Regular Hilberg Processes: Nonexistence of Universal Redundancy Ratios

Łukasz Dębowski Idebowsk@ipipan.waw.pl

PAN	

Institute of Computer Science Polish Academy of Sciences

WITMSE 2015, København

Title	Regular Hilberg processes	RHA processes	Conclusions
	●00000		

1 Regular Hilberg processes

- 2 RHA processes
- 3 Conclusions

Maximal repetition:

 $L(\xi_{1:k}) := \max \{ m : x_{1:m} \text{ is repeated in } \xi_{1:k} \}.$

Maximal repetition:

$$L(\xi_{1:k}) := \max \left\{ m : x_{1:m} \text{ is repeated in } \xi_{1:k} \right\}.$$

Topological entropy:

 $H_{top}(m|\xi_{1:\infty}) := \log \operatorname{card} \left\{ x_{1:m} : x_{1:m} \text{ is a subsequence of } \xi_{1:\infty}
ight\}.$

Theorem

If
$$H_{top}(m|\xi_{1:\infty}) < \log(k-m+1)$$
 then $L(\xi_{1:k}) \geq m$.

In particular:

$$\begin{aligned} & H_{top}(m|\xi_{1:\infty}) = O\left(m^{\beta}\right) \implies L(\xi_{1:m}) = \Omega\left((\log m)^{1/\beta}\right), \\ & L(\xi_{1:m}) = O\left((\log m)^{1/\beta}\right) \implies H_{top}(m|\xi_{1:\infty}) = \Omega\left(m^{\beta}\right). \end{aligned}$$

Title	Regular Hilberg processes	RHA processes	Conclusions
0	000●00		000
Regular	Hilberg processes		

We have a hypothesis that for texts in natural language

$$L(\xi_{1:m}) = \Theta\left((\log m)^{1/\beta}\right), \qquad (1)$$
$$H_{top}(m|\xi_{1:\infty}) = \Theta\left(m^{\beta}\right), \qquad (2)$$

where $\beta \approx 0.37$ (Hilberg 1990, Dębowski 2015).

Definition

A stationary measure μ is called a regular Hilberg process with an exponent $\beta \in (0, 1)$ if it satisfies conditions (1)–(2) μ -almost surely, where the lower bound for $L(\xi_{1:m})$ and the upper bound for $H_{top}(m|\xi_{1:\infty})$ are uniform in $\xi_{1:\infty}$.

Regular Hilberg processes have zero entropy rate

The block entropy of measure μ is

$$H_{\mu}(m) := \mathbb{E}_{\mu} \left[-\log \mu(\xi_{1:m}) \right],$$

and the entropy rate of μ is the limit

$$h_{\mu}:=\inf_{m\in\mathbb{N}}rac{H_{\mu}(m)}{m}=\lim_{m
ightarrow\infty}rac{H_{\mu}(m)}{m}.$$

Regular Hilberg processes have the entropy rate $h_{\mu} = 0$:

For the random ergodic measure $F = \mu(\cdot | \mathcal{I})$, where \mathcal{I} is the shift-invariant algebra, by the ergodic theorem, we have

$$H_F(m) \leq H_{top}(m|\xi_{1:\infty})$$

 μ -almost surely, so $h_F = 0$, whereas we have

$$h_{\mu}=\mathbb{E}_{\mu}h_{F},$$

from which $h_{\mu} = 0$ follows.

Ergodic regular Hilberg processes have this property: We have $\mu = F = \mu(\cdot | \mathcal{I})$, so the block entropy satisfies

$$H_{\mu}(m) = H_F(m) \leq H_{top}(m|\xi_{1:\infty}) = O\left(m^{\beta}\right),$$

whereas the length of the Lempel-Ziv code μ -almost surely satisfies

$$|C(\xi_{1:m})| \geq rac{m}{L(\xi_{1:m})+1}\lograc{m}{L(\xi_{1:m})+1} = \Omega\left(rac{m}{(\log m)^{1/eta-1}}
ight)$$

In other words the length of the universal LZ code is orders of magnitude larger than the block entropy of the process!

We cannot estimate block entropy as length of the LZ code!

Title	Regular Hilberg processes	RHA processes	Conclusions
		●0000	

Regular Hilberg processes

2 RHA processes

3 Conclusions

RHA processes, part I: Random selection of blocks

Let integers $(k_n)_{n \in \{0\} \cup \mathbb{N}}$, which we will call perplexities, satisfy

$$0 < k_{n-1} \leq k_n \leq k_{n-1}^2.$$

Next, for each $n \in \mathbb{N}$, let $(L_{nj}, R_{nj})_{j \in \{1, ..., k_n\}}$ be an independent random combination of k_n pairs of numbers from the set $\{1, ..., k_{n-1}\}$ drawn without repetition. That is,

$$P((L_{n1}, R_{n1}, ..., L_{nk_n}, R_{nk_n}) = (I_{n1}, r_{n1}, ..., I_{nk_n}, r_{nk_n})) = {\binom{k_{n-1}^2}{k_n}}^{-1}$$

Subsequently we define random variables

$$\begin{array}{ll} Y_{j}^{0} = j, & j \in \{1,...,k_{0}\}, \\ Y_{j}^{n} = Y_{L_{nj}}^{n-1} \times Y_{R_{nj}}^{n-1}, & j \in \{1,...,k_{n}\}, n \in \mathbb{N}, \end{array}$$

where $\boldsymbol{a} \times \boldsymbol{b}$ denotes concatenation.

