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toward a probabilistic theory of meaningful texts,

applying stochastic processes and information theory.
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“Animate” and “inanimate” stochastic processes

If a Martian scientist sitting before his radio in Mars
accidentally received from Earth the broadcast of an exten-
sive speech [...], what criteria would he have to determine
whether the reception represented the effect of animate
process [...]? It seems that [...] the only clue to the anima-
te origin would be this: the arrangement of the occurrences
would be neither of rigidly fixed regularity such as frequ-
ently found in wave emissions of purely physical origin nor
yet a completely random scattering of the same.

— George Kingsley Zipf (1965:187)
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Information theory and meaning

The concept of information [...] at first seems disappo-
inting and bizarre—disappointing because it has nothing
to do with meaning, and bizarre because [...] information
and uncertainty find themselves to be partners.

[...] information and meaning may prove to be some-
thing like a pair of canonically conjugate variables in qu-
antum theory, they being subject to some joint restriction
that condemns a person to the sacrifice of the one as he
insists on having much of the other.

— Warren Weaver (1949)
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Meanings of meaningfulness

The aim of our research has been to make a few steps
toward a probabilistic theory of meaningful texts.

Meaningfulness of texts can be understood as:
1 effective description of an external or imagined reality

(descriptive meaningfulness);
2 internal cohesion of the narration or the discourse

(cohesive meaningfulness);
3 effective control of an external reality toward some goal

(telic meaningfulness).

— A kind of Borges’s classification of animals.
— Is meaning of life ill-defined? (→ Victor Frankl)

We sought how to model these using stochastic processes.
Thus, meaningful texts can be either natural or idealized:

natural texts = texts created by humans;
idealized texts = typical realizations of stochastic processes.
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Theorems about facts and words

Question

Is language structure a mathematical consequence of descriptive
meaningfulness, i.e., effective reference of texts to some reality?

As for double articulation, YES since we will show this:

Proposition (informally stated)

The number of distinct words in a finite text is roughly greater
than the number of independent facts described by the text.

When stated formally, the above proposition becomes a general
result in information theory, which remains valid for random texts

generated by any stationary stochastic process.

words =⇒ grammar-based codes/PPM Markov order

facts =⇒ algorithmic information theory/ergodic theory
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What are the words? (in our approach)

In our approach, words are some particular substrings of
symbols appearing in the text.

We need an effective procedure for word segmentation which
could approximately work both for natural language and
stochastic processes (sequences of random letters).
Two procedures are admissible:

Taking non-overlapping substrings that are repeated.
Taking all overlapping substrings of the optimal length.

Both procedures are connected to universal codes, i.e.,
effective data compression procedures that approximate
the entropy rate.
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A context-free grammar that generates one text


A1 → A2A2A4A5dear childrenA5A3all.
A2 → A3youA5
A3 → A4 to
A4 → Good morning
A5 → ,


Good morning to you,
Good morning to you,
Good morning, dear children,
Good morning to all.
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First approach: Minimal grammar-based codes

Grammar-based coding:
a grammar transform Γ : X∗ → G which for each string
w ∈ X∗ returns a grammar Γ(w) that generates this string.
a grammar encoder B : G → {0, 1}∗ encodes the grammar
as a binary string.

Vocabulary of a grammar transform:
Let V (G) be the set of nonterminals in a grammar G .
For a grammar transform Γ, let VΓ(w) := V (Γ(w)).

Minimal grammar transforms:
Grammar transform Γ is called minimal (w.r.t. B and G)
if |B(Γ(w))| ≤ |B(G)| for any string w and
any grammar G ∈ G that generates w .

Minimal grammar-based codes are NP-hard to compute.
But their approximations can be used

for rough word segmentation of texts in NLP.
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Second approach: Markov order estimators

Strings: xnm := (xm, xm+1, ..., xn). Let inf ∅ :=∞.

For a stationary measure P, the Markov order is

M := inf

k ≥ 0 : P(xnk+1|x
k
1 ) =

n∏
i=k+1

P(xi |x i−1i−k ) for all xn1

 .
Function M : X∗ → N is called a consistent estimator of M if

lim
n→∞

M(X n
1 ) = M almost surely

for any stationary ergodic probability measure P.
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PPM Markov order

Empirical frequency: N(wk
1 |xn1 ) :=

∑n−k+1
i=1 1

{
x i+k−1
i = wk

1

}
.

