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A (not so) rare specimen of a stochastic parrot

The rise of large language models
with their strengths

(fluent relevant grammatical replies)
and weaknesses

(factual hallucinations)
reopens the old question whether
statistical language modeling
makes sense for language science.
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Motivating question

Does statistical language modeling make sense for linguistics?

I think one should replace “Does” with “How can”.

There is a related question of a theoretical importance:

How much randomness is there in language and speech ...
... and, precisely, how does it interfere with structure?

This question cannot be answered without a certain understanding
of mathematical models of randomness.

These slides provide an intro.
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What is a stochastic process?

A process or a source is an infinite sequence of random variables:

(Xn)n∈N := (X1,X2,X3, ...)

This is a model of sequential data that contain a specified amount
of randomness.

To specify a process, it suffices to specify conditional probabilities

P(Xn+1 = xn+1|X n1 = xn1 )

for all strings xn1 := (x1, x2, ..., xn) and symbols xn+1.

We may also define particular variables as deterministic functions
of previously defined random variables:

Xn+1 = f (X n1 ) ⇐⇒ P(Xn+1 = f (xn1 )|X n1 = xn1 ) = 1.
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Example 1: IID processes

Independent identically distributed (IID) processes ⊃ fair coin.

Formally, we have X n1 := (X1,X2, ...,Xn) such that

P(X n1 = xn1 ) =
n∏
i=1

π(xi ), xn1 ∈ Xn.

We have EZi = 0 and VarZi = 1 for Zi := 1{Xi=x}−π(x)√
π(x)(1−π(x))

.

1 Law of large numbers (LLN):
The relative frequencies approach probabilities:
limn→∞

∑n
i=1 Zi/n = 0 with probability 1.

2 Central limit theorem (CLT):
The distribution of rescaled sample mean

∑n
i=1 Zi/

√
n

approaches the Gauss distribution N(0, 1) as n→ ∞.
3 Law of the iterated logarithm (LIL):

lim supn→∞ |
∑n
i=1 Zi | /

√
n ln ln n = 1 with probability 1.
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Example 2: A unifilar finite-state process
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Example 3: Unifilar processes (definition)

A process (Xn)n∈N is called unifilar if there is another process
(Yn)n∈N, called the underlying process, such that each symbol Xn
is a stochastic function of the corresponding state Yn,

P(Xn|Y n1 ,X n−11 ) = ε(Yn,Xn), (emission probability)

and the next state Yn+1 is a deterministic function of the previous
state Yn and symbol Xn,

Yn+1 = δ(Yn,Xn). (transition function)

Examples:

Higher order Markov chains: Yn = X
n−1
n−k for a fixed k .

Recurrent neural networks: Yn — hidden state of network.

Any process: Yn = X
n−1
1 .

Thus, we often put restrictions on (Yn)n∈N (finite alphabet, etc.).
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Example 4: Santa Fe processes

A Santa Fe process is a stochastic process (Xi )i∈Z where
individual variables can be decomposed as pairs

Xi = (Ki ,ZKi )

with two processes (Ki )i∈Z and (Zk)k∈N.

The narration (Ki )i∈Z consists of topics Ki : Ω → N.
The knowledge (Zk)k∈N consists of facts Zk : Ω → {−1, 1}.
Process (Xi )i∈Z is a simple model of a non-contradictory text:
Whenever a certain topic is discussed again (Ki = Kj), the
same fact is reported (ZKi = ZKj ).

That said, we may assume narration (Ki )i∈Z and knowledge
(Zk)k∈N to be pretty arbitrary processes and investigate
consequences of our particular choices.
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Example 5: Large language models

Large language models are also certain stochastic sources.

In language models based on transformers, probabilities
P(Xt |X t−1t−M) are computed by stacking two mechanisms:
embeddings — vectors xt corresponding to words/concepts,

attention — a nonlinear operation on embeddings

yt =
t−1∑
s=t−M

exp(xt · xs)∑t−1
r=t−M exp(xt · xr )

xs .

The GPT-3 language model:

Number of parameters: N = 175 billions (800 GB RAM).

Context length: M = 2048 words.

