Stationary processes	Markov processes	Block entropy	Expectation	Ergodic theorem	Examples of processes
00000000					

Information Theory and Statistics Lecture 3: Stationary ergodic processes

Łukasz Dębowski ldebowsk@ipipan.waw.pl

Ph. D. Programme 2013/2014

Stationary processes	000	Block entropy	Expectation	Ergodic theorem	Examples of processes					
00000000		000000	000	00000	000					
Measurable	Measurable space									

Definition (measurable space)

Measurable space (Ω, \mathcal{J}) is a pair where Ω is a certain set (called the *event space*) and $\mathcal{J} \subset 2^{\Omega}$ is a σ -field. The σ -field \mathcal{J} is an algebra of subsets of Ω which satisfies

- $\Omega \in \mathcal{J}$,
- $\mathsf{A} \in \mathcal{J}$ implies $\mathsf{A}^\mathsf{c} \in \mathcal{J}$, where $\mathsf{A}^\mathsf{c} := \Omega \setminus \mathsf{A}$,
- $A, B \in \mathcal{J}$ implies $A \cup B \in \mathcal{J}$,
- $A_1, A_2, A_3, \ldots \in \mathcal{J}$ implies $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{J}$.

The elements of $\mathcal J$ are called *events*, whereas the elements of Ω are called *elementary events*.

 Stationary processes cooococo
 Markov processes coo
 Block entropy coococo
 Expectation coo
 Ergodic theorem coococo
 Examples of processes cococococo

 Probability measure

Definition (probability measure)

Probability measure $\mathsf{P}:\mathcal{J}\to[0,1]$ is a normalized measure, i.e., a function of events that satisfies

- $P(\Omega) = 1$,
- $P(A) \ge 0$ for $A \in \mathcal{J}$,
- $P(\bigcup_{n\in\mathbb{N}}A_n) = \sum_{n\in\mathbb{N}}P(A_n)$ for disjoint events $A_1, A_2, A_3, ... \in \mathcal{J}$,

The triple $(\Omega, \mathcal{J}, \mathsf{P})$ is called a *probability space*.

Definition (invariant measure)

Consider a probability space $(\Omega, \mathcal{J}, \mathsf{P})$ and an invertible operation $\mathsf{T} : \Omega \to \Omega$ such that $\mathsf{T}^{-1}\mathsf{A} \in \mathcal{J}$ for $\mathsf{A} \in \mathcal{J}$. Measure P is called T -invariant and T is called P -preserving if

 $\mathsf{P}(\mathsf{T}^{-1}\mathsf{A})=\mathsf{P}(\mathsf{A})$

for any event $\mathbf{A} \in \mathcal{J}$.

Definition (dynamical system)

A dynamical system $(\Omega, \mathcal{J}, \mathsf{P}, \mathsf{T})$ is a quadruple that consists of a probability space $(\Omega, \mathcal{J}, \mathsf{P})$ and a P-preserving operation T.

Stationary processes	Markov processes 000	Block entropy 000000	Expectation 000	Ergodic theorem	Examples of processes
Stationary	nrocesses				

Definition (stationary process)

A stochastic process $(X_i)_{i=-\infty}^{\infty}$, where $X_i : \Omega \to \mathbb{X}$ are discrete random variables, is called *stationary* if there exists a distribution of blocks $p : \mathbb{X}^* \to [0, 1]$ such that

$$P(X_{i+1} = x_1, ..., X_{i+n} = x_n) = p(x_1...x_n)$$

for each i and n.

Example (IID process)

If variables X_i are independent and have identical distribution $P(X_i = x) = p(x)$ then $(X_i)_{i=-\infty}^{\infty}$ is stationary.

