Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
●000000000	00000	00000		0000000

Information Theory and Statistics Lecture 1: Entropy and information

Łukasz Dębowski ldebowsk@ipipan.waw.pl

Ph. D. Programme 2013/2014

Entropy 000000000 KL divergence

Conditional MI

Claude Shannon (1916–2001)

Entropy of a random variable on a probability space is the fundamental concept of information theory developed by Claude Shannon in 1948.

Probabil	ity as a rar	dom variable		
0000000000				
Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI

Definition

Let X and Y be discrete variables and A be an event on a probability space (Ω, \mathcal{J}, P) . We define P(X) as a discrete random variable such that

$$P(X)(\omega) = P(X = x) \iff X(\omega) = x.$$

Analogously we define P(X|Y) and P(X|A) as

$$\begin{split} \mathsf{P}(\mathsf{X}|\mathsf{Y})(\omega) &= \mathsf{P}(\mathsf{X}=\mathsf{x}|\mathsf{Y}=\mathsf{y}) \iff \mathsf{X}(\omega) = \mathsf{x} \text{ and } \mathsf{Y}(\omega) = \mathsf{y}, \\ \mathsf{P}(\mathsf{X}|\mathsf{A})(\omega) &= \mathsf{P}(\mathsf{X}=\mathsf{x}|\mathsf{A}) \iff \mathsf{X}(\omega) = \mathsf{x}, \end{split}$$

where the conditional probability is $P(B|A) = P(B \cap A)/P(A)$ for P(A) > 0.

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
000●000000	00000	00000		0000000

Independence

We write
$$P(Y) = P(X_1, X_2, ..., X_n)$$
 for $Y = (X_1, X_2, ..., X_n)$.

Definition (independence)

We say that random variables $X_1, X_2, ..., X_n$ are independent if

$$\mathsf{P}(\mathsf{X}_1,\mathsf{X}_2,...,\mathsf{X}_n)=\textstyle\prod_{i=1}^n\mathsf{P}(\mathsf{X}_i).$$

Analogously, we say that random variables $X_1, X_2, X_3, ...$ are independent if $X_1, X_2, ..., X_n$ are independent for any n.

Example

Let $\Omega = [0,1]$ be the unit section and let P be the Lebesgue measure. Define real random variable $Y(\omega) = \omega$. If we consider its binary expansion $Y = \sum_{i=1}^{\infty} 2^{-i} Z_i$, where $Z_i : \Omega \to \{0,1\}$, then $P(Z_1, Z_2, ..., Z_n) = 2^{-n} = \prod_{i=1}^n P(Z_i).$

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000●00000	00000	00000		0000000
Expectat	tion			

Definition (expectation)

We define the expectation of a real random variable $\boldsymbol{\mathsf{X}}$ as

$$\mathbb{E}\,\mathsf{X}:=\int\mathsf{X}\mathsf{d}\mathsf{P}.$$

For discrete random variables we obtain

$$\mathbb{E} \, \mathsf{X} = \sum_{x: \mathsf{P}(\mathsf{X}=x) > 0} \mathsf{P}(\mathsf{X}=x) \cdot x.$$

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
00000●0000	00000	00000		0000000
Additivit	y of expect	ation		

One of fundamental properties of the expectation is its additivity.

Theorem

Let $\mathbf{X}, \mathbf{Y} \geq \mathbf{0}$. We have

$$\mathbb{E}\left(\mathsf{X}+\mathsf{Y}\right)=\mathbb{E}\,\mathsf{X}+\mathbb{E}\,\mathsf{Y}.$$

Remark: The restriction $X, Y \ge 0$ is made because, e.g., for $\mathbb{E} X = \infty$ and $\mathbb{E} Y = -\infty$ the sum is undefined.

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
000000●000	00000	00000		0000000
Entropy				

Some interpretation of entropy H(X) is the average uncertainty carried by a random variable X. We expect that uncertainty adds for probabilistically independent sources. Formally, for P(X, Y) = P(X)P(Y), we postulate H(X, Y) = H(X) + H(Y). Because log(xy) = log x + log y, the following definition comes as a very natural idea.