Training data: Common Crawl (410 bln, 60%), WebText2
(19 bln, 22%), books (67 bln, 16%), Wikipedia (3 bln, 3%).
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Mathematical landscape

Hierarchy of stochastic processes:

Fair-coin process

IID processes

Markov processes

Hidden Markov processes

Stationary processes

Asymptotically mean stationary (AMS) processes

Non-stationary processes
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Markov chains

a b c d e
a 1
4
1
4
1
4
1
4 0

b 1
6 0 0

5
6 0

c 0 0 1 0 0
d 0 0 0 1

2
1
2

e 0 0 0 1
2
1
2

a b

c d e

A stochastic process (Xi )i∈N over a countable alphabet X is called
a Markov process if for all n ∈ N, we have

P(X n1 = xn1 ) = π(x1)
∏n
i=2 τ(xi−1, xi )

for some vector π : X → [0, 1], called the initial distribution, and
some matrix τ : X× X → [0, 1], called the transition matrix.
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Communicating classes

For a Markov process with a given transition matrix τ , we say that
x leads to y and write it as x → y if

P(Xn = y for some n ∈ N|X1 = x) > 0.

We also write x ↔ y if x → y and y → x .

Relation ↔ is an equivalence relation on X, i.e., it is
reflexive: x ↔ x ,
symmetric: x ↔ y if and only if y ↔ x ,
transitive: x ↔ y and y ↔ z implies x ↔ z .

The communicating class of x is defined as

[x ] := {y ∈ X : x ↔ y} .

Communicating classes are disjoint and partition space X.
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Irreducible, finite, and stationary chains

A transition matrix τ or the respective Markov process are called
irreducible if space X is the single communicating class.

A Markov process is called (in)finite if space X is (in)finite.

A distribution π̄ is called invariant for a given transition matrix τ if∑
y∈X

π̄(y)τ(y , x) = π̄(x) for all x ∈ X.

Theorem

Let (Xi )i∈N be a finite Markov process. Then an invariant
distribution exists but need not be unique.

Let (Xi )i∈N be an irreducible Markov process. Then the
invariant distribution is unique if it exists.
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Ergodic theorem

We inductively define random variables called passage times

T x0 := 0, T xn := inf
{
n ∈ N : n > T xn−1,Xn = x

}
.

The successive recurrence times are Rxn := T
x
n+1 − T xn .

Random variables Rx1 ,R
x
2 ,R

x
3 , ... form an IID process.

Theorem (ergodic theorem)

Let (Xi )i∈N be an irreducible Markov process such that the
invariant distribution π̄ exists. Then

lim
n→∞

1
n

n∑
i=1

1{Xi = x} =
1

ERxi
= π̄(x) a.s.
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Stationary processes

A stochastic process (Xi )i∈Z is called stationary if for all t ∈ Z, all
k ∈ N and all strings xk1 , we have

P(X t+kt+1 = xk1 ) = P(X
k
1 = xk1 ).

Example: Markov sources with an invariant initial distribution.

Theorem (Birkhoff ergodic theorem)

For any stationary process (Xi )i∈Z, all k ∈ N, and all strings xk1 ,
there exist limits

lim
n→∞

1
n

n−1∑
i=0

1
{
X i+ki+1 = xk1

}
a.s.

lim
n→∞
an := a ⇐⇒ inf

n∈N
sup
k≥n
ak = a = sup

n∈N
inf
k≥n
ak
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Ergodic processes

A stationary process (Xi )i∈Z is called ergodic if for all k ∈ N and
all strings xk1 , we have

lim
n→∞

1
n

n−1∑
i=0

1
{
X i+ki+1 = xk1

}
= P(X k1 = xk1 ) a.s.

Examples: Markov sources with an invariant initial distribution
and an irreducible transition matrix; IID processes.

Theorem (ergodicity criterion)

A stationary process (Xi )i∈Z is ergodic if for all k ∈ N and all
strings xk1 , we have

lim
n→∞

1
n

n−1∑
i=0

P(X k1 = xk1 ,X
i+k
i+1 = xk1 ) = P(X

k
1 = xk1 )

2.



