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My background and interests

Background:
1 Master’s in Physics.
2 Programming work in Computational Linguistics.
3 PhD and Dr. Habil. in Information Theory.

Current interests:
What kind of a stochastic process may model the process of
generation of texts in natural language?
1 Statistical laws of language.
2 Probability theory.
3 Information theory (also algorithmic information theory).
4 Computational linguistics.
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Plan of the talk

Natural Language and Strong Nonergodicity:

1 What is a stationary ergodic process?
— A process is ergodic if all empirical frequencies in the long
run converge to the probabilities.

2 A linguistic interpretation of nonergodic processes.
— Different texts concern different topics. Hence the
frequencies of keywords in a randomly selected text are
random variables depending on the random text topic.

3 Theorem about facts and words.
— If the stochastic process of text generation is sufficiently
strongly nonergodic, then the number of “words” detected in
the text by the PPM algorithm must be sufficiently large.
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Ergodic theorem and ergodic processes

1 Consider a discrete process (Xi )
∞
i=1 = (X1,X2,X3, ...).

2 For a string w = (x1, ..., xn) define random variable

Y w

i
:=

{
1 if Xi = x1, ...,Xi+n−1 = xn,

0 else.

3 Process (Xi )
∞
i=1 is called stationary if expectations EY w

i

do not depend on i for all w .

Theorem (ergodic theorem)

For any stationary process (Xi )
∞
i=1, there exist random limits

lim
n→∞

1

n

n∑
i=1

Y w

i
= Y w almost surely.

4 Process (Xi )
∞
i=1 is called ergodic if Y w are constant for all w .
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Examples of stationary ergodic processes

1 Process (Xi )
∞
i=1 is called IID (independent identically

distributed) if

P(X1 = x1, ...,Xn = xn) = π(x1)...π(xn).

— IID processes are ergodic.
2 Process (Xi )

∞
i=1 is called Markov if

P(X1 = x1, ...,Xn = xn) = π(x1)p(x2|x1)...p(xn|xn−1).

— A Markov process is ergodic if p(xi |xi−1) > c > 0.
3 Process (Yi )

∞
i=1 is called hidden Markov if Yi = f (Xi ) for a

certain Markov process (Xi )
∞
i=1.

— A hidden Markov process is ergodic if the underlying Markov
process is ergodic.
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Is natural language ergodic or not?

1 A process is ergodic when frequencies of strings in a sample in
the long run converge to constants.

2 Suppose now, we choose at random a text in natural language.
3 Imagine selecting a random book from a library.
4 Imagine counting the frequencies of a keyword, such as

bijection for a text in maths, fossil for a text in paleontology.
5 We expect that the frequencies of keywords are random

variables with values depending on the random text topic.
6 Since keywords are some strings, the stochastic process that

models natural language should be not ergodic = nonergodic.

By counting keywords, we can infer the random text topic.
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Nonergodic processes—another perspective

Intuition: Process is nonergodic ⇐⇒ there exist ≥ two topics.

Theorem

Process (Xi )
∞
i=1 is nonergodic if and only if there exists a function

f (x1, ..., xn) of a sequence of symbols and a binary random
variable Z such that 0 < P(Z = 0) < 1 and

lim
n→∞

P(f (Xt+1, ...,Xt+n) = Z) = 1 (1)

for any position t.

Definition

A binary variable Z satisfying (1) will be called a random fact.

Thus, a process is nonergodic if there exists ≥ one random fact.
A random fact tells which of two topics the random text is about.
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Santa Fe process—an example of a nonergodic process

1 Let (Zk)
∞
k=1 be an IID process with Zk ∈ {0, 1} and

P(Zk = 0) = P(Zk = 1) = 1/2.

2 Let (Ki )
∞
i=1 be an IID process with Ki ∈ {1, 2, 3, ...} and

P(Ki = k) ∝
1

kα
, α > 1.

3 The Santa Fe process is (Xi )
∞
i=1, where

Xi = (Ki ,ZKi
).