Definition (entropy)

The entropy of a discrete variable X is defined as

$$H(X) := \mathbb{E} \left[-\log P(X) \right].$$
 (1)

Traditionally, it is assumed that log is the logarithm to the base 2.

Because $\log P(X) \leq 0$, we put the minus sign in the definition (1) so that entropy be positive.

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000000●00	00000	00000		0000000
Entropy	(continued)			

Equivalently, we have

$$H(X)=-\sum_{x:P(X=x)>0}P(X=x)\log P(X=x),$$

We can verify that for P(X, Y) = P(X)P(Y),

$$\begin{aligned} \mathsf{H}(\mathsf{X},\mathsf{Y}) &= \mathbb{E} \left[-\log \mathsf{P}(\mathsf{X},\mathsf{Y}) \right] = \mathbb{E} \left[-\log \mathsf{P}(\mathsf{X}) - \log \mathsf{P}(\mathsf{X}) \right] \\ &= \mathbb{E} \left[-\log \mathsf{P}(\mathsf{X}) \right] + \mathbb{E} \left[-\log \mathsf{P}(\mathsf{X}) \right] = \mathsf{H}(\mathsf{X}) + \mathsf{H}(\mathsf{Y}). \end{aligned}$$

Entropy occoocoocoo KL divergence Conditional entropy Occoo Conditional entropy Occoo Conditional entropy Occoo Conditional MI Occoo Co

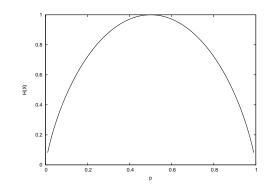


Figure: Entropy $H(X) = -p \log p - (1-p) \log(1-p)$ for P(X = 0) = p and P(X = 1) = 1 - p.

	e of entropy			
Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
000000000●	00000	00000		0000000

Because function $f(p)=-p\log p$ is strictly positive for $p\in(0,1)$ and equals 0 for p=1, it can be easily seen that:

Theorem

 $H(X) \ge 0$, whereas H(X) = 0 if and only if X assumes only a single value.

This fact agrees with the idea that constants carry no uncertainty. On the other hand, assume that X takes values $x \in \{1,2,...,n\}$ with equal probabilities P(X=x)=1/n. Then

$$H(X) = -\sum_{x=1}^{n} \frac{1}{n} \log \frac{1}{n} = \sum_{x=1}^{n} \frac{1}{n} \log n = \log n.$$

As we will see, $\log n$ is the maximal value of H(X) if X assumes values in $\{1, 2, ..., n\}$. That fact agrees with the intuition that the highest uncertainty occurs for uniformly distributed variables.

Entropy KL divergence Conditional entropy Mutual information Conditional MI 000000000

Kullback-Leibler divergence

A discrete probability distribution is a function $p:\mathbb{X}\to [0,1]$ on a countable set \mathbb{X} such that $p(x)\geq 0$ and $\sum_x p(x)=1.$

Definition (entropy revisited)

The entropy of a discrete probability distribution is denoted as

$$\mathsf{H}(\mathsf{p}) := -\sum_{\mathsf{x}:\mathsf{p}(\mathsf{x})>0} \mathsf{p}(\mathsf{x})\log\mathsf{p}(\mathsf{x}).$$

Definition (KL divergence)

Kullback-Leibler divergence, or relative entropy of probability distributions ${\bf p}$ and ${\bf q}$ is defined as

$$\mathsf{D}(\mathsf{p}||\mathsf{q}) := \sum_{\mathsf{x}:\mathsf{p}(\mathsf{x})>0} \mathsf{p}(\mathsf{x}) \log \frac{\mathsf{p}(\mathsf{x})}{\mathsf{q}(\mathsf{x})}.$$

6				
000000000 00000	00000			
Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI

onvex and concave functions

Definition (convex and concave functions)

A real function $f:\mathbb{R}\rightarrow\mathbb{R}$ is convex if

 $p_1f(x_1) + p_2f(x_2) \geq f(p_1x_1 + p_2x_2)$

for $p_i \geq 0$ and $p_1 + p_2 = 1.$ Moreover, f is called strictly convex if

 $p_1f(x_1) + p_2f(x_2) > f(p_1x_1 + p_2x_2)$

for $p_i > 0$ and $p_1 + p_2 = 1$. We say that function f is concave if -f is convex, whereas f is strictly concave if -f is strictly convex.