Example

Let measure P be T-invariant and let $X_0 : \Omega \to \mathbb{X}$ be a random variable on (Ω, \mathcal{J}, P) . Define random variables $X_i(\omega) = X_0(\mathsf{T}^i\omega)$. For

$$A = (X_{i+1} = x_1, ..., X_{i+n} = x_n)$$

we have

$$\begin{split} \mathsf{T}^{-1}\mathsf{A} &= \left\{\mathsf{T}^{-1}\omega: \mathsf{X}_0(\mathsf{T}^{i+1}\omega) = \mathsf{x}_1, ..., \mathsf{X}_0(\mathsf{T}^{i+n}\omega) = \mathsf{x}_n\right\} \\ &= \left\{\omega: \mathsf{X}_0(\mathsf{T}^{i+2}\omega) = \mathsf{x}_1, ..., \mathsf{X}_0(\mathsf{T}^{i+n+1}\omega) = \mathsf{x}_n\right\} \\ &= (\mathsf{X}_{i+2} = \mathsf{x}_1, ..., \mathsf{X}_{i+n+1} = \mathsf{x}_n). \end{split}$$

Because $P(T^{-1}A) = P(A)$, process $(X_i)_{i=-\infty}^{\infty}$ is stationary.

Theorem (process theorem)

Let distribution of blocks $p:\mathbb{X}^* \rightarrow [0,1]$ satisfy conditions

$$\sum_{\mathsf{x}\in\mathbb{X}}\mathsf{p}(\mathsf{x}\mathsf{w})=\mathsf{p}(\mathsf{w})=\sum_{\mathsf{x}\in\mathbb{X}}\mathsf{p}(\mathsf{w}\mathsf{x})$$

and $p(\lambda) = 1$, where λ is the empty word. Let event space

$$\Omega = \big\{ \omega = (\omega_i)_{i=-\infty}^\infty : \omega_i \in \mathbb{X} \big\}$$

consist of infinite sequences and introduce random variables $X_i(\omega) = \omega_i$. Let \mathcal{J} be the σ -field generated by all cylinder sets $(X_i = s) = \{\omega \in \Omega : X_i(\omega) = s\}$. Then there exists a unique probability measure P on \mathcal{J} that satisfies

$$P(X_{i+1} = x_1, ..., X_{i+n} = x_n) = p(x_1...x_n).$$

Theorem

Let (Ω, \mathcal{J}, P) be the probability space constructed in the process theorem. Measure P is T-invariant for the operation

 $(\mathsf{T}\omega)_{\mathsf{i}} := \omega_{\mathsf{i}+1},$

called shift. Moreover, we have $X_i(\omega) = X_0(T^i\omega)$.

Proof

By the π - λ theorem it suffices to prove $P(T^{-1}A) = P(A)$ for $A = (X_{i+1} = x_1, ..., X_{i+n} = x_n)$. But $X_i(\omega) = X_0(T^i\omega)$. Hence $T^{-1}A = (X_{i+2} = x_1, ..., X_{i+n+1} = x_n)$. In consequence, we obtain $P(T^{-1}A) = P(A)$ by stationarity.

 Stationary processes 00000000
 Markov processes 000
 Block entropy 00000
 Expectation 000
 Ergodic theorem 00000
 Examples of processes 000

Generated dynamical system

Definition

The triple $(\Omega, \mathcal{J}, \mathsf{P})$ and the quadruple $(\Omega, \mathcal{J}, \mathsf{P}, \mathsf{T})$ constructed in the previous two theorems will be called the *probability space* and the *dynamical system generated* by a stationary process $(X_i)_{i=-\infty}^{\infty}$ (with a given block distribution $p : \mathbb{X}^* \to [0, 1]$).

Markov pro					
Stationary processes	Markov processes ●00	Block entropy 000000	Expectation 000	Ergodic theorem	Examples of processes

Theorem

A Markov chain $(X_i)_{i=-\infty}^{\infty}$ is stationary if and only if it has marginal distribution $P(X_i = k) = \pi_k$ and transition probabilities $P(X_{i+1} = l | X_i = k) = p_{kl}$ which satisfy

$$\pi_{\mathsf{I}} = \sum_{\mathsf{k}} \pi_{\mathsf{k}} \mathsf{p}_{\mathsf{k}\mathsf{I}}.$$

Matrix (\mathbf{p}_{kl}) is called the transition matrix.

