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Claude Shannon (1916–2001)

Entropy of a random variable on
a probability space is the fundamen-
tal concept of information theory de-
veloped by Claude Shannon in 1948.
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Probability as a random variable

Definition

Let X and Y be discrete variables and A be an event on a probability space
(Ω,J ,P). We define P(X) as a discrete random variable such that

P(X)(ω) = P(X = x) ⇐⇒ X(ω) = x.

Analogously we define P(X|Y) and P(X|A) as

P(X|Y)(ω) = P(X = x|Y = y) ⇐⇒ X(ω) = x and Y(ω) = y,

P(X|A)(ω) = P(X = x|A) ⇐⇒ X(ω) = x,

where the conditional probability is P(B|A) = P(B ∩ A)/P(A) for P(A) > 0.
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Independence

We write P(Y) = P(X1,X2, ...,Xn) for Y = (X1,X2, ...,Xn).

Definition (independence)

We say that random variables X1,X2, ...,Xn are independent if

P(X1,X2, ...,Xn) =
∏n
i=1 P(Xi).

Analogously, we say that random variables X1,X2,X3, ... are independent if
X1,X2, ...,Xn are independent for any n.

Example

Let Ω = [0, 1] be the unit section and let P be the Lebesgue measure. Define
real random variable Y(ω) = ω. If we consider its binary expansion
Y =

∑∞
i=1 2

−iZi, where Zi : Ω→ {0, 1}, then
P(Z1,Z2, ...,Zn) = 2−n =

∏n
i=1 P(Zi).
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Expectation

Definition (expectation)

We define the expectation of a real random variable X as

EX :=

∫
XdP.

For discrete random variables we obtain

EX =
∑

x:P(X=x)>0

P(X = x) · x.
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Additivity of expectation

One of fundamental properties of the expectation is its additivity.

Theorem

Let X,Y ≥ 0. We have

E (X + Y) = EX + EY.

Remark: The restriction X,Y ≥ 0 is made because, e.g., for EX =∞ and
EY = −∞ the sum is undefined.
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Entropy

Some interpretation of entropy H(X) is the average uncertainty carried by
a random variable X. We expect that uncertainty adds for probabilistically
independent sources. Formally, for P(X,Y) = P(X)P(Y), we postulate
H(X,Y) = H(X) + H(Y). Because log(xy) = log x + log y, the following
definition comes as a very natural idea.

Definition (entropy)

The entropy of a discrete variable X is defined as

H(X) := E [− log P(X)] . (1)

Traditionally, it is assumed that log is the logarithm to the base 2.

Because log P(X) ≤ 0, we put the minus sign in the definition (1) so that
entropy be positive.
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Entropy (continued)

Equivalently, we have

H(X) = −
∑

x:P(X=x)>0

P(X = x) log P(X = x),

We can verify that for P(X,Y) = P(X)P(Y),

H(X,Y) = E [− log P(X,Y)] = E [− log P(X)− log P(X)]

= E [− log P(X)] + E [− log P(X)] = H(X) + H(Y).
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Entropy for a binary variable
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Figure: Entropy H(X) = −p log p− (1− p) log(1− p) for
P(X = 0) = p and P(X = 1) = 1− p.
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The range of entropy in general

Because function f(p) = −p log p is strictly positive for p ∈ (0, 1) and equals
0 for p = 1, it can be easily seen that:

Theorem

H(X) ≥ 0, whereas H(X) = 0 if and only if X assumes only a single value.

This fact agrees with the idea that constants carry no uncertainty. On the
other hand, assume that X takes values x ∈ {1, 2, ..., n} with equal
probabilities P(X = x) = 1/n. Then

H(X) = −
n∑
x=1

1
n
log
1
n

=
n∑
x=1

1
n
log n = log n.

As we will see, log n is the maximal value of H(X) if X assumes values in
{1, 2, ..., n}. That fact agrees with the intuition that the highest uncertainty
occurs for uniformly distributed variables.
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Kullback-Leibler divergence

A discrete probability distribution is a function p : X→ [0, 1] on a countable
set X such that p(x) ≥ 0 and

∑
x p(x) = 1.

Definition (entropy revisited)

The entropy of a discrete probability distribution is denoted as

H(p) := −
∑
x:p(x)>0

p(x) log p(x).