4 The Santa Fe process is nonergodic since all Zk are
probabilistically independent random facts.
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Strong nonergodicity

Intuition: Santa Fe process is strongly nonergodic since there exist
infinitely many probabilistically independent random facts.

Definition

Process (Xi )
∞
i=1 is called strongly nonergodic if there exist

functions fk(x1, ..., xn) of a sequence of symbols and a binary IID
process (Zk)

∞
k=1 such that P(Zk = 0) = 1/2 and

lim
n→∞

P(fk(Xt+1, ...,Xt+n) = Zk) = 1

for any position t and any k = 1, 2, 3, ....

(number of persistent topics) ≈ 2(number of independent random facts)

strong nonergodicity ⇐⇒ continuum of topics
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Nonergodicity via continuum of topics

1 We have an intuition that:
different texts concern different topics,
and the topic of a text can be inferred from the text.

2 Natural language would be strongly nonergodic if:

continuum of topics: the exact topic of an infinitely long text
had to be described by an infinitely long sequence of
independent binary random variables Z1,Z2,Z3, ...,

persistence of topics: there existed fixed binary functions
f1, f2, f3, ... which would allow to infer Z1,Z2,Z3, ... from
any sufficiently long finite portion of the infinitely long text.

3 In the above reasoning we assume some idealization:
Texts are assumed infinitely long (real ones are finite!).
Some topics do not change in a given text
(is there any persistent topic of an infinitely long text?)
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Nonergodicity via frozen randomness of the environment

Consider the physical and cultural environment we live in,
which we try to describe and control.

We may suppose that this environment contains some amount
of frozen randomness, which accumulates over time.

Natural language is strongly nonergodic if the environment:
1 settles down on a random one of a continuum of possibilities,
2 and is ultimately described by all sufficiently long texts.

topic of all texts ⇐⇒ frozen randomness of the environment
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Towards the theorem about facts and words

1 Our considerations may seem pure philosophy...
... without any measurable consequences.

2 We will show that the opposite is true.
3 There is the following proposition (informal statement):

Theorem (facts and words)

Suppose we have a finite text drawn from a stationary process.
Then the number of distinct PPM words detectable in the text

must be roughly greater than
the number of independent random facts inferrable from the text.

Intuition: Rich vocabulary of a text is a necessary consequence of
a complex world described in the text.

Caution: Converse is not true! Rich vocabulary does not imply
high complexity of the described world.
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Numbers of random facts and PPM words

1 Consider a random text X n
1 := (X1, ...,Xn).

2 The set of independent random facts inferrable from X n
1 is:

U(X n

1 ) :=
{
l ∈ {1, 2, ...} : fk(X n

1 ) = Zk for all k ≤ l
}
.

3 The set of all substrings of length m in X n
1 is:

V (m|X n

1 ) :=
{
xm1 : X t+m

t+1 = xm1 for some 0 ≤ t ≤ n −m
}
.

4 Let GPPM(X n
1 ) be the PPM order of X n

1 , i.e,
the order of the adaptive Markov approximation of the text
which yields the best compression rate of the text.

5 The set of distinct PPM words detectable in X n
1 is:

VPPM(X n

1 ) := V (GPPM(X n

1 )|X
n

1 ).
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Theorem about facts and words

H(X n
1 ) := −

∑
xn

1
P(X n

1 = xn1 ) logP(X n
1 = xn1 ) — entropy

I (X n
1 ;X

2n
n+1) := H(X n

1 ) + H(X 2n
n+1)− H(X 2n1 ) — mutual information

hilb
n→∞

an := lim sup
n→∞

log+ an

log n
— Hilberg exponent: hilb

n→∞
nβ = β

Theorem (facts and words)

We have inequalities

hilb
n→∞

E cardU(X n

1 ) ≤ hilb
n→∞

I (X n

1 ;X
2n
n+1)

≤ hilb
n→∞

E
[
GPPM(X n

1 ) + cardVPPM(X n

1 )
]
.