Stationary processes	Markov processes	Block entropy	Expectation	Ergodic theorem	Examples of processes
	000				

Proof

If $(X_i)_{i=-\infty}^{\infty}$ is stationary then marginal distribution $P(X_i = k)$ and transition probabilities $P(X_{i+1} = l | X_i = k)$ may not depend on i. We also have

$$\mathsf{P}(\mathsf{X}_{i+1} = \mathsf{k}_1, ..., \mathsf{X}_{i+n} = \mathsf{k}_n) = \mathsf{p}(\mathsf{k}_1 ... \mathsf{k}_n) := \pi_{\mathsf{k}_1} \mathsf{p}_{\mathsf{k}_1 \mathsf{k}_2} ... \mathsf{p}_{\mathsf{k}_{n-1} \mathsf{k}_n}$$

Function $\mathbf{p}(\mathbf{k}_1...\mathbf{k}_n)$ satisfies $\sum_x \mathbf{p}(\mathbf{x}\mathbf{w}) = \mathbf{p}(\mathbf{w}) = \sum_x \mathbf{p}(\mathbf{w}\mathbf{x})$. Hence we obtain $\pi_1 = \sum_k \pi_k \mathbf{p}_{kl}$. On the other hand, if $\mathbf{P}(\mathbf{X}_i = \mathbf{k}) = \pi_k$ and $\mathbf{P}(\mathbf{X}_{i+1} = \mathbf{I}|\mathbf{X}_i = \mathbf{k}) = \mathbf{p}_{kl}$ hold with $\pi_1 = \sum_k \pi_k \mathbf{p}_{kl}$ then function $\mathbf{p}(\mathbf{k}_1...\mathbf{k}_n)$ satisfies $\sum_x \mathbf{p}(\mathbf{x}\mathbf{w}) = \mathbf{p}(\mathbf{w}) = \sum_x \mathbf{p}(\mathbf{w}\mathbf{x})$ and the process is stationary.

Stationary processes	Markov processes	Block entropy	Expectation	Ergodic theorem	Examples of processes
	000				

For a given transition matrix the stationary distribution may not exist or there may be many stationary distributions.

Example

Let variables X_i assume values in natural numbers and let $P(X_{i+1} = k + 1 | X_i = k) = 1$. Then the process $(X_i)_{i=1}^{\infty}$ is not stationary. Indeed, assume that there is a stationary distribution $P(X_i = k) = \pi_k$. Then we obtain $\pi_{k+1} = \pi_k$ for any k. Such distribution does not exist if there are infinitely many k.

Example

For the transition matrix

$$\left(\begin{array}{cc} p_{11} & p_{12} \\ p_{21} & p_{22} \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

we may choose

$$\left(\begin{array}{cc} \pi_1 & \pi_2 \end{array} \right) = \left(\begin{array}{cc} \mathsf{a} & 1-\mathsf{a} \end{array} \right), \qquad \qquad \mathsf{a} \in [0,1].$$

Stationary processes	Markov processes 000	Block entropy ●00000	Expectation 000	Ergodic theorem	Examples of processes
Block entro	Vac				

Definition (block)

Blocks of variables are written as $X_k^I = (X_i)_{k \le i \le l}$.

Definition (block entropy)

- J

The entropy of the block of ${\bf n}$ variables drawn from a stationary process will be denoted as

$$H(n) := H(X_1^n) = H(X_1, ..., X_n) = H(X_{i+1}, ..., X_{i+n}).$$

For convenience, we also put H(0) = 0.

Theorem

Let Δ be the difference operator, $\Delta F(n) := F(n) - F(n-1)$. Block entropy satisfies

$$\begin{split} \Delta H(n) &= H(X_n | X_1^{n-1}), \\ \Delta^2 H(n) &= -I(X_1; X_n | X_2^{n-1}), \end{split}$$

where $H(X_1|X_1^0) := H(X_1)$ and $I(X_1; X_2|X_2^1) := I(X_1; X_2)$.

Remark: Hence, for any stationary process, block entropy H(n) is nonnegative $(H(n) \ge 0)$, nondecreasing $(\Delta H(n) \ge 0)$ and concave $(\Delta^2 H(n) \le 0)$.

