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A (not so) rare specimen of a stochastic parrot

The rise of large language models
with their strengths

(fluent relevant grammatical replies)
and weaknesses

(factual hallucinations)
reopens the old question whether
statistical language modeling
makes sense for language science.
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Motivating question

Does statistical language modeling make sense for linguistics?

I think one should replace “Does” with “How can”.

There is a related question of a theoretical importance:

How much randomness is there in language and speech ...
... and, precisely, how does it interfere with structure?

This question cannot be answered without a certain understanding
of mathematical models of randomness.

These slides provide an intro.
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Neural scaling law and Hilberg’s law

Several recent large-scale computational experiments in
statistical language modeling reported power-law tails of
learning curves [Takahira et al., 2016, Hestness et al., 2017,
Kaplan et al., 2020, Henighan et al., 2020, Hernandez et al.,
2021, Tanaka-Ishii, 2021].

This observation can be implied by Hilberg’s law, a power-law
growth of mutual information between increasing blocks of
text [Hilberg, 1990, Crutchfield and Feldman, 2003].

This power-law growth occurs for languages as diverse as
English, French, Russian, Chinese, Korean, and Japanese.

We observe a language-independent value of the power-law
exponent: the mutual information between two blocks of
length n is proportional to n0.8 [Takahira et al., 2016,
Tanaka-Ishii, 2021].
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Theorem about facts and words

We advertise a mathematical theory of Hilberg’s law that
we have been developing for several years. Most of our results
were resumed in works [Dębowski, 2011, 2021a,b].

The focal point is the theorem about facts and words:

The number of independent facts described in a finite text is
roughly less than the number of distinct words used in this text.

This theorem pertains to a general stationary process and
it links ergodic decomposition with semantics and statistics.

This result seems paradoxical since we might think that
combining words we could express more independent facts.

However, this theorem can be proved easily, by adopting
quite natural definitions of facts and words.
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Entropy rate and excess entropy

We write blocks of random variables: X k
j := (Xj ,Xj+1, ...,Xk).

Let a finite alphabet X = {1, 2, ...,D}.

Consider a stationary process (Xi )i∈Z over alphabet X.

We denote its entropy rate

h := lim
n→∞

H(X n
1 )

n
= lim

k→∞
H(Xi |X i−1

i−k ),

where:

H(X ) := E [− logP(X )] is the entropy of X ,

H(X |Y ) := E [− logP(X |Y )] is the entropy of X given Y .

We will bound the sublinear excess entropy H(X n
1 )− hn.
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The Santa Fe process

A Santa Fe process is a stochastic process (Xi )i∈Z where
individual variables can be decomposed as pairs

Xi = (Ki ,ZKi
)

with two processes (Ki )i∈Z and (Zk)k∈N.

The narration (Ki )i∈Z consists of topics Ki : Ω → N.
The knowledge (Zk)k∈N consists of facts Zk : Ω → {0, 1}.
Process (Xi )i∈Z is a simple model of a non-contradictory text:
Whenever a certain topic is discussed again (Ki = Kj), the
same fact is reported (ZKi

= ZKj
).

That said, we may assume narration (Ki )i∈Z and knowledge
(Zk)k∈N to be pretty arbitrary processes and investigate
consequences of our particular choices.
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The number of described facts

We say that a finite text xn1 describes m initial facts by means
of a function g if

m = Ug (x
n
1 ) := min {k ∈ N : g(k , xn1 ) ̸= Zk} − 1.

Let knowledge (Zk)k∈N be a Bernoulli(12) process (fair coin).

Let narration (Ki )i∈Z be an IID process in natural numbers
with Zipf’s distribution P(Ki = k) ∼ k−α, where α > 1.

Then for the Santa Fe process, putting g(k, xn1 ) := z if
(k , z) ∈ xn1 and (k, 1− z) ̸∈ xn1 , whereas g(k , x

n
1 ) := 2 for

other (k, xn1 ), we obtain a power law

EUg (X
n
1 ) ∼ n1/α.
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The number of described facts in general

A stationary process (Xi )i∈Z is called strongly non-ergodic if
the invariant σ-field I is non-atomic.
Let (Zk)k∈N be an I-measurable Bernoulli(12) process.
Variables Zk are called facts since they don’t depend on time.

