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Finite-state automata and processes
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A hidden Markov process with a finite number of hidden states S;.

The HM order of a process is the min-number of hidden states.
Finite-state processes are processes of a finite HM order. J
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Is natural language a finite-state process?

o Yes:
B. F. Skinner. Verbal Behavior. Prentice Hall, 1957.
Skinner-like argument: Human brain consists of a billion of
neurons (a finite number). Assuming that each neuron can be
in two states, we obtain that the verbal behavior can be
modeled by a finite-state automaton with 210° giates.

o No:
N. Chomsky. A review of B. F. Skinner's Verbal Behavior.
Language, 35(1):26-58, 1959.
Chomsky-like argument: There appear nested utterances of
structure @"b" in human language with n arbitrarily large.
Hence the natural language cannot be modeled by
a finite-state automaton and should be modeled at least by
a context-free grammar (push-down automaton).
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More convincing empirical evidence?

@ Chomsky-like argument is based on our rational understanding
of how natural langauge works.

@ Observing structures a"b"™ with n large enough is difficult.

@ Is there another computational method of showing that
natural language is not a finite-state process?

o Can a mathematical theory (information theory and statistics)
provide a method of showing that a given stream of data
cannot be generated by a finite-state process?

e Can we estimate the HM order of a process?

o Can we apply these methods to human language corpus data?
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Three power laws

We will demonstrate three information-theoretic power laws,
probably satisfied by language, which disprove that language is a
finite-state process with a small number of hidden states.

It is still possible that natural language is a finite-state process with
. 9 . .
a very large number of hidden states (210" or more if we take into
account interaction with the environment and other individuals).

v
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Law 1: Block-wise mutual information

e Entropy: H(X) = — Z P(X = x)log P(X = x)

Strings of letters: Xjk = (Xj, Xjt+15---» Xk)

Mutual information:

I(X,Y)=H(X)+ H(Y)—H(X,Y)>0
@ Bound for finite-state processes:

1(X°,; X[') < I(So; S1) < H(S1) < log(# of hidden states)

Hilberg's (1990) hypothesis for natural language:
I(X°, ;X" o n®, B=1/2

o Mutual information /(X2 ; X[") is hard to lower-bound.
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The growth of PPM vocabulary

— an upper bound for mutual information 1(X% ; X{7)
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Incard V(x{') = —0.737 + 0.801 In n for Shakespeare
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Law 2: Maximal repetition

; .ok —
o Strings of letters: X = (xj, Xj+1, -.+s Xk)

@ Maximal repetition:

L(x{') = max{k : x,’;'_'{‘ = xjﬂ( forsome 0 <i<j<n-— k}
@ Bound for typical finite-state processes:

L(X{") < Alog n almost surely
e Debowski's (2012, 2015) observation for natural language:

L(x{') x (logn)*, a=3
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The growth of maximal repetition

1000 T T
Shakespeare  +
random permutation X
P
100 | t o g E
+ ¥ +
B —F
= -
+
2 A
g * X %%
g oF + IV s 1
£ s
g + F s "
% o R x
£ + %) %
1+ X% % X 4
01 L L L L L L
1 10 100 1000 10000 100000 1x10° 1x107

string length |w|

o L(x{") =~ 0.02498 (log n)313 for Shakespeare

o L(x{") =~ 0.4936 (log n)*1% for random permutation of chars
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Law 3: Symbol-wise mutual information

Entropy: H(X) = — ) P(X = x)log P(X = x)

Mutual information:

I(X,Y)=H(X)+ H(Y) - H(X,Y) >0

Bound for typical finite-state processes:

I(X1; Xa) < AX", A <1

Lin and Tegmark’s (2017) observation for natural language:

I(X1;Xp) xn™, ~v=1/2
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Lin and Tegmark’s (2017) plot

Mutual information 1(X,Y) in bits
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Estimating the HM order of a process directly

We can also consistently estimate the number of hidden states of
a given process (Lehéricy 2017), but the algorithm is quite
complicated and the speed of its convergence is unknown.

The estimated number of hidden states can be
a quickly growing function of the text sample size.
It may be interesting to investigate this functional dependence.

v
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Conclusions

@ It has been long supposed that natural language cannot be a
finite-state process with a small number of hidden states.

@ We have shown three information-theoretic power laws,
probably satisfied by natural language, which also disprove
this hypothesis.

@ Contrary to Chomskyan thought, rejecting finite-state
processes does not mean eradicating any probability models
from linguistic considerations.

@ The world of stochastic processes is much richer than just
finite-state processes — see my book in progress, entitled:

t. Debowski, Information Theory Meets Power Laws:
Stochastic Processes and Language Models, 2018+1. J
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