Definition (KL divergence)

Kullback-Leibler divergence, or relative entropy of probability distributions p
and q is defined as

D(p||q) :=
∑
x:p(x)>0

p(x) log
p(x)
q(x)

.
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Convex and concave functions

Definition (convex and concave functions)

A real function f : R→ R is convex if

p1f(x1) + p2f(x2) ≥ f(p1x1 + p2x2)

for pi ≥ 0 and p1 + p2 = 1. Moreover, f is called strictly convex if

p1f(x1) + p2f(x2) > f(p1x1 + p2x2)

for pi > 0 and p1 + p2 = 1. We say that function f is concave if −f is convex,
whereas f is strictly concave if −f is stricly convex.

Example

If function f has a positive second derivative then it is strictly convex. Hence
functions h(x) = − log x and g(x) = x2 are strictly convex.
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Jensen inequality

Theorem (Jensen inequality)

If f is a convex function and p is a discrete probability distribution over real
values then

∑
x:p(x)>0

p(x)f(x) ≥ f

 ∑
x:p(x)>0

p(x) · x

 .

Moreover, if f is strictly convex then

∑
x:p(x)>0

p(x)f(x) = f

 ∑
x:p(x)>0

p(x) · x


holds if and only if distribution p is concentrated on a single value.

The proof proceeds by induction on the number of values of p.
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KL divergence is nonegative

Theorem

We have

D(p||q) ≥ 0,

where the equality holds if and only if p = q.

Proof

By the Jensen inequality for f(y) = − log y, we have

D(p||q) = −
∑
x:p(x)>0

p(x) log
q(x)
p(x)

≥ − log

 ∑
x:p(x)>0

p(x)
q(x)
p(x)


= − log

(∑
x:p(x)>0 q(x)

)
≥ − log 1 = 0.
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The maximum of entropy

Theorem

Let X assume values in {1, 2, ..., n}. We have H(X) ≤ log n, whereas
H(X) = log n if and only if P(X = x) = 1/n.

Remark: If the range of variable X is infinite then entropy H(X) may be infinite.

Proof

Let p(x) = P(X = x) and q(x) = 1/n. Then

0 ≤ D(p||q) =
∑
x:p(x)>0

p(x) log
p(x)
1/n

= log n− H(X),

where the equality occurs if and only if p = q.
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Conditional entropy

The next important question is what is the behavior of entropy under
conditioning. The intuition is that given additional information, the uncertainty
should decrease. So should entropy. There are two distinct ways of defining
conditional entropy.

Definition (conditional entropy)

Conditional entropy of a discrete variable X given event A is

H(X|A) := H(p) for p(x) = P(X = x|A).

Conditional entropy of X given a discrete variable Y is defined as

H(X|Y) :=
∑

y:P(Y=y)>0

P(Y = y)H(X|Y = y).

Both H(X|A) and H(X|Y) are nonnegative.
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Minimum of conditional entropy

Theorem

H(X|Y) = 0 holds if and only if X = f(Y) for a certain function f except for
a set of probability 0.

Proof

Observe that H(X|Y) = 0 if and only if H(X|Y = y) = 0 for all y such that
P(Y = y) > 0. This holds if and only if given (Y = y) with P(Y = y) > 0,
variable X is concentrated on a single value. Denoting this value as f(y), we
obtain X = f(Y), except for the union of those sets (Y = y) which have
probability 0.
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Another formula for conditional entropy

We have

H(X|Y) = E [− log P(X|Y)] .

Proof

H(X|Y) =
∑
y

P(Y = y)H(X|Y = y)

= −
∑
x,y

P(Y = y)P(X = x|Y = y) log P(X = x|Y = y)

= −
∑
x,y

P(X = x,Y = y) log P(X = x|Y = y)

= E [− log P(X|Y)] .
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Conditional entropy and entropy

Because P(Y)P(X|Y) = P(X,Y), by the previous result,

H(Y) + H(X|Y) = H(X,Y).

Hence

H(X,Y) ≥ H(Y).
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Inequality H(X|A) ≤ H(X) need not hold

Example

Let P(X = 0|A) = P(X = 1|A) = 1/2, whereas P(X = 0|Ac) = 1 and
P(X = 1|Ac) = 0. Assuming P(A) = 1/2, we have
P(X = 0) = (1/2) · (1/2) + (1/2) = 3/4 and
P(X = 0) = (1/2) · (1/2) = 1/4 so

H(X) = −3
4
log
3
4
− 1
4
log
1
4

= log 4− 3
4
log 3 = 0.811....

On the other hand, we have H(X|A) = log 2 = 1.

Despite that fact, H(X|Y) ≤ H(X) holds in general. Thus entropy decreases
given additional information on average.
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Mutual information

To show that H(X) is greater than H(X|Y), it is convenient to introduce
another important concept.

Definition (mutual information)

Mutual information between discrete variables X and Y is

I(X;Y) := E
[
log
P(X,Y)

P(X)P(Y)

]
.

