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Entropy rate of human languages

In this talk, we will look back into research
in the entropy rate of human languages.

Entropy rate, introduced by Shannon (1948) is the limiting
amount of information = unpredictability = randomness
per single symbol of a stationary stochastic process.

Shannon’s information theory was motivated by an idea that
the stream of utterances made by humans constitutes
a typical realization of a stationary ergodic stochastic process.

Under this assumption, there exists a unique entropy rate of
human utterances and it can be effectively estimated.

Both stationarity and ergodicity of human utterances are some
idealization, which impacts our estimates of the entropy rate.
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What is the Shannon entropy?

Shannon (1948):

information = unpredictability = shortest encoding

Shannon entropy:

H(X ) := −
∑
x

P(X = x) logP(X = x)

≈ min
C∈C

∑
x

P(X = x) |C(x)|

Entropy is the amount of information in a random variable.

Shannon conditional entropy:

H(X |Y ) := −
∑
x,y

P(X = x,Y = y) logP(X = x|Y = y)

We have H(X ) ≥ H(X |Y ) ≥ H(X |Y ,Z) ≥ 0.



Introduction Definitions and ideas Psychological methods Computational methods Hilberg’s hypothesis Conclusion References References

What is the entropy rate?

Shannon (1948):

Stationary stochastic process (Xi )
∞
i=1 = (X1,X2,X3, ...).

Blocks of random variables X k
j = (Xj ,Xj+1, ...,Xk).

Shannon entropy rate:

h := lim
n→∞

H(X n
1 )

n
= lim

n→∞
H(Xn|X n−1

1 )

Entropy rate is the limiting amount of information
per symbol of a stationary process.

Entropy rate can be estimated for an unknown process.

If the process is stationary and ergodic, then different samples
of the process yield the same estimate of the entropy rate.
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Stationary and ergodic processes

Process (Xi )
∞
i=1 = (X1,X2,X3, ...) is called stationary if

probabilities P(X i+k
i+1 = xk1 ) do not depend on i for all xk1 .

Frequency of a string N(xk1 |X n
1 ) :=

∑n−k
i=0 1

{
X i+k
i+1 = xk1

}
.

Birkhoff ergodic theorem

For any stationary process (Xi )
∞
i=1 almost surely there exist limits:

Φ(xk1 |X
∞
1 ) := lim

n→∞

N(xk1 |X n
1 )

n − k + 1

Process (Xi )
∞
i=1 = (X1,X2,X3, ...) is called ergodic if

relative frequency Φ(xk1 |X∞1 ) doesn’t depend on X∞1 for all xk1 .
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Some simple example

Ergodic processes:

A series of zeros:

00000000000000000000000000000000000000000...

entropy rate: h = 0

Non-ergodic processes:

A series of zeros or a series of ones (first, we flip a coin):

with probability 1/2: 00000000000000000000000000...
with probability 1/2: 11111111111111111111111111...

entropy rate: h = 0
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A more advanced example

Ergodic processes:

Bernoulli(θ) process: xi ∈ {0, 1}, θ ∈ [0, 1],

P(X n
1 = xn1 ) :=

n∏
i=1

p(xi |θ), p(xi |θ) =

{
1− θ, xi = 0,

θ, xi = 1.

h = h(θ) := −θ log θ − (1− θ) log(1− θ)

Non-ergodic processes:

Mixture Bernoulli process: xi ∈ {0, 1}, θj ∈ [0, 1],

P(X n
1 = xn1 ) :=

K∑
j=1

qj

n∏
i=1

p(xi |θj ), qj > 0,
K∑
j=1

qj = 1.

h =
∑K

j=1 qjh(θj ) but observed is h(θj ) with probability qj !
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Is natural language ergodic or not?

A process is ergodic when frequencies of strings of any length
in sufficiently long samples converge to constants.

1 Suppose now, we choose at random a text in natural language.
2 Imagine counting the frequencies of a keyword,

such as lemma for a math textbook and love for a romance.
(example due to Yaglom and Yaglom, 1983)

3 We expect that the frequencies of keywords are random
variables with values depending on the random text topic.

4 Since keywords are some strings, the stochastic process that
models natural language should be not ergodic = non-ergodic.

This happens for finite texts though, whereas the mathematical
definition of ergodic processes considers text lengths→∞.
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Entropy rate(s) of human language(s)?

