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The aim of the paper

We will show that finite-state statistical language models can be
refuted using an argument based on semantics rather than syntax.

This semantic argument is rooted in recent mathematical
research in information theory.

Even if some hypotheses thereof do not pertain to natural
language, we suppose that our reasoning points out
interesting directions of future research.

Despite Claude Shannon’s influential opinion, information
theory is also a theory of semantics but a quantitative one.
It deals with amounts of meaning rather than with structures
thereof. Yet, amounts and structures constrain one another.

We presented similar results at previous Peripatetic Conferences.
This paper improves on several mathematical details.
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Finite-state automata and processes

S1

S2

S3

S4S5

a | 0.1

b | 0.9 a | 0.8

b | 0.2 a | 0.4

b | 0.6a | 0.5

b | 0.5

a | 0.7

b | 0.3

A hidden Markov process with a finite number of hidden states Si .
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Is natural language a finite-state process?

Yes: Burrhus F. Skinner. Verbal Behavior. Prentice Hall, 1957.
Skinner-like argument: Human brain consists of a billion of
neurons (a finite number). Assuming that each neuron can be
in two states, we obtain that the verbal behavior can be
modeled by a finite-state automaton with 210

9
states.

No: Noam Chomsky. A review of B. F. Skinner’s Verbal
Behavior. Language, 35(1):26–58, 1959.
Chomsky-like argument: There appear nested utterances of
structure anbn in human language with n arbitrarily large.
Hence the natural language cannot be modeled by
a finite-state automaton and should be modeled at least by
a context-free grammar (push-down automaton).

We will demonstrate a novel argument against finite-state models,
which is based on a hypothetical Zipf law for factual knowledge.
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Rank list of words (Shakespeare’s plays)

rank frequency word
1 21557 I
2 19059 and
3 16571 to
4 14921 of
5 14491 a
6 12077 my
7 10463 you
8 9789 in
9 8754 is

10 7428 that
... ... ...
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Zipf’s distribution

Zipf’s law (empirical law)

If we count frequencies of words and sort them with respect to
decreasing frequencies then they roughly follow Zipf’s distribution.

Zipf’s distribution

For a random variable K taking values in natural numbers,

P(K = k) =
1

ζ(α)
·
1

kα
, α > 1,

where ζ(α) is the famous Riemann zeta function,

ζ(α) :=
1

1α
+
1

2α
+
1

3α
+ ...
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The monkey-typing explanation

Benôıt Mandelbrot (1954), George A. Miller (1957):

A simple finite-state process which exhibits Zipf’s law:

If we press keys of the keyboard at random, the resulted text
obeys Zipf’s law for strings of letters separated by spaces.

Thus, mere Zipf law cannot refute finite-state models.
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Zipf’s law in the plot
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Factual knowledge cannot be ignored

Linguists often assume that the description of language system
can be delineated from factual knowledge expressed in texts.

In statistical language modeling (speech recognition/machine
translation), we cannot afford ignoring factual knowledge:

“Every time I fire a linguist the performance improves.”
— attributed to Frederick Jelinek

We have to model also things that are expressed in language,
which come as a large number of rare events (LNRE).

Under Zipf’s law, roughly a half of the vocabulary of a text
are hapax legomena, i.e., words that appear only once.

The same may apply to mentions of facts.
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Santa Fe process: a model of a random consistent text

Let (Ki )
∞
i=1 be independent variables following Zipf’s distribution.

Let (Zk)
∞
k=1 be a sequence of random independent bits (facts).

The Santa Fe process (Xi )
∞
i=1 is an infinite sequence of pairs

Xi := (Ki ,ZKi
).

A semantic interpretation

Process (Xi )
∞
i=1 is a sequence of random propositions:

Proposition Xi = (k, z) asserts that the k-th fact has value
z , in such way that one can determine both k and z .

For Xi = (k, z) and Xj = (k ′, z ′) we do not know in
advance which facts they describe but k = k ′ =⇒ z = z ′.

The number U(n) of facts that can be computed
from both (X−n, ...,X0) and (X1, ...Xn) is ∝ nβ, β = 1/α.
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Mutual information in the Shannon framework

Shannon entropy: H(X ) := −
∑
x

P(X = x) logP(X = x)

Random strings of letters: X k
j := (Xj ,Xj+1, ...,Xk)

Shannon mutual information:

I (X ;Y ) := H(X ) + H(Y )− H(X ,Y ) ≥ 0

OLD RESULT: Bound for finite-state processes:

I (X 0−n;X
n
1 ) ≤ I (S0; S1) ≤ H(S1) ≤ log(# of hidden states)

Bound for Santa Fe processes:

I (X 0−n;X
n
1 ) ≥ EU(n) ∝ nβ, β = 1/α
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Mutual information in the algorithmic framework

Kolmogorov complexity:
K(x) := (the length of the shortest program computing x)

Strings of letters: xkj := (xj , xj+1, ..., xk)

Algorithmic mutual information:

J(x ; y) := K(x) + K(y)− K(x, y) ≥ 0

NEW RESULT: Bound for finite-state processes:

E J(X 0−n;X
n
1 ) ≤ (# of hidden states) log n

Bound for Santa Fe processes:

E J(X 0−n;X
n
1 ) ≥ EU(n) ∝ nβ, β = 1/α
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An overseen more prominent effect

For text length n, the # of hidden states is greater than:

D(n) — maximal depth of central embedding,

U(n) — amount of factual knowledge conveyed repeatedly.

Values D(n) and U(n) are finite but we may suppose
that U(n) grows like nβ whereas D(n) grows like log n.

Semantics matters more than syntax.
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Hilberg’s hypothesis and Big Data

German telecom engineer Wolfgang Hilberg (1990) replotted
Shannon’s (1951) guessing data in log-log scale:

I (X 0−n;X
n
1 ) ∝ nβ, β ≈ 0.5, n ≤ 100.

Estimates for bzip2 of 8GB text (Takahira et al., 2016):

J(x0−n; x
n
1 ) ∝ nβ, β ≈ 0.8, n ≤ 109.

We call this relationship Hilberg condition.
Similar estimates for neural statistical language models:

Hestness et al. (2017). Deep Learning Scaling Is Predictable, Empirically.
Hahn, Futrell (2019). Estimating Predictive Rate-Distortion Curves via
Neural Variational Inference.
Braverman et al. (2020). Calibration, Entropy Rates, and Memory in
Language Models.
Kaplan et al. (2020). Scaling Laws for Neural Language Models.
Henighan et al. (2020). Scaling Laws for Autoregressive Generative
Modeling.
Hernandez et al. (2021). Scaling Laws for Transfer.
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A refutation of finite-state models

As we have shown, finite-state language models do not satisfy
the Hilberg condition neither in the Shannon framework nor in
the algorithmic one.

By contrast, Santa Fe processes satisfy the Hilberg condition.

Santa Fe processes are stationary processes in which mentions
of independent elementary facts are distributed asymptotically
according to Zipf’s law.

Open questions

To what extent does language resemble a Santa Fe process?
Can we estimate the amount of facts carried by a text?
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