Empirical entropy and PPM measure:

hk(xn1 ) :=
1

n − k

n∑
i=k+1

log
N(x i−1i−k |x

n−1
1 )

N(x ii−k |xn1 )
, k ≥ 0,

PPMk(xn1 ) := D−k
n∏

i=k+1

N(x ii−k |x
i−1
1 ) + 1

N(x i−1i−k |x
i−2
1 ) + D

, k ≥ 0,

Π(xn1 ) :=
62

π4
·

1

(n + 1)2

∞∑
k=0

PPMk(xn1 )

(k + 1)2
.

Some consistent estimator of M is the PPM Markov order:

M(xn1 ) := min
{
k ≥ 0 : (n − k)hk(xn1 ) ≤ − log Π(xn1 )

}
.
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Herdan-Heaps’ power law for PPM vocabulary

Empirical vocabulary: Vk(xn1 ) :=
{
x t+k
t+1 : 0 ≤ t ≤ n − k

}
.

PPM vocabulary: VM(xn1 ) := VM(xn

1 )(x
n
1 ).
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Basic concepts in information theory

Shannon’s approach: X ,Y — some random variables.

Shannon entropy:
H(X ) := −

∑
x∈X P(X = x) logP(X = x) ≥ 0.

Shannon mutual information:
I (X ;Y ) := H(X ) + H(Y )− H(X ,Y ) ≥ 0.

Algorithmic information theory: x, y — some discrete objects.

Kolmogorov complexity:
H(x) ≥ 0 is the length of the shortest program to generate x .

Algorithmic mutual information:
I(x ; y) := H(x) + H(y)− H(x, y) ≥ −c .

Source coding:

H(X ) ≤ EH(X ) ≤ H(X ) + H(P) + c.
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Application to stationary processes

Let X be a finite alphabet of symbols.

Let (Xi )
∞
i=1 be a sequence of random variables Xi : Ω→ X.

We will denote random strings X n
m := (Xm,Xm+1, ...,Xn).

Process (Xi )
∞
i=1 is stationary if

probabilities P(X t+n
t+1 = xn1 ) do not depend on positions t.

For a stationary process,
there exist two limits, entropy rate h and excess entropy E :

h := lim
n→∞

H(X n
1 )

n
= lim

n→∞

[
H(X n

1 )− H(X n−1
1 )

]
,

E := lim
n→∞

I (X n
1 ;X 2nn+1) = lim

n→∞

[
H(X n

1 )− hn
]
.

h is a measure of randomness, E is a measure of structure.

Finite-state hidden Markov processes satisfy E <∞.
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Hilberg’s hypothesis about conditional entropy of language

Hilberg’s (1990) plot of Shannon’s (1951) data for English:

H(Xn|X n−1
1 ) = H(X n

1 )− H(X n−1
1 ) ∝ n−1/2, n ≤ 100
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Hilberg’s hypothesis for mutual information

We derive:

H(Xn|X n−1
1 ) = H(X n

1 )− H(X n−1
1 ) ∝ n−1/2,

H(X n
1 ) =

n∑
k=1

[
H(X n

1 )− H(X n−1
1 )

]
∝ n1/2,

I (X n
1 ;X 2nn+1) = H(X n

1 ) + H(X 2nn+1)− H(X 2n1 ) ∝ n1/2.

The relaxed Hilberg hypothesis:

I (X n
1 ;X 2nn+1) ∝ nβ, β ∈ (0, 1).

The above does not assume that the entropy rate is h = 0.

Natural language may have excess entropy E =∞.
Thus it cannot be a finite-state process (Chomsky vs. Skinner).
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What are the facts?

In our approach, facts are binary digits partly describing some
(model of) unchangeable reality that is referred to by texts.

Imagine a long row of chairs randomly painted white or black:

...

The state of this row could be described by a collection of
bits (zk)∞k=1, indexed by indices k = 1, 2, 3, ..., where

zk :=

{
0 if k-th chair is white,

1 if k-th chair is black.

Assume that chairs cannot be rearranged, repainted, or damaged.

—This is an abstract model of a complex eternal physical truth.
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Santa Fe process—a model of a random consistent text

Let (Ki )
∞
i=1 be a sequence of random variables Ki : Ω→ N.

Let (Zk)∞k=1 be a sequence of random bits Zk : Ω→ {0, 1}.
The Santa Fe process (Xi )

∞
i=1 is an infinite sequence of pairs

Xi := (Ki ,ZKi
).