We have I(X;X) = H(X). Thus entropy is sometimes called self-information.
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Mutual information is nonnegative

Theorem

We have

I(X;Y) ≥ 0,

where the equality holds if and only if X and Y are independent.

Proof

Let p(x, y) = P(X = x,Y = y) and q(x, y) = P(X = x)P(Y = y). Then we
have

I(X;Y) =
∑

(x,y):p(x,y)>0

p(x, y) log
p(x, y)
q(x, y)

= D(p||q) ≥ 0

with the equality exactly for p = q.
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Mutual information and entropy

By the definition of mutual information,

H(X,Y) + I(X;Y) = H(X) + H(Y),

H(X|Y) + I(X;Y) = H(X).

Hence

H(X) + H(Y) ≥ H(X,Y),

H(X) ≥ H(X|Y), I(X;Y).

Moreover, we have H(X|Y) = H(Y) if X and Y are independent, which also
agrees with intuition.
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Conditional mutual information

In a similar fashion to conditional entropy, we define:

Definition (conditional mutual information)

Conditional mutual information between discrete variables X and Y given event
A is

I(X;Y|A) := D(p||q) for p(x, y) = P(X = x,Y = y|A)

and q(x, y) = P(X = x|A)P(Y = y|A).

Conditional mutual information between discrete variables X and Y given
variable Z is defined as

I(X;Y|Z) :=
∑

z:P(Z=z)>0

P(Z = z)I(X;Y|Z = z).

Both I(X;Y|A) and I(X;Y|Z) are nonnegative.
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Another formula for CMI

As in the case of conditional entropy, this proposition is true:

Theorem

We have

I(X;Y|Z) := E
[
log

P(X,Y|Z)

P(X|Z)P(Y|Z)

]
.
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Conditional independence

Definition (conditional independence)

Variables X1,X2, ...,Xn are conditionally independent given Z if

P(X1,X2, ...,Xn|Z) =
n∏
i=1

P(Xi|Z).

Variables X1,X2,X3, ... are conditionally independent given Z if X1,X2, ...,Xn
are conditionally independent given Z for any n.

Theorem

We have

I(X;Y|Z) ≥ 0,

with equality iff X and Y are conditionally independent given Z.
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Conditional independence (examples)

Example

Let Y = f(Z) be a function of variable Z, whereas X be an arbitrary variable.
Variables X and Y are conditionally independent given Z. Indeed,

P(X = x,Y = y|Z = z) = P(X = x|Z = z)1{y=f(z)}
= P(X = x|Z = z)P(Y = y|Z = z).

Example

Let variables X, Y, and Z be independent. Variables U = X + Z and
W = Y + Z are conditionally independent given Z. Indeed,

P(U = u,W = w|Z = z) = P(X = u− z,Y = w − z)
= P(X = u− z)P(Y = w − z)
= P(U = u|Z = z)P(W = w|Z = z).
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Markov chains

Definition (Markov chain)

A stochastic process (Xi)∞i=−∞ is called a Markov chain if

P(Xi|Xi−1,Xi−2, ...,Xi−n) = P(Xi|Xi−1)

holds for any n.

Example

For a Markov chain (Xi)∞i=−∞, variables Xi and Xk are conditionally
independent given Xj if i ≤ j ≤ k. Indeed, after some algebra we obtain
P(Xk|Xi,Xj) = P(Xk|Xj), and hence

P(Xi,Xk|Xj) = P(Xi|Xj)P(Xk|Xi,Xj) = P(Xi|Xj)P(Xk|Xj).
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Conditional MI and MI

Theorem

We have

I(X;Y|Z) + I(X;Z) = I(X;Y,Z).

Remark: Hence, variables X and (Y,Z) are independent iff X and Z are
independent and X and Y are independent given Z.

Proof

I(X;Y|Z) + I(X;Z)

= E
[
log
P(X,Y,Z)P(Z)

P(X,Z)P(Y,Z)

]
+ E

[
log
P(X,Z)

P(X)P(Z)

]
= E

[
log
P(X,Y,Z)

P(X)P(Y,Z)

]
= I(X;Y,Z).
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CMI and entropy

Theorem

If entropies H(X), H(Y), and H(Z) are finite, we have

H(X|Y) = H(X,Y)− H(Y),

I(X;Y) = H(X)− H(X|Y) = H(X) + H(Y)− H(X,Y),

I(X;Y|Z) = H(X|Z) + H(Y|Z)− H(X,Y|Z)

= H(X,Z) + H(Y,Z)− H(X,Y,Z)− H(Z),

where all terms are finite and nonnegative.

The proof is left as an easy exercise.
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