Example

If function f has a positive second derivative then it is strictly convex. Hence functions $h(x) = -\log x$ and $g(x) = x^2$ are strictly convex.

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000000000	00●00	00000	000	0000000
Jensen i	nequality			

Theorem (Jensen inequality)

If f is a convex function and p is a discrete probability distribution over real values then

$$\sum_{p(x)>0} p(x)f(x) \ge f\left(\sum_{x:p(x)>0} p(x) \cdot x\right).$$

Moreover, if f is strictly convex then

x:

x

$$\sum_{\mathbf{p}(\mathbf{x})>0} \mathbf{p}(\mathbf{x}) \mathbf{f}(\mathbf{x}) = \mathbf{f}\left(\sum_{\mathbf{x}: \mathbf{p}(\mathbf{x})>0} \mathbf{p}(\mathbf{x}) \cdot \mathbf{x}\right)$$

holds if and only if distribution ${\bf p}$ is concentrated on a single value.

The proof proceeds by induction on the number of values of **p**.

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000000000	000●0	00000		0000000

KL divergence is nonegative

Theorem

We have

 $\mathsf{D}(\mathsf{p}||\mathsf{q}) \geq 0,$

where the equality holds if and only if $\mathbf{p} = \mathbf{q}$.

Proof

By the Jensen inequality for $f(y) = -\log y$, we have

$$\begin{split} \mathsf{D}(\mathsf{p}||\mathsf{q}) &= -\sum_{\mathsf{x}:\mathsf{p}(\mathsf{x})>0} \mathsf{p}(\mathsf{x}) \log \frac{\mathsf{q}(\mathsf{x})}{\mathsf{p}(\mathsf{x})} \geq -\log\left(\sum_{\mathsf{x}:\mathsf{p}(\mathsf{x})>0} \mathsf{p}(\mathsf{x}) \frac{\mathsf{q}(\mathsf{x})}{\mathsf{p}(\mathsf{x})}\right) \\ &= -\log\left(\sum_{\mathsf{x}:\mathsf{p}(\mathsf{x})>0} \mathsf{q}(\mathsf{x})\right) \geq -\log 1 = \mathbf{0}. \end{split}$$

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000000000	0000●	00000		0000000
The max	kimum of er	itropy		

Theorem

Let X assume values in $\{1,2,...,n\}$. We have $H(X)\leq log\,n,$ whereas $H(X)=log\,n$ if and only if P(X=x)=1/n.

Remark: If the range of variable X is infinite then entropy H(X) may be infinite.

Proof

Let
$$p(x) = P(X = x)$$
 and $q(x) = 1/n$. Then

$$0 \leq \mathsf{D}(\mathsf{p}||\mathsf{q}) = \sum_{\mathsf{x}:\mathsf{p}(\mathsf{x})>0} \mathsf{p}(\mathsf{x}) \log \frac{\mathsf{p}(\mathsf{x})}{1/\mathsf{n}} = \log \mathsf{n} - \mathsf{H}(\mathsf{X}),$$

where the equality occurs if and only if $\mathbf{p} = \mathbf{q}$.

0000000000	00000	Conditional entropy ●0000	000	000000		
Conditional entropy						

The next important question is what is the behavior of entropy under conditioning. The intuition is that given additional information, the uncertainty should decrease. So should entropy. There are two distinct ways of defining conditional entropy.

Definition (conditional entropy)

Conditional entropy of a discrete variable X given event A is

$$H(X|A) := H(p) \text{ for } p(x) = P(X = x|A).$$

Conditional entropy of X given a discrete variable Y is defined as

$$H(X|Y):=\sum_{y:P(Y=y)>0}P(Y=y)H(X|Y=y).$$

Both H(X|A) and H(X|Y) are nonnegative.