A semantic interpretation

Process (Xi )i∈Z is a sequence of random propositions consistently
describing the abstract reality, i.e., random chair colors (Zk)∞k=1:

Proposition Xi = (k, z) asserts that the k-th chair of the row
has color z , in such way that one can determine both k and z .

For Xi = (k, z) and Xj = (k ′, z ′) we do not know in
advance which chairs they describe but k = k ′ =⇒ z = z ′.
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Zipfian Santa Fe processes

Let (Ki )
∞
i=1 and (Zk)∞k=1 be independent IID processes, where

P(Ki = k) ∝ k−α, α > 1,

P(Zk = 0) = P(Zk = 1) =
1

2
.

Consider the guessing function:

g(k, xn1 ) =


0 if for 1 ≤ i ≤ n, xi = (k, z) =⇒ xi = (k, 0),

1 if for 1 ≤ i ≤ n, xi = (k, z) =⇒ xi = (k, 1),

2 else,

and the set of effectively described facts, i.e., chairs:

Ug (X n
1 |Z
∞
1 ) :=

{
l ∈ N : g(k,X n

1 ) = Zk for all k ≤ l
}
.

We obtain Herdan-Heaps’ power law for described facts

lim
n→∞

E # Ug (X n
1 |Z∞1 )

n1/α
∈ (0,∞).
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A general model of effective description of facts

Let (zk)∞k=1 be a collection of facts zk ∈ {0, 1}.
We will denote finite texts xnm := (xm, xm+1, ..., xn).

Let g : N× X∗ → {0, 1, 2} be a (computable) function.

We will say that text xnm describes exactly l facts if

g(k, xnm) = zk for all k ≤ l and g(l + 1, xnm) 6= zl+1.

In this case, we will write

Ug (xnm|z
∞
1 ) := {1, 2, ..., l} .
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Independence of facts

To make the facts more abstract, we will assume that they are
independent and maximally unpredictable.

We can do it in two ways:
1 Algorithmically independent facts:

We keep individual bits zk ∈ {0, 1} intact but we assume
Kolmogorov complexity H(zk1 ) ≥ k − c for some c > 0.
=⇒ The text model is a perigraphic process.

2 Probabilistically independent facts:
We replace individual bits zk ∈ {0, 1} by random variables
Zk : Ω→ {0, 1} and we assume P(Zk

1 = zk1 ) = 2−k .
=⇒ The text model is a strongly nonergodic process.

Thus we assume a compressed representation of described reality.

You might have heard of Chaitin’s halting probability Ω,
which is a compressed representation of mathematical truth.
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Mutual information vs. common informations

The Shannon mutual information:

I (X ;Y ) := H(X ) + H(Y )− H(X ,Y ).

The Gács-Körner and modified Wyner common information:

C−(X ;Y ) := sup
W :W=f (X )=g(Y )

H(W ),

C+(X ;Y ) := inf
W :X⊥⊥Y |W

H(W ).

We have

0 ≤ C−(X ;Y ) ≤ I (X ;Y ) ≤ C+(X ;Y ) ≤ H(X ),H(Y ).

These inequalities can be strict!
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Toward theorems about facts and words

The number of distinct words resembles C+(X ;Y ).

Conjecture I

The power law growth of mutual information is slower than the
power law growth of the number of distinct words in texts of an

increasing length.

The number of independent facts resembles C−(X ;Y ).

Conjecture II

The power law growth of the number of independent facts
described in texts of an increasing length is slower than the power

law growth of mutual information.
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Hilberg exponents for the power-law growth

To measure power-law growth, we introduce Hilberg exponent

hilb
n→∞

s(n) := lim sup
n→∞

log s(n)

log n
.

We have hilb
n→∞

nβ = β.

Theorem 0 (excess bounds)

For a stationary process (Xi )
∞
i=1 over a finite alphabet:

hilb
n→∞

[
H(X n

1 )− hn
]

= hilb
n→∞

I (X n
1 ;X 2nn+1) ∈ [0, 1]
≤

hilb
n→∞

[
EH(X n

1 )− hn
]

= hilb
n→∞

E I(X n
1 ;X 2nn+1) ∈ [0, 1]
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Theorems about mutual information and words

Consider a stationary process (Xi )
∞
i=1 over a finite alphabet.

Let V (G) be the set of nonterminals in a grammar G .
For a grammar transform Γ, let VΓ(w) := V (Γ(w)).
L(w) is the length of the maximal repetition in string w .