Intro Overview Markov sources Stationary sources Information theory Sufficient statistic Conclusion References

Ergodic decomposition and prior distributions

Just like any stationary Markov process can be decomposed
into irreducible Markov processes, any stationary process can
be decomposed into ergodic processes.

The important difference is that a stationary Markov process
can decompose into countably many ergodic components,
whereas a general stationary process can decompose into
uncountably many ergodic components.

Non-ergodic processes are Bayesian mixtures of ergodic
processes, where the prior distribution can be arbitrary.

For example, non-ergodic Santa Fe process Xi = (Ki ,ZKi )
where (Zk)k∈N is an IID process decomposes into uncountably
many IID Santa Fe processes Xi = (Ki , zKi ) where (zk)k∈N are
realizations of process (Zk)k∈N.
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Block entropy

The block entropy a stationary process (Xi )i∈Z is

H(n) := H(X n1 ) = H(X1, ...,Xn) = H(Xi+1, ...,Xi+n).

For convenience, we also put H(0) = 0.

We have

∆H(n) := H(n)− H(n − 1) = H(Xn|X n−11 ),

∆2H(n) := H(n)− 2H(n − 1) + H(n − 2) = −I (X1;Xn|X n−12 ).

Remark: Block entropy H(n) is non-negative (H(n) ≥ 0),
non-decreasing (∆H(n) ≥ 0) and concave (∆2H(n) ≤ 0).
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Entropy rate

The entropy rate of a stationary process (Xi )i∈Z is

h = lim
n→∞

∆H(n) = H(1) +
∞∑
n=2

∆2H(n) = lim
n→∞

H(n)
n

.

We have 0 ≤ h ≤ H(1).
For a Markov process with invariant distribution π̄ and matrix τ ,

h =
∑
x

π̄(x)

[
−
∑
x ′

τ(x , x ′) log τ(x , x ′)

]
.

Theorem (Shannon-McMillan-Breiman theorem)

For any stationary ergodic process (Xi )i∈Z, we have

lim
n→∞

1
n
[− logP(X n1 )] = h a.s.
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Excess entropy

The excess entropy of a stationary process (Xi )i∈Z is

E = lim
n→∞
I (X 0−n+1;X

n
1 ) = lim

n→∞
[2H(n)− H(2n)]

= lim
n→∞

[H(n)− nh] =
∞∑
n=1

[∆H(n)− h] = −
∞∑
n=2

(n − 1)∆2H(n).

For a Markov process with invariant distribution π̄ and matrix τ ,

E = H(1)− h =
∑
x

π̄(x)

[∑
x ′

τ(x , x ′) log
τ(x , x ′)
π̄(x ′)

]
.

Theorem (ergodic decomposition of excess entropy)

For any process (Xi )i∈Z and parameter Θ = f (X t−∞) = g(X∞
t+1),

E = I (X t−∞;X∞
t+1) = H(Θ) + I (X t−∞;X∞

t+1|Θ).
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Hilberg exponent

For a stationary process, we have the Hilberg exponent

β := hilb
n→∞

(H(X n1 )− nh) = hilb
n→∞
I (X n1 ;X

2n
n+1) ∈ [0, 1],

where to measure power-law growth, we introduce the operator

hilb
n→∞
S(n) :=

[
lim sup
n→∞

log S(n)
log n

]
+

.

In particular, we obtain

hilb
n→∞
nβ = β if β ≥ 0.

Theorem (excess bound)

If limn→∞ S(n)/n = s and S(n) ≥ ns then

hilb
n→∞

(S(n)− ns) = hilb
n→∞

(2S(n)− S(2n)) .
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Hilberg’s law

β := hilbn→∞ (H(X n1 )− nh) = hilbn→∞ I (X n1 ;X
2n
n+1) ∈ [0, 1].

Finite unifilar processes have β = 0.

Santa Fe processes Xi = (Ki ,ZKi ) with Zipfian narration

(Ki )i∈Z ∼ IID, P(Ki = k) ∼
1
kα

, α > 1,

and uniformly distributed knowledge

(Zk)k∈N ∼ IID, P(Zk = ±1) = 1
2
,

are strongly nonergodic, we have E = ∞ and β = 1/α.