Hence Y_j^n are k_n distinct random blocks of 2^n numbers.

TitleRegular Hilberg processesRHA processesConclusions000000000000000000000RHA processes, part II: The nonstationary process

Let $(C_n)_{n \in \{0\} \cup \mathbb{N}}$ be a sequence of independent random variables with uniform distribution

$$P(C_n = j) = 1/k_n, \qquad j \in \{1, ..., k_n\}.$$
 (3)

Definition

The random hierarchical association (RHA) process \mathcal{X} with perplexities $(k_n)_{n \in \{0\} \cup \mathbb{N}}$ is defined as

$$\mathcal{X} = \mathbf{Y}_{C_0}^0 \times \mathbf{Y}_{C_1}^1 \times \mathbf{Y}_{C_2}^2 \times \dots$$
 (4)

Sequence \mathcal{X} will be parsed into a sequence of numbers X_i , where

$$\mathcal{X} = \mathbf{X}_1 \times \mathbf{X}_2 \times \mathbf{X}_3 \times \dots \tag{5}$$

TitleRegular Hilberg processesRHA processesConclusions000000000000000000RHA processes, part III: Stationary mean

A measure ν is called asymptotically mean stationary with respect to blocks (AMSB) if limits

$$\mu(x_{1:m}) := \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \nu(\xi_{i:i+m-1} = x_{1:m})$$

exist for every block x1:m.

Theorem

The RHA process is AMSB. In particular, for $m \leq 2^n$ and $k \in \mathbb{N}$, the stationary mean is

$$\mu(x_{1:m}) = \frac{1}{2^n} \sum_{j=0}^{2^n-1} P(X_{k2^n+j:k2^n+j+m-1} = x_{1:m}).$$

O I Itle	Regular Hilberg processes	COOOO	000
Main result			

Theorem

For perplexities $k_n = \lfloor \exp(2^{\beta n}) \rfloor$, where $\beta \in (0, 1)$, the stationary mean μ of the RHA process is nonergodic and satisfies:

• The block entropy is sandwiched by

$$C_1 m \left(rac{1}{\log m}
ight)^{1/eta-1} \leq H_\mu(m) \leq C_2 m \left(rac{\log\log m}{\log m}
ight)^{1/eta-1}$$

⁽²⁾ Measure μ is a regular Hilberg process, i.e.,

$$egin{aligned} & L(\xi_{1:m}) = \Theta\left((\log m)^{1/eta}
ight), \ & H_{top}(m|\xi_{1:\infty}) = \Theta\left(m^eta
ight) \end{aligned}$$

 μ -almost surely, where the lower bound for $L(\xi_{1:m})$ and the upper bound for $H_{top}(m|\xi_{1:\infty})$ are uniform in $\xi_{1:\infty}$.

Title	Regular Hilberg processes	RHA processes	Conclusions
			•00

Regular Hilberg processes

2 RHA processes

 Title
 Regular Hilberg processes
 RHA processes
 Conclusions

 Conclusions:
 Information theory

Shields (1993) showed that for any uniquely decodable code
 C and any function \(\rho(m) = o(m)\) there exists such an ergodic source \(F\) that

$$\limsup_{m\to\infty} [\mathbb{E}_F |C(\xi_{1:m})| - H_F(m) - \rho(m)] > 0.$$

- Whereas Shields' result concerns nonexistence of a universal bound for E_F |C(ξ_{1:m})| − H_F(m), ours indicates nonexistence of a universal bound for E_F |C(ξ_{1:m})| /H_F(m).
- ${f 0}$ For the RHA process and any uniquely decodable code ${m C},$

$$\mathbb{E}_{\mu} \frac{\mathbb{E}_{F} |C(\xi_{1:m})|}{H_{F}(m)} \geq \mathbb{E}_{\mu} \frac{H_{\mu}(m)}{H_{top}(m|\xi_{1:\infty})} = \Omega\left(\frac{m^{1-\beta}}{(\log m)^{1/\beta-1}}\right)$$

°	000000	00000	000
Conclusion	s: Linguistics		

- We have shown that regular Hilberg processes arise in a very simple setting of random sampling of texts from a restricted random hierarchical pool.
- In the pool of texts in natural language need not be so random.
- Consequently, this might explain why the estimates of block entropy for natural language, obtained through text prediction experiments with human subjects, suggest $H_{\mu}(m) = \Theta(m^{\beta})$ rather than $H_{\mu}(m) = \Omega(m/(\log m)^{1/\beta-1})$.

www.ipipan.waw.pl/~ldebowsk