00000000 000 000000 000 0000 000	Stationary processes	Markov processes	Block entropy	Expectation	Ergodic theorem	Examples of processes
			000000			

Proof

We have

$$\begin{split} \mathsf{H}(\mathsf{X}_n|\mathsf{X}_1^{n-1}) &= \mathsf{H}(\mathsf{X}_1^n) - \mathsf{H}(\mathsf{X}_1^{n-1}) \\ &= \mathsf{H}(n) - \mathsf{H}(n-1) = \Delta \mathsf{H}(n), \\ -\mathsf{I}(\mathsf{X}_1;\mathsf{X}_n|\mathsf{X}_2^{n-1}) &= \mathsf{H}(\mathsf{X}_1^n) - \mathsf{H}(\mathsf{X}_1^{n-1}) - \mathsf{H}(\mathsf{X}_2^n) + \mathsf{H}(\mathsf{X}_2^{n-1}) \\ &= \mathsf{H}(n) - 2\mathsf{H}(n-1) + \mathsf{H}(n-2) = \Delta^2\mathsf{H}(n). \end{split}$$

Stationary processes	Markov processes 000	Block entropy 000€00	Expectation 000	Ergodic theorem	Examples of processes
Entropy ra	te				

Definition (entropy rate)

The entropy rate of a stationary process will be defined as

$$h = \lim_{n \to \infty} \Delta H(n) = H(1) + \sum_{n=2}^{\infty} \Delta^2 H(n).$$

By the previous theorem, we have $0 \le h \le H(1)$.

Example

Let $(X_i)_{i=-\infty}^{\infty}$ be a stationary Markov chain with marginal distribution $P(X_i=k)=\pi_k$ and transition probabilities $P(X_{i+1}=I|X_i=k)=p_{kl}$. We have $\Delta H(n)=H(X_n|X_1^{n-1})=H(X_n|X_{n-1})$, so

$$\mathsf{h} = -\sum_{\mathsf{k}\mathsf{l}} \pi_{\mathsf{k}} \mathsf{p}_{\mathsf{k}\mathsf{l}} \log \mathsf{p}_{\mathsf{k}\mathsf{l}}.$$

Theorem

Entropy rate satisfies equality

$$h = \lim_{n \to \infty} \frac{H(n)}{n}.$$

Stationary processes	Markov processes	Block entropy	Expectation	Ergodic theorem	Examples of processes
		000000			

Proof

Difference $\Delta H(\cdot)$ is nonincreasing. Hence block entropy $H(n) = H(m) + \sum_{k=m+1}^{n} \Delta H(k)$ satisfies inequalities

$$H(m) + (n - m) \cdot \Delta H(n) \le H(n) \le H(m) + (n - m) \cdot \Delta H(m).$$
(1)

Putting $\mathbf{m} = \mathbf{0}$ in the left inequality in (1), we obtain

$$\Delta H(n) \le H(n)/n \tag{2}$$

Putting m=n-1 in the right inequality in (1), we hence obtain $H(n) \leq H(n-1) + \Delta H(n-1) \leq H(n-1) + H(n-1)/(n-1)$. Thus $H(n)/n \leq H(n-1)/(n-1)$. Because function H(n)/n is nonincreasing, the limit $h':=\lim_{n\to\infty} H(n)/n$ exists. By (2), we have $h'\geq h$. Now we will prove the converse. Putting n=2m in the right inequality in (1) and dividing both sides by m we obtain $2h'\leq h'+h$ in the limit. Hence $h'\leq h$.

Let us write $1{\phi} = 1$ if proposition ϕ is true and $1{\phi} = 0$ if proposition ϕ is false. The characteristic function of a set **A** is defined as

$$I_A(\omega) := 1\{\omega \in A\}.$$

The supremum $\sup_{a \in A} a$ is defined as the least real number r such that $r \geq a$ for all $a \in A$. On the other hand, infimum $\inf_{a \in A} a$ is the largest real number r such that $r \leq a$ for all $a \in A$.