Relationship β > 0 is called Hilberg’s law.
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Sufficient statistics (summaries)

A sufficient statistic TX→Y is a function of variable X such that
variables X and Y are independent given TX→Y .

We observe

I (X ;Y ) = I (TX→Y ;Y ) + I (X ;Y |TX→Y )︸ ︷︷ ︸
0

= I (TX→Y ;TY→X ) + I (TX→Y ;Y |TY→X )︸ ︷︷ ︸
0

= I (TX→Y ;TY→X ) ≤ min {H(TX→Y ),H(TY→X )} .

The minimal sufficient statistic yields an insight into the divergence
of excess entropy E and a bound for the Hilberg exponent β.
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Example 1: Finite-state process

Consider a unifilar process (Xi )i∈Z such that
the underlying process (Yi )i∈Z has exactly K distinct states.

We have

I (X n1 ;X
2n
n+1) ≤ I (X n1 ,Yn+1;X 2nn+1)

= I (Yn+1;X 2nn+1) + I (X
n
1 ;X

2n
n+1|Yn+1)︸ ︷︷ ︸
0

≤ H(Yn+1) ≤ logK ,

since samples X n1 and X
2n
n+1 are indpendent given state Yn+1.

This process has E ≤ logK and β = 0.
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Example 2: Biased coin with a prior

Consider a process where we first draw a probability θ ∈ [0, 1]
and then we repeatedly toss a biased coin—formally, Bernoulli(θ):

P(X n1 = xn1 |Θ = θ) = θ
∑n
i=1 xi (1− θ)n−

∑n
i=1 xi .

We have the Markov chain

X n1 →
n∑
i=1

Xi → Θ →
2n∑
i=n+1

Xi → X 2nn+1.

Hence

I (X n1 ;X
2n
n+1) = I

(
n∑
i=1

Xi ;
2n∑
i=n+1

Xi

)
≤ H

(
n∑
i=1

Xi

)
≤ log(n + 1).

This process is strongly nonergodic, has E = ∞ but β = 0.
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Example 3: Santa Fe process

Santa Fe process Xi = (Ki ,ZKi ) with Zipfian narration

(Ki )i∈Z ∼ IID, P(Ki = k) ∼
1
kα

, α > 1,

and uniformly distributed knowledge

(Zk)k∈N ∼ IID, P(Zk = ±1) = 1
2
.

Denote {X n1 } := {Xi : 1 ≤ i ≤ n}. We have the Markov chain

X n1 → {X n1 } → (Zk)k∈N →
{
X 2nn+1

}
→ X 2nn+1.

Hence

EminN \ {X n1 } ∩
{
X 2nn+1

}
≲ I (X n1 ;X

2n
n+1) ≲ E# {X n1 } logmax {X n1 } .

We have Herdan-Heaps’ law # {X n1 } ∼ n1/α.

This process is strongly nonergodic, has E = ∞ and β = 1/α.
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Minimal sufficient statistic for natural language?

What is the minimal sufficient statistic for natural language?
Is it closer to

∑n
i=1 Xi or to {Xi : 1 ≤ i ≤ n}?

(data aggregation vs. data memorization)
Think of embeddings at the levels of word, sentence,
paragraph, chapter, book, etc.
Think also of a mental representation of factual knowledge.
If it is unbounded, we likely have Hilberg’s law.
How to model the pressure to forget useless facts?
Different people remember different things.—Purposeful
randomization of memories or different initial conditions?

A memory theory (refinement of unifilar processes) is in need:
Memories have a non-trivial structure (symbols, vecs, freqs).
Memories operate at various time scales.
Memories operate in parallel and in complexes.
Memories are unbounded but finite and prone to forgetting.
Given memories, generation of texts may be simple.

We need an appropriate level of abstraction—somewhere
between Markov chains and general (AMS) processes!
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The Road to Wisdom by Piet Hein

The road to wisdom? Well, it’s plain
And simple to express:
Err
and err
and err again,
but less
and less
and less.
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