Minimum	n of condit	ional entropy		
Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000000000	00000	○●○○○		0000000

Theorem

H(X|Y) = 0 holds if and only if X = f(Y) for a certain function f except for a set of probability 0.

Proof

Observe that H(X|Y) = 0 if and only if H(X|Y = y) = 0 for all y such that P(Y = y) > 0. This holds if and only if given (Y = y) with P(Y = y) > 0, variable X is concentrated on a single value. Denoting this value as f(y), we obtain X = f(Y), except for the union of those sets (Y = y) which have probability 0.

Entropy KL divergence Conditional entropy Mutual information Conditional MI 0000000000

Another formula for conditional entropy

We have

$$\mathsf{H}(\mathsf{X}|\mathsf{Y}) = \mathbb{E}\left[-\log\mathsf{P}(\mathsf{X}|\mathsf{Y})\right].$$

Proof

$$\begin{split} \mathsf{H}(\mathsf{X}|\mathsf{Y}) &= \sum_{\mathsf{y}} \mathsf{P}(\mathsf{Y}=\mathsf{y})\mathsf{H}(\mathsf{X}|\mathsf{Y}=\mathsf{y}) \\ &= -\sum_{\mathsf{x},\mathsf{y}} \mathsf{P}(\mathsf{Y}=\mathsf{y})\mathsf{P}(\mathsf{X}=\mathsf{x}|\mathsf{Y}=\mathsf{y}) \log \mathsf{P}(\mathsf{X}=\mathsf{x}|\mathsf{Y}=\mathsf{y}) \\ &= -\sum_{\mathsf{x},\mathsf{y}} \mathsf{P}(\mathsf{X}=\mathsf{x},\mathsf{Y}=\mathsf{y}) \log \mathsf{P}(\mathsf{X}=\mathsf{x}|\mathsf{Y}=\mathsf{y}) \\ &= \mathbb{E} \left[-\log \mathsf{P}(\mathsf{X}|\mathsf{Y}) \right]. \end{split}$$

0000000000	00000		000	000000
Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI

Conditional entropy and entropy

Because P(Y)P(X|Y) = P(X, Y), by the previous result,

H(Y) + H(X|Y) = H(X,Y).

Hence

 $H(X,Y) \geq H(Y).$

Example

Let
$$P(X = 0|A) = P(X = 1|A) = 1/2$$
, whereas $P(X = 0|A^c) = 1$ and
 $P(X = 1|A^c) = 0$. Assuming $P(A) = 1/2$, we have
 $P(X = 0) = (1/2) \cdot (1/2) + (1/2) = 3/4$ and
 $P(X = 0) = (1/2) \cdot (1/2) = 1/4$ so
 $H(X) = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = \log 4 - \frac{3}{4} \log 3 = 0.811....$

On the other hand, we have $H(X|A) = \log 2 = 1$.

Despite that fact, $H(X|Y) \leq H(X)$ holds in general. Thus entropy decreases given additional information on average.

Mutual ir	nformation			
Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000000000		00000	●00	0000000

To show that H(X) is greater than H(X|Y), it is convenient to introduce another important concept.

Definition (mutual information)Mutual information between discrete variables X and Y is
$$I(X; Y) := \mathbb{E} \left[\log \frac{P(X, Y)}{P(X)P(Y)} \right].$$

We have I(X; X) = H(X). Thus entropy is sometimes called *self-information*.

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000000000	00000	00000	0●0	
	<i>.</i>			

Mutual information is nonnegative

Theorem

We have

 $I(X;Y)\geq 0,$

where the equality holds if and only if X and Y are independent.