Stationary processes	Markov processes	Block entropy 000000	Expectation 0●0	Ergodic theorem	Examples of processes
Expectatio	n				

Definition (expectation)

Let P be a probability measure. For a discrete random variable $X\geq 0,$ the expectation (integral, or average) is defined as

$$\int XdP := \sum_{x:P(X=x)>0} P(X=x)\cdot x.$$

For a real random variable $\mathbf{X} \geq \mathbf{0},$ we define

$$\int XdP := \sup_{Y \leq X} \int YdP,$$

where the supremum is taken over all discrete variables ${\bf Y}$ that satisfy ${\bf Y} \leq {\bf X}.$

Stationary processes	Markov processes 000	Block entropy 000000	Expectation 00●	Ergodic theorem	Examples of processes
Expectatio	n II				

Definition (expectation)

Integrals over subsets are defined as

$$\int_{A} X dP := \int X I_{A} dP.$$

For random variables that assume negative values, we put

$$\int \mathsf{X} \mathsf{d} \mathsf{P} := \int_{\mathsf{X} > 0} \mathsf{X} \mathsf{d} \mathsf{P} - \int_{\mathsf{X} < 0} (-\mathsf{X}) \mathsf{d} \mathsf{P},$$

unless both terms are infinite. A more frequent notation is

$$\mathsf{E}\,\mathsf{X}\equiv\mathsf{E}_{\,\mathsf{P}}\mathsf{X}\equiv\int\mathsf{X}d\mathsf{P},$$

where we suppress the index P in $E_P X$ for probability measure P.

Invariant a	loehra				
Stationary processes	Markov processes 000	Block entropy 000000	Expectation 000	Ergodic theorem ●0000	Examples of processes

Definition (invariant algebra)

Let $(\Omega, \mathcal{J}, \mathsf{P}, \mathsf{T})$ be a dynamical system. The set of events which are invariant with respect to operation T ,

$$\mathcal{I} := \left\{ \mathsf{A} \in \mathcal{J} : \mathsf{A} = \mathsf{T}^{-1}\mathsf{A} \right\},$$

will be called the invariant algebra.

Example

Let (Ω,\mathcal{J},P,T) be the dynamical system generated by a stationary process $(X_i)_{i=-\infty}^{\infty}$, where $X_i:\Omega\to\{0,1\}$. The operation T results in shifting variables X_i , i.e., $X_i(\omega)=X_0(T^i\omega)$. Thus these events belong to the invariant algebra \mathcal{I} :

$$\begin{split} (X_i &= 1 \text{ for all } i) = \bigcap_{i=-\infty}^{\infty} (X_i = 1), \\ (X_i &= 1 \text{ for infinitely many } i \geq 1) = \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} (X_j = 1), \\ \left(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} X_k = a\right) = \bigcap_{p=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left(\left| \frac{1}{n} \sum_{k=1}^{n} X_k - a \right| \leq \frac{1}{p} \right). \end{split}$$

If the process $(X_i)_{i=-\infty}^{\infty}$ is a sequence of independent identically distributed variables then the probability of the mentioned events is 0 or 1. Following our intuition for independent variables, we may think that a stationary process is well-behaved if the probability of invariant events is 0 or 1.

Definition (ergodicity)

A dynamical system $(\Omega, \mathcal{J}, \mathsf{P}, \mathsf{T})$ is called *ergodic* if any event from the invariant algebra has probability **0** or **1**, i.e.,

$$\mathsf{A} \in \mathcal{I} \implies \mathsf{P}(\mathsf{A}) \in \left\{ 0,1 \right\}.$$

Analogously, we call a stationary process $(X_i)_{i=-\infty}^\infty$ ergodic if the dynamical system generated by this process is ergodic.

We say that Φ holds with probability 1 if $P(\{\omega : \Phi(\omega) \text{ is true}\}) = 1$.