We say that a finite text xn1 describes m initial facts by means
of a function g if

m = Ug (x
n
1 ) := min {k ∈ N : g(k , xn1 ) ̸= Zk} − 1.



Intro Power laws Entropy Facts Universality PML Markov order Facts and words References

The number of described facts and excess entropy

We denote Un := Ug (X
n
1 ). We observe

H(ZUn
1 |Un) = H(ZUn

1 )− H(Un),

where

H(Un) ≤ 2 log(EUn + 2), EUn ≤ H(ZUn
1 ) ≤ H(X n

1 ).

Hence by the data-processing inequality,

I (X n
1 ;Z

∞
1 ) ≥ I (X n

1 ;Z
Un
1 |Un)− H(Un) = H(ZUn

1 |Un)− H(Un).

We have also an upper bound by the excess entropy

I (X n
1 ;Z

∞
1 ) ≤ I (X n

1 ;X
∞
n+1)

= H(X n
1 )− H(X n

1 |X∞
n+1) = H(X n

1 )− hn.

Thus the number of described facts bounds excess entropy

EUg (X
n
1 )− 4 log(H(X n

1 ) + 2) ≤ H(X n
1 )− hn.
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Source coding

Let P be the probability measure of a stationary process (Xi )i∈Z.

Let Q be an incomplete measure:
∑

u∈X∗ Q(u) ≤ 1.

By Barron’s inequality and the Shannon-McMillan-Breiman
theorem, we obtain the lower bound

lim inf
n→∞

[− logQ(X n
1 )]

n
≥ lim

n→∞

[− logP(X n
1 )]

n
= h a.s.

if process (Xi )i∈Z is ergodic. The analogous source coding
inequality lower bounds the expectation

lim inf
n→∞

E [− logQ(X n
1 )]

n
≥ lim

n→∞

E [− logP(X n
1 )]

n
= h

without the requirement of ergodicity.
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Universal distributions

An incomplete measure Q is called universal if for any stationary
ergodic process (Xi )i∈Z over alphabet X, we have

lim
n→∞

[− logQ(X n
1 )]

n
= h a.s.,

lim
n→∞

E [− logQ(X n
1 )]

n
= h.

Theorem (conditional universality criterion)

An incomplete measure Q is universal if for any k ≥ 1, any
conditional distribution τ : X× Xk → [0, 1], and any xn1 ∈ X∗,

− logQ(xn1 ) ≤ C (k, n)− log
n∏

i=k+1

τ(xi |x i−1i−k ),

where limk→∞ lim supn→∞ C (k , n)/n = 0.
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Maximum likelihood (ML)

We define the maximum likelihood (ML) in the class of
k-th order Markov processes over alphabet X = {1, 2, ...,D} as

Q̂(k |xn1 ) :=

{
1, k ≥ n,

maxτ
∏n

i=k+1 τ(xi |x
i−1
i−k ), k < n,

where the maximum is taken across all k-th order transition
matrices τ : X× Xk → [0, 1].

The maximizing τ is called the maximum likelihood distribution for
string xn1 and denoted τ̂(·|xn1 ).
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Empirical entropy

Let us write the frequency of string ak1 in string x
n
1 as

N(ak1 |xn1 ) :=
n−k+1∑
i=1

1
{
x i+k−1
i = ak1

}
.

Subsequently, let us denote the k-th order empirical entropy

H(k |xn1 ) :=
∑
ak1

N(ak1 |x
n−1
1 )

n − k

−∑
ak+1

N(ak+11 |xn1 )
N(ak1 |x

n−1
1 )

log
N(ak+11 |xn1 )
N(ak1 |x

n−1
1 )

 .