For Santa Fe processes, we have an exact power law

hilb
n→∞

E cardU(X n

1 ) = hilb
n→∞

I (X n

1 ;X
2n
n+1) = β, β = 1/α ∈ (0, 1).
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Some empirical data for Shakespeare
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GPPM(xn1 ) and cardVPPM(xn1 ) versus the input length n

for 35 plays by Shakespeare and a text shuffled by characters.

For IID and Markov processes over a finite alphabet, we have

hilb
n→∞

E
[
GPPM(X n

1 ) + cardVPPM(X n

1 )
]
= 0.

For natural language, we seem to have a stepwise power law

hilb
n→∞

E
[
GPPM(X n

1 ) + cardVPPM(X n

1 )
]
= β, β ∈ (0, 1).
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Zipf’s law and strong nonergodicity

1 Zipf’s law — a power law for the distribution of words (words
as given by spelling rules).

2 Herdan’s law — power law growth of the number of distinct
words vs. the text length, an integrated version of Zipf’s law.

3 In natural language we seem to have not only Herdan’s law for
orthographic words but also for PPM words.

4 By the theorem about facts and words, we cannot exclude
that natural language is strongly nonergodic.

5 We may suppose that some sort of Zipf’s law for PPM words
holds for some strongly nonergodic processes more generally.
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Conclusion

Is then natural language strongly nonergodic?

We cannot be sure, but we cannot exclude it, since:

1 We probably live in a world full of frozen randomness,
found both in culture and in nature.

2 We try to describe this randomness using natural language.
3 We use surprisingly many distinct words, satisfying Zipf’s law,

which suggests that this randomness is practically infinite.
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Ergodic theorem revisited

For a string w = xn1 = (x1, ..., xn), we define

Y w

i
:=

{
1 if X i+n−1

i
= w ,

0 else.

Theorem (ergodic theorem)

For any stationary process (Xi )
∞
i=1, there exist random limits

lim
n→∞

1

n

n∑
i=1

Y w

i
= Y w almost surely.

Distribution φ(X n
1 = w) := Y w is ergodic almost surely.

If we adopt a frequentist interpretation of probability,
we can see only ergodic processes (provided they are stationary).
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Ergodic decomposition

Nonergodic processes arise when we adopt
a Bayesian interpretation of probability.

Theorem (ergodic decomposition)

Any stationary distribution P can be represented as

P(X n

1 = xn1 ) =

∫
φ(X n

1 = xn1 )dν(φ),

where ν is a unique distribution on stationary ergodic distributions.

Stationary ergodic distributions are some building blocks from
which we can construct any stationary distribution.
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Ergodic decomposition and computability

Ergodic Bernoulli(θ) process distribution:

φ(X n

1 = xn1 |θ) = θ
∑

n

i=1 xi (1− θ)n−
∑

n

i=1 xi , xi ∈ {0, 1} .

Nonergodic mixture Bernoulli process distribution:

P(X n

1 = xn1 ) =

∫
φ(X n

1 = xn1 |θ)w(θ)dθ, w(θ) is a prior.

1 Suppose that parameter θ is not a computable real number.
Then distribution φ(X n

1 = xn1 |θ) is not computable.
2 Suppose that prior w is a computable distribution. Then

distribution P(X n
1 = xn1 ) is computable.

Although ergodic distributions are some building blocks from which
we can construct any stationary distribution, some nonergodic

distributions are computationally simpler than their ergodic
components (i.e., their building blocks).
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Algorithmic randomness and nonergodicity

Kolmogorov complexity K(xn1 ) is the length of the shortest
self-delimiting program that prints out string xn1 .

An infinite sequence of data x1, x2, ... is called Martin-Löf
algorithmically random w.r.t. a computable distribution P when

inf
n>0

[
K(xn1 ) + logP(X n

1 = xn1 )
]
> −∞.

The set of algorithmically random sequences has full measure P.

When we are given an infinite sequence of data, we may entertain
a hypothesis that the sequence is algorithmically random with

respect to some distribution. This distribution need not be ergodic.
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