In 1931, Georg David Birkhoff (1884-1944) showed this fact:

Theorem (ergodic theorem)

Let $(\Omega, \mathcal{J}, \mathsf{P}, \mathsf{T})$ be a dynamical system and define stationary process $X_i(\omega) := X_0(\mathsf{T}^i\omega)$ for a real random variable X_0 on the probability space $(\Omega, \mathcal{J}, \mathsf{P})$. The dynamical system is ergodic if and only if for any real random variable X_0 where $\mathsf{E} |X_0| < \infty$ equality

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k = E X_0$$

holds with probability 1.

In information theory, we often invoke the ergodic theorem in the following way. Namely, for a stationary ergodic process $(X_i)_{i=-\infty}^{\infty}$, with probability 1 we have

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left[-\log \mathsf{P}(\mathsf{X}_k | \mathsf{X}_{k-m}^{k-1}) \right] &= \mathsf{E} \left[-\log \mathsf{P}(\mathsf{X}_0 | \mathsf{X}_{-m}^{-1}) \right] \\ &= \mathsf{H}(\mathsf{X}_0 | \mathsf{X}_{-m}^{-1}). \end{split}$$

This equality holds since $P(X_k|X_{k-m}^{k-1})$ is a random variable on the probability space generated by process $(X_i)_{i=-\infty}^{\infty}$.

Stationary processes Markov processes Block entropy cool of a nonergodic processes

Example (nonergodic process)

Let $(U_i)_{i=-\infty}^\infty$ and $(W_i)_{i=-\infty}^\infty$ be independent stationary ergodic processes having different distributions and let an independent variable Z have distribution $\mathsf{P}(\mathsf{Z}=0)=\mathsf{p}\in(0,1)$ and $\mathsf{P}(\mathsf{Z}=1)=1-\mathsf{p}.$ We will consider process $(\mathsf{X}_i)_{i=-\infty}^\infty$, where

$$X_i = 1{Z = 0}U_i + 1{Z = 1}W_i.$$

Assume that $P(U_1^p = w) \neq P(W_1^p = w)$. Then

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbf{1} \Big\{ X_k^{k+p-1} = w \Big\} &= \mathbf{1} \{ Z = 0 \} \mathsf{P}(\mathsf{U}_1^p = w) \\ &+ \mathbf{1} \{ Z = 1 \} \mathsf{P}(\mathsf{W}_1^p = w), \end{split}$$

which is not constant. Hence $(X_i)_{i=-\infty}^\infty$ is not ergodic.

Theorem

Let $(X_i)_{i=-\infty}^{\infty}$ be a stationary Markov chain, where $P(X_{i+1} = I | X_i = k) = p_{kl}$, $P(X_i = k) = \pi_k$, and the variables take values in a countable set. These conditions are equivalent:

- 1 Process $(X_i)_{i=-\infty}^{\infty}$ is ergodic.
- ② There are no two disjoint closed sets of states; a set A of states is called closed if ∑_{I∈A} p_{kI} = 1 for each k ∈ A.

Solution For a given transition matrix (p_{kl}) there exists a unique stationary distribution π_k.

Proof (1)=>(2): Suppose that there are two disjoint closed sets of states ${\bf A}$ and ${\bf B}.$ Then we obtain

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \mathbf{1} \{ X_k \in \mathsf{A} \} = \mathbf{1} \{ X_1 \in \mathsf{A} \} \neq \text{const} \, .$$

Examples of ergodic processes

Example

A sequence of independent identically distributed random variables is an ergodic process.

Example

Consider a stationary Markov chain $(X_i)_{i=-\infty}^{\infty}$ where $P(X_{n+1}=j|X_n=i)=p_{ij}$ and $P(X_1=i)=\pi_i$. It is ergodic for

$$(\pi_1 \ \pi_2) = (1/2 \ 1/2), \qquad \begin{pmatrix} p_{11} \ p_{12} \\ p_{21} \ p_{22} \end{pmatrix} = \begin{pmatrix} 0 \ 1 \\ 1 \ 0 \end{pmatrix}$$

and nonergodic for

$$\begin{pmatrix} \pi_1 & \pi_2 \end{pmatrix} = \begin{pmatrix} a & 1-a \end{pmatrix}, \qquad \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