We have

τ̂(ak+1|ak1 , xn1 ) =
N(ak+11 |xn1 )
N(ak1 |x

n−1
1 )

, − log Q̂(k |xn1 ) = (n − k)H(k |xn1 ).
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Penalized maximum likelihood (PML)

Consider the subword complexity

V (k |xn1 ) := #
{
x i+k
i+1 : 0 ≤ i ≤ n − k

}
≤ min

{
Dk , n − k + 1

}
.

We define the penalized maximum likelihood (PML)

Q(k |xn1 ) :=
Q̂(k |xn1 )
Z (k|xn1 )

, Z (k|xn1 ) := Dk(n − k + 1)V (k+1|xn1 )+1,

Q(xn1 ) := wn max
k≥0

wkQ(xn1 |k), wk :=
1

k + 1
− 1

k + 2
.

Theorem

The penalized maximum likelihood Q is an incomplete measure
and it satisfies the conditional universality criterion.
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Markov order estimation

Let (Xi )i∈N be stationary ergodic over X = {1, 2, ...D}.

The Markov order of the process is defined as

M := inf
{
k ≥ 0 : H(Xi |X i−1

i−k ) = h
}
.

In the above, IID processes are 0-th order Markov processes.

The Markov order estimator is defined as

M(xn1 ) := inf
{
k ≥ 0 : Q̂(xn1 |k) ≥ Q(xn1 )

}
.

For M ∈ [0,∞], we have consistent estimation

lim
n→∞

M(X n
1 ) = M a.s.,

lim
n→∞

EM(X n
1 ) = M.
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The number of Markov subwords and the PML MI

Let us denote the PML entropy

K (u) := − logQ(u)

and the PML mutual information (PML MI)

J(u, v) := K (u) + K (v)− K (u, v).

The number of Markov subwords is

V (xn1 ) := V (M(xn1 ) + 1|xn1 ).

Since M(xn1 )K (xn1 ) ≤ n log n, we may bound the PML MI

J(X n
1 ;X

2n
n+1) ≤ 2

(
V (X 2n1 ) +

2n logD
K (X 2n1 )

+ 3
)
log(2n + 2).
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The telescope sum for excess entropy

Theorem

For a function K : N → R, define J(n) := 2K (n)− K (2n). If there
exists limit limn→∞ K (n)/n = h then

∞∑
k=0

J(2kn)
2k+1

= K (n)− nh.

Proof.

We have the telescope sum

m−1∑
k=0

J(2kn)
2k+1

= K (n)− n · K (2mn)
2mn

.

For m tending to infinity, the above equality implies the claim.



Intro Power laws Entropy Facts Universality PML Markov order Facts and words References

Almost the main theorem

Chaining the received inequalities yields

EUg (X
n
1 )− 4 log (n logD + 2) ≤ EUg (X

n
1 )− 4 log (H(X n

1 ) + 2)

≤ H(X n
1 )− hn ≤ EK (X n

1 )− hn =
1
2

∞∑
k=0

2−k E J(X 2
kn
1 ;X 2

k+1n
2kn+1)

≤ 2
∞∑
k=1

2−k E
(
V (X 2

kn
1 ) +

2kn logD

K (X 2
kn
1 )

+ 3
)
(k + log(n + 1)).

We will simplify the last expression using a power-law upper bound
and the sums of infinite series

∞∑
k=1

zk =
z

1− z
,

∞∑
k=1

kzk =
z

(1− z)2
.
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Theorem about facts and words

In this way, we obtain the finitary theorem about facts and words

EUg (X
n
1 ) ≤ 2

(
2βn

2− 2βn
EV (X n

1 ) + γn + 5
)(

log(n logD) +
3

2− 2βn

)
,

where

βn := sup
r>n

log

(
EV (X r

1 )

EV (X n
1 )

)
/ log

( r

n

)
, γn := sup

r>n
E
(
r logD

K (X r
1 )

)
.

We have EY−1 ≤ 1
EY (α+ α2 VarY

(α−1)2 EY ) if Y ≥ 1 (by Paley-Zygmund).

