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Introduction

We will derive corrections to Zipf’s law for texts of any size.
Our derivation rests on two assumptions:

1 The first assumption is the urn model which states that word
frequency distributions look as if the word tokens were
generated by a memoryless source.

2 The second assumption is that we have an exact
analytic formula for the hapax rate function.

Assumption 1 was developed by Khmaladze (1988) and
Baayen (2001). Milička (2009) and Davis (2018) found it out
later independently.

Our contribution is Assumption 2 and a few new formulae.
We cautiously hope that it is not a re-discovery.
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Notation

Fix a text T = (T1,T2, ...,Tn).
Let 1 {true} := 1 and 1 {false} := 0.

The frequency of word w is F (w) :=
n∑

i=1

1 {Ti = w}.

The number of types with frequency k is Vk :=
∑

w :F (w)=k

1.

The frequency spectrum is sequence (V1,V2, ...).

The number of types is V =
∑

w :F (w)>0

1 =
∞∑
k=1

Vk .

The number of tokens is n =
∑

w :F (w)>0

F (w) =
∞∑
k=1

kVk .

The inverse rank-frequency function is Rf = V −
f−1∑
k=1

Vk .
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Expected frequency spectrum

Let pw be the probability of word w for a memoryless source.

According to the urn model (Khmaladze, 1988; Baayen, 2001;
Milička, 2009; Davis, 2018), the expected number of types and the
expected frequency spectrum for the text length n are

EV =
∑
w

[1− (1− pw )n] ≈ g(n) :=
∑
w

[1− e−npw ],

EVk =
∑
w

(
n

k

)
pkw (1− pw )n−k ≈ g(n|k) :=

∑
w

[npw ]k

k!
e−npw ,

where
(
n

k

)
:=

n!

k![n − k]!
≈

nk

k!
for k � n.
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Expected inverse rank-frequency function

As observed by Baayen (2001) and Davis (2018), the frequency
spectrum g(n|k) can be evaluated by taking derivatives of the
vocabulary size function g(n).

In particular, for a given function g(n), we may evaluate the
expected inverse rank-frequency function as

ERf = EV −
f−1∑
k=1

EVk ≈ g(n||f ) := g(n) +

f−1∑
k=1

(−n)k

k!

d kg(n)

dnk︸ ︷︷ ︸
truncated Taylor series for g(0)

.

Zipf’s law plot with swapped axes is easier to analyze!
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The hapax rate function

The fraction of words that occur exactly once is

EV1

EV
≈ h(log n) :=

g(n|1)

g(n)
.

Variable u = log n is a natural choice of the argument for the
hapax rate function h(u). We have

EV ≈ g(n) = exp

(∫ log n

0
h(u)du

)
.

Function h(u) is well-defined if it is analytic and satisfies conditions∫ 0

−∞
h(u)du =∞, h(u|k) ≥ 0 for k ≥ 1,

where we define recursively h(u|0) := −1 and

h(u|k) :=

[
1−

1

k

(
1 + h(u) +

d

du

)]
h(u|k − 1), k ≥ 1.
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Empirical hapax rate

The hapax rate for Shakespeare’s First Folio.
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Model 1: Constant model

The constant model assumes a constant hapax rate function,

h(u) = β ∈ (0, 1). (1)

Then the vocabulary size function follows Herdan-Heaps’ law

EV ≈ g(n) = nβ. (2)

We have EVk ≈ g(n|k) = nβ
(
β

k

) k−1∏
i=1

(
1−

β

i

)
and

ERf ≈ g(n||f ) = nβ
f−1∏
i=1

(
1−

β

i

)
. (3)

In this case, normalized ranks
ERf

EV
do not depend on text size n.

For f →∞, (3) tends to Zipf-Mandelbrot’s law ERf ∝
1

f β
.
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Model 2: Davis model

The Davis model is the sigmoid hapax rate function of form

h(u) =
1

u
−

1

eu − 1
. (4)

This implies a logarithmic growth of the vocabulary,

EV ≈ g(n) =
n log n

n − 1
≈ log n, (5)

Lotka’s law g(1|k) ≈
1

k(k + 1)
, and Zipf’s law g(1||f ) ≈

1

f
.

