1|Xk1)

]
.

Hence

lim sup
n→∞

1
n
[− log Q(Xn1)] ≤ inf

k∈N
lim
n→∞

1
n
[− log B(Xn1, k)]

= inf
k∈N
E
[
− log P(Xk+1|Xk1)

]
= h.

Hence the distribution Q is strongly universal. Since
− log Q(Xn1) ≤ − log p−1 + n log D, distribution Q is also weakly universal.
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The R measure is effectively computable

Denote the maximal length of a substring that appears at least twice in zn1 as

L(zn1) := max
{
k : ∃wk1 : c(wk1|zn1) > 1

}
.

For k > L(xn1),

B(xn1, k) = B(xn1, k− 1).

Hence the R measure is

Q(xn1) =

L(zn1)∑
k=−1

pkB(x
n
1, k) +

1− L(xn1)∑
k=−1

pk

B(xn1, L(xn1)).
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