The number of independent facts described in a finite text is
roughly less than the number of distinct words used in this text.

For βn = 0.8, D = 27, and γn = log 27, we obtain

EUg (X
n
1 ) ≤ (13.45EV (X n

1 ) + 19.51)(log n + 13.84).

For βn = 0.7, D = 27, and γn = log 27, we obtain

EUg (X
n
1 ) ≤ (8.652EV (X n

1 ) + 19.51)(log n + 10.24).
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Combining this bound with the trivial bound

But we also have a trivial bound

EUg (X
n
1 ) ≤ H(X n

1 ) ≤ n logD.

In particular:

For EV (X n
1 ) = n0.8, D = 27, and γn = log 27, we have

EUg (X
n
1 ) ≤ min

{
4.75n, (13.45n0.8 + 19.51)(log n + 13.84)

}
.

The regime of the bound changes for n = 5.41 · 1010.
For EV (X n

1 ) = n0.7, D = 27, and γn = log 27, we have

EUg (X
n
1 ) ≤ min

{
4.75n, (8.652n0.7 + 19.51)(log n + 10.24)

}
.

The regime of the bound changes for n = 2.44 · 109.
The life expectancy of a human is around 4 · 109 heart beats.

A human should memorize everything, the posterity will verify it?
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Allometric laws are everywhere!

Is the Hilberg exponent closer to 3/4 (biology) or 4/5 (economy)?



Intro Power laws Entropy Facts Universality PML Markov order Facts and words References

Further reading I

J. P. Crutchfield and D. P. Feldman. Regularities unseen, randomness observed:
The entropy convergence hierarchy. Chaos, 15:25–54, 2003.

Ł. Dębowski. On the vocabulary of grammar-based codes and the logical
consistency of texts. IEEE Trans. Inform. Theory, 57:4589–4599, 2011.

Ł. Dębowski. Information Theory Meets Power Laws: Stochastic Processes and
Language Models. Wiley & Sons, 2021a.

Ł. Dębowski. A refutation of finite-state language models through Zipf’s law
for factual knowledge. Entropy, 23:1148, 2021b.

Ł. Dębowski. A short course in universal coding. Book manuscript in
preparation, 2024.

T. Henighan, J. Kaplan, M. Katz, M. Chen, C. Hesse, J. Jackson, H. Jun,
T. B. Brown, P. Dhariwal, S. Gray, et al. Scaling laws for autoregressive
generative modeling. https://arxiv.org/abs/2010.14701, 2020.

D. Hernandez, J. Kaplan, T. Henighan, and S. McCandlish. Scaling laws for
transfer. https://arxiv.org/abs/2102.01293, 2021.

https://arxiv.org/abs/2010.14701
https://arxiv.org/abs/2102.01293


Intro Power laws Entropy Facts Universality PML Markov order Facts and words References

Further reading II

J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad,
M. Patwary, M. Ali, Y. Yang, and Y. Zhou. Deep learning scaling is
predictable, empirically. https://arxiv.org/abs/1712.00409, 2017.

W. Hilberg. Der bekannte Grenzwert der redundanzfreien Information in Texten
— eine Fehlinterpretation der Shannonschen Experimente? Frequenz, 44:
243–248, 1990.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling laws for neural
language models. https://arxiv.org/abs/2001.08361, 2020.

R. Takahira, K. Tanaka-Ishii, and Ł. Dębowski. Entropy rate estimates for
natural language—a new extrapolation of compressed large-scale corpora.
Entropy, 18(10):364, 2016.

K. Tanaka-Ishii. Statistical Universals of Language: Mathematical Chance vs.
Human Choice. Springer, 2021.

G. West. Scale: The Universal Laws of Growth, Innovation, Sustainability, and
the Pace of Life in Organisms, Cities, Economies, and Companies. New
York: Penguin Press, 2017.

https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/2001.08361

	Intro
	

	Power laws
	

	Entropy
	

	Facts
	

	Universality
	

	PML
	

	Markov order
	

	Facts and words
	

	References