What Davis (2018) did not show, we have

ERf ≈ g(n||f ) =
log n −

∑f−1
j=1 (1− 1/n) j /j

(1− 1/n)f

=
∞∑
j=0

(1− 1/n) j

j + f
≈ exp

(
f

n

)
Γ

(
0,

f

n

)
. (6)
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Model 3: Logistic model

The logistic model is the sigmoid hapax rate function of form

h(u) =
1

1 + eu
. (7)

This implies an asymptotically bounded vocabulary,

EV ≈ g(n) =
2n

n + 1
−−−→
n→∞

2. (8)

We have

ERf ≈ g(n||f ) =
2nf

(n + 1)f
. (9)

The inverse rank-frequency function decays like a geometric series!
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Model 4: Linear model

We may be tempted to propose a piecewise linear hapax rate function,

h(u) =


1, u < 0,

1− γu, 0 ≤ u ≤ γ−1,

0, u > γ−1,

γ ≈ 0.05. (10)

This model is not an analytic function and it is ill-defined.
Nonetheless, the corresponding vocabulary size is

EV ≈ g(n) =


n, n ≤ 1,

n1− 1
2γ log n, 1 ≤ n ≤ exp(γ−1),√

exp(γ−1), n > exp(γ−1).

(11)

Function ERf ≈ g(n||f ) follows from polynomials h(u|k) = 1
k!

∑k
j=0 akju

j ,
where we have the recursion

akj :=


0, j < 0 or j > k,

−1, k = 0 and j = 0,

γak−1,j−1 + (k − 2)ak−1,j − (j + 1)ak−1,j+1, k ≥ 1 and 1 ≤ j ≤ k.
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Model transformations

Suppose that we have some candidates for functions h(u), g(n), and g(n||f ).
These functions can be modified via:

Offset: For an α ∈ R,

hα(u) := h(u − α),

gα(n) :=
g(ne−α)

g(e−α)
,

gα(n||f ) :=
g(ne−α||f )
g(e−α)

.

Mixture: For a λ ∈ (0, 1),

hλ(u) :=
λh1(u)g1(e

u) + (1− λ)h2(u)g2(e
u)

λg1(eu) + (1− λ)g2(eu)
,

gλ(n) := λg1(n) + (1− λ)g2(n),

gλ(n||f ) := λg1(n||f ) + (1− λ)g2(n||f ).
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Predicted hapax rate

The hapax rate for Shakespeare’s First Folio.
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Predicted type-token plot

Below we present how the model fits to Shakespeare’s First Folio.
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Predicted rank-frequency plot

Below we present how the model fits to Shakespeare’s First Folio.
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Fitted parameters — Project Gutenberg (English)

File Constant Davis Logistic Linear Length
β α α γ α n

00ws110.txt 0.699 11.49 9.26 0.0459 1.101 835726
1ours10.txt 0.723 10.67 8.42 0.0491 1.073 128963
2000010.txt 0.732 10.37 8.32 0.0605 2.208 101247
2cahe10.txt 0.727 11.21 9.06 0.0495 1.624 298339
5wiab10.txt 0.754 10.92 8.45 0.0493 1.508 92558
800lg10.txt 0.653 9.43 8.16 0.051 0 95493
csnva10.txt 0.665 10.94 9.1 0.0508 1.229 1268149
dbrry10.txt 0.706 10.49 8.47 0.0494 0.846 159710
dscmn10.txt 0.639 9.62 8.66 0.052 0.201 312075
gltrv10.txt 0.716 10.2 8.26 0.0582 1.754 104909
milnd10.txt 0.701 10.18 8.35 0.062 2.112 195064
mt7bg10.txt 0.671 10.6 9.05 0.048 0.49 519886
stlla10.txt 0.681 10.29 8.31 0.0523 0.973 245882
wmcry10.txt 0.728 10.72 8.57 0.0532 1.666 145487
Mean 0.7 10.51 8.6 0.0522 1.199 321678
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The second regime for large corpora

Fengxiang (2010) reported a U-shaped plot for large corpora.

We can model it, for instance, with a mixture of the Davis model
with α = 10.51 and the constant model with β = 1:
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Conclusion

Zipf’s law plot with swapped axes is easier to analyze!

It suffices to assume a simple analytic hapax rate function to
derive the vocabulary size and the inverse rank-frequency
function for any text size.

These corrections to Zipf’s and Herdan’s laws contain one or
two parameters but they apply to a wide range of text sizes.

We plan a more extensive empirical verification.

Davis’s model seems more precise than Herdan’s law!

Still, we need better models of the hapax rate function!
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