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Finite-state automata and processes
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A hidden Markov process with a finite number of hidden states Si .

The HM order of a process is the min-number of hidden states.
Finite-state processes are processes of a finite HM order.
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Is natural language a finite-state process?

Yes:
B. F. Skinner. Verbal Behavior. Prentice Hall, 1957.
Skinner-like argument: Human brain consists of a billion of
neurons (a finite number). Assuming that each neuron can be
in two states, we obtain that the verbal behavior can be
modeled by a finite-state automaton with 210

9
states.

No:
N. Chomsky. A review of B. F. Skinner’s Verbal Behavior.
Language, 35(1):26–58, 1959.
Chomsky-like argument: There appear nested utterances of
structure anbn in human language with n arbitrarily large.
Hence the natural language cannot be modeled by
a finite-state automaton and should be modeled at least by
a context-free grammar (push-down automaton).
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More convincing empirical evidence?

Chomsky-like argument is based on our rational understanding
of how natural langauge works.

Observing structures anbn with n large enough is difficult.
Is there another computational method of showing that
natural language is not a finite-state process?

Can a mathematical theory (information theory and statistics)
provide a method of showing that a given stream of data
cannot be generated by a finite-state process?
Can we estimate the HM order of a process?
Can we apply these methods to human language corpus data?
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Three power laws

We will demonstrate three information-theoretic power laws,
probably satisfied by language, which disprove that language is a

finite-state process with a small number of hidden states.

It is still possible that natural language is a finite-state process with
a very large number of hidden states (210

9
or more if we take into

account interaction with the environment and other individuals).
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Law 1: Block-wise mutual information

Entropy: H(X ) = −
∑
x

P(X = x) logP(X = x)

Strings of letters: X k
j = (Xj ,Xj+1, ...,Xk)

Mutual information:

I (X ,Y ) = H(X ) + H(Y )− H(X ,Y ) ≥ 0

Bound for finite-state processes:

I (X 0−n;X
n
1 ) ≤ I (S0; S1) ≤ H(S1) ≤ log(# of hidden states)

Hilberg’s (1990) hypothesis for natural language:

I (X 0−n;X
n
1 ) ∝ nβ, β ≈ 1/2

Mutual information I (X 0−n;X
n
1 ) is hard to lower-bound.
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The growth of PPM vocabulary

— an upper bound for mutual information I (X 0−n;X
n
1 )

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1  10  100  1000  10000  100000  1x106  1x107

ca
rd

in
al

ity
 o

f t
he

 P
P

M
 v

oc
ab

ul
ar

y

input length [characters]

Shakespeare
random permutation

ln cardV (xn
1 ) ≈ −0.737+ 0.801 ln n for Shakespeare



Title page Finite-state processes Three power laws Conclusions References

Law 2: Maximal repetition

Strings of letters: xk
j = (xj , xj+1, ..., xk)

Maximal repetition:

L(xn
1 ) = max

{
k : x i+k

i+1 = x
j+k
j+1 for some 0 ≤ i < j ≤ n − k

}
Bound for typical finite-state processes:

L(X n
1 ) ≤ A log n almost surely

Dębowski’s (2012, 2015) observation for natural language:

L(xn
1 ) ∝ (log n)α, α ≈ 3



Title page Finite-state processes Three power laws Conclusions References

The growth of maximal repetition
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Law 3: Symbol-wise mutual information

Entropy: H(X ) = −
∑
x

P(X = x) logP(X = x)

Mutual information:

I (X ,Y ) = H(X ) + H(Y )− H(X ,Y ) ≥ 0

Bound for typical finite-state processes:

I (X1;Xn) ≤ Aλn, λ < 1

Lin and Tegmark’s (2017) observation for natural language:

I (X1;Xn) ∝ n−γ, γ ≈ 1/2
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Lin and Tegmark’s (2017) plot
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Estimating the HM order of a process directly

We can also consistently estimate the number of hidden states of
a given process (Lehéricy 2017), but the algorithm is quite
complicated and the speed of its convergence is unknown.

The estimated number of hidden states can be
a quickly growing function of the text sample size.

It may be interesting to investigate this functional dependence.
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Conclusions

It has been long supposed that natural language cannot be a
finite-state process with a small number of hidden states.

We have shown three information-theoretic power laws,
probably satisfied by natural language, which also disprove
this hypothesis.

Contrary to Chomskyan thought, rejecting finite-state
processes does not mean eradicating any probability models
from linguistic considerations.

The world of stochastic processes is much richer than just
finite-state processes — see my book in progress, entitled:

Ł. Dębowski, Information Theory Meets Power Laws:
Stochastic Processes and Language Models, 2018±1.
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