Theorem 1 (grammar-based codes)

For a minimal grammar transform Γ, we have

hilb
n→∞

E I(X n
1 ;X 2nn+1) ≤ hilb

n→∞
E L(X n

1 ) #VΓ(X n
1 ).

Let Vk(w) be the set of substrings of length k of string w .
For a function M : X∗ → N, let VM(w) := VM(w)(w).

Theorem 2 (PPM vocabulary)

For the PPM Markov order M : X∗ → N, we have

hilb
n→∞

E I(X n
1 ;X 2nn+1) ≤ hilb

n→∞
E
[
M(X n

1 ) + #VM(X n
1 )
]
.
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Theorems about facts and mutual information

Theorem 3 (ergodic perigraphic processes)

Let (Xi )
∞
i=1 be a stationary process over a finite alphabet,

let (zk)∞k=1 be a collection of algorithmically independent facts,
and let g : N× X∗ → {0, 1, 2} be computable. We have

hilb
n→∞

E # Ug (X n
1 |z
∞
1 ) ≤ hilb

n→∞
E I(X n

1 ;X 2nn+1).

Theorem 4 (strongly nonergodic processes)

Let (Xi )
∞
i=1 be a stationary process over a finite alphabet,

let (Zk)∞k=1 be a collection of probabilistically independent facts
measurable with respect to the shift invariant σ-field of (Xi )

∞
i=1,

and let g : N× X∗ → {0, 1, 2} be any function. We have

hilb
n→∞

E # Ug (X n
1 |Z
∞
1 ) ≤ hilb

n→∞
I (X n
1 ;X 2nn+1).
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The main result of this talk

Is language structure a mathematical consequence of descriptive
meaningfulness, i.e., effective reference of texts to some reality?

As for double articulation, YES since we have shown that:

The number of distinct words in a finite text is roughly greater
than the number of independent facts described by the text.

The above proposition is a general result in information theory
connected to Hilberg’s hypothesis and Herdan-Heaps’ law.

Applications to natural language:

The number of words grows like a power of the text length.

Can we lower-bound the number of described facts?

Can we make the formal concept of a fact less static?
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An account of descriptive meaningfulness

Meaningfulness of texts can be understood as:
1 effective description of an external or imagined reality

(descriptive meaningfulness);
2 internal cohesion of the narration or the discourse

(cohesive meaningfulness);
3 effective control of an external reality toward some goal

(telic meaningfulness).

The theorems about facts and words concern only
descriptive meaningfulness.

Realities are both described and created by texts.

Realities evolve in time, which may cause E <∞.

Complexity of realities is extended by technical tools
created by humans over ages (like script or internet).
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Toward cohesive and telic meaningfulness

Here our understanding and modeling is less advanced.
Random hierarchical association (RHA) processes:
selection and replication of hierarchical memes.
Cohesive meaningfulness:

power-law logarithmic growth of maximal repetition,
power-law growth of conditional Rényi entropy;
power-law decay of letterwise mutual information,
large scale context-free structures.

Telic meaningfulness:
arrow of time, (un)bounded accumulation of knowledge,
(no) point Omega (singularity), AMS processes;
control of a (non)random environment, (non)deterministic
interpretation of texts, positive entropy rate.

Does cohesive m-fulness imply descriptive & telic m-fulness?
Can animal communication, music, mathematical vernacular,
and programming languages shed light onto meaningfulness?
Natural meaningful texts vs. idealized meaningful texts.
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Idealization in statistical language models

Stochastic processes = idealized models of possible texts.
This idealization becomes clear upon a closer scrutiny of these
models, which takes effort, time, and imagination.
Imagination is a skill constructed through examples.
Linguistic and math intuitions can help each other.

Sorts of idealization in stochastic processes:
actual or potential infinities (unbounded texts),
unbounded sources of (algorithmic) randomness,
infinite precision,
infinite recursion,
(conditional) computability of distributions,
rigid structure of mathematical definitions,
plethora of processes that cannot be effectively defined...
... but these processes can be theorized about.
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It’s time for a synthesis!

Entropy not only speaks the language of arithmetic;
it also speaks the language of language.

— Warren Weaver (1949)

It is an irony of 20th century linguistics that Shannon’s the-
ory of information, though explicitly linked to semantics,
was deemed irrelevant by linguists, while Chomsky’s for-
mal syntax, though explicitly dissociated from semantics,
was adopted as the default theory of natural language.

— Christian Bentz (2018)

Thank you!
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