Proof

Let $p(x,y)=\mathsf{P}(X=x,Y=y)$ and $q(x,y)=\mathsf{P}(X=x)\mathsf{P}(Y=y).$ Then we have

$$\mathsf{I}(\mathsf{X};\mathsf{Y}) = \sum_{(x,y): p(x,y) > 0} \mathsf{p}(x,y) \log \frac{\mathsf{p}(x,y)}{\mathsf{q}(x,y)} = \mathsf{D}(\mathsf{p}||\mathsf{q}) \geq 0$$

with the equality exactly for $\mathbf{p} = \mathbf{q}$.

Entropy KL divergence Conditional entropy Mutual information Conditional MI 0000000000

Mutual information and entropy

By the definition of mutual information,

$$\begin{split} H(X,Y) + I(X;Y) &= H(X) + H(Y), \\ H(X|Y) + I(X;Y) &= H(X). \end{split}$$

Hence

$$\begin{split} H(X) + H(Y) &\geq H(X,Y), \\ H(X) &\geq H(X|Y), \ I(X;Y). \end{split}$$

Moreover, we have H(X|Y) = H(Y) if X and Y are independent, which also agrees with intuition.

Conditio	nal mutual	information		
Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000000000	00000	00000		•000000

In a similar fashion to conditional entropy, we define:

Definition (conditional mutual information)

Conditional mutual information between discrete variables ${\bf X}$ and ${\bf Y}$ given event ${\bf A}$ is

$$\begin{split} \mathsf{I}(\mathsf{X};\mathsf{Y}|\mathsf{A}) &:= \mathsf{D}(\mathsf{p}||\mathsf{q}) \text{ for } \mathsf{p}(\mathsf{x},\mathsf{y}) = \mathsf{P}(\mathsf{X}=\mathsf{x},\mathsf{Y}=\mathsf{y}|\mathsf{A}) \\ & \text{ and } \mathsf{q}(\mathsf{x},\mathsf{y}) = \mathsf{P}(\mathsf{X}=\mathsf{x}|\mathsf{A})\mathsf{P}(\mathsf{Y}=\mathsf{y}|\mathsf{A}) \end{split}$$

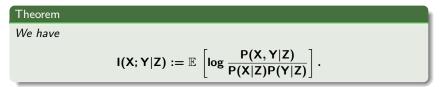
Conditional mutual information between discrete variables ${\bf X}$ and ${\bf Y}$ given variable ${\bf Z}$ is defined as

$$I(X;Y|Z):=\sum_{z:P(Z=z)>0}P(Z=z)I(X;Y|Z=z).$$

Both I(X; Y|A) and I(X; Y|Z) are nonnegative.

Entropy 0000000000	KL divergence 00000	Conditional entropy 00000	Mutual information	Conditional MI
Another	formula for	СМІ		

As in the case of conditional entropy, this proposition is true:



Entropy 0000000000	KL divergence	Conditional entropy 00000	Mutual information	Conditional MI
Conditio	nal indeper	ndence		

Definition (conditional independence)

Variables $X_1, X_2, ..., X_n$ are conditionally independent given Z if

$$\mathsf{P}(\mathsf{X}_1,\mathsf{X}_2,...,\mathsf{X}_n|\mathsf{Z}) = \prod_{i=1}^n \mathsf{P}(\mathsf{X}_i|\mathsf{Z}).$$

Variables $X_1, X_2, X_3, ...$ are conditionally independent given Z if $X_1, X_2, ..., X_n$ are conditionally independent given Z for any n.

Theorem

We have

$I(X;Y|Z)\geq 0,$

with equality iff X and Y are conditionally independent given Z.

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
0000000000	00000	00000		000●000
Conditio	nal indeper	dence (exampl	es)	

Example

Let Y = f(Z) be a function of variable Z, whereas X be an arbitrary variable. Variables X and Y are conditionally independent given Z. Indeed,

$$\begin{split} \mathsf{P}(\mathsf{X} = \mathsf{x}, \mathsf{Y} = \mathsf{y} | \mathsf{Z} = \mathsf{z}) &= \mathsf{P}(\mathsf{X} = \mathsf{x} | \mathsf{Z} = \mathsf{z}) \mathbf{1}_{\{\mathsf{y} = \mathsf{f}(\mathsf{z})\}} \\ &= \mathsf{P}(\mathsf{X} = \mathsf{x} | \mathsf{Z} = \mathsf{z}) \mathsf{P}(\mathsf{Y} = \mathsf{y} | \mathsf{Z} = \mathsf{z}) \end{split}$$