Shannon’s information theory was motivated by an idea that
the stream of utterances made by humans constitutes
a typical realization of a stationary ergodic stochastic process.

But: We have a strong intuition that there is a huge variation
of frequencies of keywords in natural texts.

But: The actual estimates of the entropy rate for various texts
do not depend so much on the text or a particular language.

Natural texts may be quite uniform with respect
to information measures in general, not only the entropy rate.

Information measures can be language universals.
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Shannon’s method (1951)

Shannon’s method (1951) of estimating entropy of language:

Human subjects are asked to guess the next character of a
text given n previous characters.

Let qin be the probability of guessing the character in i

attempts given n characters in the optimal strategy.

Theorem∑
i≥1

[
qin − qi+1,n

]
i log i ≤ H(Xn+1|X n

1 ) ≤ −
∑
i≥1

qin log qin

Let Qin be the number of times that human subjects guessed
the character in i attempts given n characters. If human
guesses are close to the optimal strategy then we may estimate

qin ≈
Qin∑

k≥1Qkn

.
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Shannon’s plot (1951)

The guessed text was Jefferson the Virginian by Dumas Malone.

Conclusion: The entropy rate of English ≈ 1 bit per character.
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Cover and King’s method (1978)

Cover and King’s (1978) estimator of entropy of language:

Human subjects are asked to bet on the next character
of a text given n previous characters.

Gambling system: b(xn+1|xn1 ) ≥ 0,
∑

xn+1
b(xn+1|xn1 ) = 1.

Accumulated capital: S0 := 1, Sn+1 := Ab(Xn+1|X n
1 )Sn.

Theorem

lim inf
n→∞

[
logA−

1

n
log Sn

]
≥ h almost surely

The gambled text was Jefferson the Virginian again.

The estimate of the entropy rate was 1.25 bits per character
(for the committee gambling).
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Brown et al.’s method (1992)

Brown et al.’s method (1992) of estimating the entropy rate:

Construct a statistical language model M , i.e.,
a probability distribution over finite strings of characters.

Collect a reasonably long test sample of text.

With a high probability we have

h ≤ −
1

n
logM(test sample).

For a word-trigram statistical language model they obtained
h ≤ 1.75 bits per character for the Brown Corpus of English.
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Lempel and Ziv’s method (1977)

Lempel and Ziv’s method (1977) of estimating the entropy rate:

The text is parsed into a sequence of shortest phrases that
have not appeared before (except for the last phrase). For
example, the sequence 001010010011100... is split into
phrases 0, 01, 010, 0100, 1, 11, 00, ... .

Let Cn be the number of phrases in the compressed block X n
1 .

Let (Xi )
∞
i=1 be stationary ergodic over a finite alphabet.

Theorem

lim
n→∞

Cn logCn

n
= h almost surely
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PPM — Ryabko (1984); Cleary and Witten (1984)

For k ∈ {−1, 0, 1, ...}, we put

PPMk(xi |x i−11 ) :=


D−1 k = −1
N(x ii−k |x

i−1
1 ) + 1

N(x i−1i−k |x
i−2
1 ) + D

k ≥ 0

PPMk(xn1 ) :=
n∏

i=1

PPMk(xi |x i−11 )

PPM(xn1 ) :=
6

π2

∞∑
k=−1

PPMk(xn1 )

(k + 2)2

Let (Xi )
∞
i=1 be stationary ergodic over a finite alphabet.

Theorem

lim
n→∞

1

n

[
− log PPM(X n

1 )
]

= h almost surely



Introduction Definitions and ideas Psychological methods Computational methods Hilberg’s hypothesis Conclusion References References

Takahira et al.’s experiment (2016)

13 press corpora up to 8 GB; 5 languages; PPM algorithm
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Gao et al.’s method (2008)

Gao et al.’s method (2008) of estimating the entropy rate:

Let (Xi )
∞
i=1 be a stationary ergodic process.

(Can be over a countably infinite alphabet.)

The longest match length:

Ln := max
{
0 ≤ l ≤ n : X n+l

n+1 = X
j+l
j+1 for some 1 ≤ j ≤ n

}
Theorem

lim
n→∞

1

n − 1

n∑
i=2

log i

1+ Li
= h almost surely
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Bentz et al.’s experiment (2017) — entropy of words

3 parallel corpora; 450 million words; 1259 languages;
Gao et al. estimator for entropy rate h;

plug-in estimator for unigram entropy H(X1)
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Plug-in estimator for IID processes

Let (Xi )
∞
i=1 be a sequence

of independent identically distributed random variables.