Example

Let variables X, Y, and Z be independent. Variables U = X + Z and W = Y + Z are conditionally independent given Z. Indeed,

$$\begin{split} \mathsf{P}(\mathsf{U} = \mathsf{u},\mathsf{W} = \mathsf{w}|\mathsf{Z} = \mathsf{z}) &= \mathsf{P}(\mathsf{X} = \mathsf{u} - \mathsf{z},\mathsf{Y} = \mathsf{w} - \mathsf{z}) \\ &= \mathsf{P}(\mathsf{X} = \mathsf{u} - \mathsf{z})\mathsf{P}(\mathsf{Y} = \mathsf{w} - \mathsf{z}) \\ &= \mathsf{P}(\mathsf{U} = \mathsf{u}|\mathsf{Z} = \mathsf{z})\mathsf{P}(\mathsf{W} = \mathsf{w}|\mathsf{Z} = \mathsf{z}). \end{split}$$

Entropy	KL divergence	Conditional entropy	Mutual information	Conditional MI
	00000	00000	000	0000€00
Markov	chains			

Definition (Markov chain)

A stochastic process $(X_i)_{i=-\infty}^{\infty}$ is called a *Markov chain* if

$$\mathsf{P}(\mathsf{X}_i|\mathsf{X}_{i-1},\mathsf{X}_{i-2},...,\mathsf{X}_{i-n})=\mathsf{P}(\mathsf{X}_i|\mathsf{X}_{i-1})$$

holds for any n.

Example

For a Markov chain $(X_i)_{i=-\infty}^{\infty}$, variables X_i and X_k are conditionally independent given X_j if $i \leq j \leq k$. Indeed, after some algebra we obtain $P(X_k|X_i, X_j) = P(X_k|X_j)$, and hence

 $\mathsf{P}(\mathsf{X}_i,\mathsf{X}_k|\mathsf{X}_j)=\mathsf{P}(\mathsf{X}_i|\mathsf{X}_j)\mathsf{P}(\mathsf{X}_k|\mathsf{X}_i,\mathsf{X}_j)=\mathsf{P}(\mathsf{X}_i|\mathsf{X}_j)\mathsf{P}(\mathsf{X}_k|\mathsf{X}_j).$

Entropy 0000000000	KL divergence	Conditional entropy 00000	Mutual information	Conditional MI 00000€0
Conditio	nal MI and	MI		

Theorem

We have

$$I(X;Y|Z) + I(X;Z) = I(X;Y,Z).$$

Remark: Hence, variables X and (Y, Z) are independent iff X and Z are independent and X and Y are independent given Z.

Proof

$$I(X; Y|Z) + I(X; Z)$$

$$= \mathbb{E} \left[\log \frac{P(X, Y, Z)P(Z)}{P(X, Z)P(Y, Z)} \right] + \mathbb{E} \left[\log \frac{P(X, Z)}{P(X)P(Z)} \right]$$

$$= \mathbb{E} \left[\log \frac{P(X, Y, Z)}{P(X)P(Y, Z)} \right] = I(X; Y, Z).$$

Entropy 0000000000	KL divergence	Conditional entropy 00000	Mutual information	Conditional MI 000000●
CMI and	entropy			

Theorem

If entropies H(X), H(Y), and H(Z) are finite, we have

$$\begin{split} H(X|Y) &= H(X,Y) - H(Y), \\ I(X;Y) &= H(X) - H(X|Y) = H(X) + H(Y) - H(X,Y), \\ I(X;Y|Z) &= H(X|Z) + H(Y|Z) - H(X,Y|Z) \\ &= H(X,Z) + H(Y,Z) - H(X,Y,Z) - H(Z), \end{split}$$

where all terms are finite and nonnegative.

The proof is left as an easy exercise.

- .