Denote the discrete distribution p(x) = P(Xi = x).

Entropy of a discrete distribution:

H(p) := −
∑
x

p(x) log p(x)

Empirical distributions:

p̂n(x) :=
1

n

n∑
i=1

1 {Xi = x}

We have E p̂n(x) = p(x) and hence:

EH(p̂n) ≤ min {log n,H(p)}
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Dębowski’s method (2016)

Dębowski’s method (2016) of estimating the entropy rate:

Let (Xi )
∞
i=1 be stationary ergodic over a finite alphabet.

Empirical distributions of blocks of length k :

p̂k,n(xk1 ) :=
1

n

n∑
i=1

1
{
X ik

(i−1)k+1 = xk1

}
.

We have EH(p̂k,n) ≤ min
{

log n,H(X k
1 )
}

.

Theorem

For any ε > 0 and n(k) ≥ 2k(h+ε), we have:

lim inf
k→∞

1

k
H(p̂k,n(k)) = h almost surely
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Wolfgang Hilberg (1932–2015)

He was a German electrical engineer.

Wolfgang Hilberg, (1990). Der bekannte Grenzwert der
redundanzfreien Information in Texten — eine Fehlinterpretation
der Shannonschen Experimente? Frequenz, 44:243–248.
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Hilberg’s plot (1990)

Shannon’s plot (1951) redrawn in the doubly logarithmic scale:

Hilberg’s conclusion (1990): The entropy rate of English is 0.
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Hilberg’s hypothesis (1990) and its relaxation

Hilberg’s power law (1990):

H(X k
1 ) ≈ Bkβ, β ≈ 1/2

This implies an asymptotic determinism of natural texts.
(a dubious condition)

Ebeling and Nicolis (1991), Crutchfield and Feldman (2003):

H(X k
1 ) ≈ Bkβ + hk, β > 0

This implies that language is not a hidden Markov process
of a finite order and the mutual information between the past
and the future is unbounded. (sounds reasonable)
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Takahira et al.’s experiment (2016): β ≤ 0.884
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Dębowski’s experiment (2015)

The (length of the) maximal repetition:

L(xn1 ) := max
{
k : N(wk

1 |x
n
1 ) ≥ 2 for some wk

1

}
It can be empirically observed that:

L(xn1 ) ≈ A(log n)α

For typical IID and hidden Markov processes: α = 1.

For texts in German, English, and French: α ≈ 3.
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Dębowski’s plot (2015)
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Dębowski’s result (2018)

For a stationary process (Xi )
∞
i=−∞ over a finite alphabet,

let us write the conditional Rényi entropy:

H2(X
k
1 |X

0
−m) := − log EP(X k

1 |X
0
−m)

≤ E
[
− logP(X k

1 |X
0
−m)

]
≤ H(X k

1 )

Theorem

lim sup
n→∞

L(X n
1 )

A(log n)α
≥ 1 =⇒ lim inf

k→∞

H2(X k
1 |X 0−Dk )

Bk1/α
≤ 1

Hence for natural language the conditional Rényi entropy rate is:

lim inf
k→∞

H2(X k
1 |X 0−Dk )

k
= 0
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Some open mathematical problems

First problem:

Constructing mathematical models of stochastic processes with
Shannon entropy rate > 0 and conditional Rényi entropy rate = 0

is an open problem with possible applications to linguistics.

Shields (1992) constructed an example of such a process
but it does not have a clear linguistic interpretation.

Second problem:

Do Shannon entropy rate > 0 and cond. Rényi entropy rate = 0
imply mutual information between past and future =∞ ?

If yes, we could confirm the relaxed Hilberg hypothesis.
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Conclusion

Entropy rate is an important parameter of natural language,
measuring the limiting amount of unpredictability of a text
per single character.

An interesting open research issue is the rate of convergence
of the block entropy to the entropy rate.

This rate of convergence is another parameter of natural
language connected to its being non-hidden Markovian
and its long-range dependence.

Analyzing the respective phenomena on a mathematical level
can contribute not only to quantitative linguistics but also to
better statistical language models in computational linguistics.

In spite of possible non-ergodicity of natural language,
some information measures can be language universals!
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