Probability for Language Modeling Part II: Sources

> Łukasz Dębowski Idebowsk@ipipan.waw.pl

Institute of Computer Science Polish Academy of Sciences

Quantitative Cognitive Linguistics Network 25th July 2024 Markov sources Stat

Stationary sources

Information theory 00000

Sufficient statistic

Conclusion F

References

A (not so) rare specimen of a stochastic parrot

The rise of large language models with their strengths (fluent relevant grammatical replies) and weaknesses (factual hallucinations) reopens the old question whether statistical language modeling makes sense for language science.

- Does statistical language modeling make sense for linguistics?
- I think one should replace "Does" with "How can".
- There is a related question of a theoretical importance:
- How much randomness is there in language and speech and, precisely, how does it interfere with structure?
- This question cannot be answered without a certain understanding of mathematical models of randomness.
- These slides provide an intro.

Intro Overview Markov sources Stationary sources Information theory Sufficient statistic Conclusion References

1 Overview

Information theory

Intro	Overview	Markov sources	Stationary sources	Information theory	Sufficient statistic	Conclusion	References
	•0000000						

Overview

- 2 Markov sources
- 3 Stationary sources
- Information theory
- **5** Sufficient statistic

What is a stochastic process?

Markov sources

Overview

000

A process or a source is an infinite sequence of random variables:

Information theory

Sufficient statistic

Conclusion

References

$$(X_n)_{n\in\mathbb{N}} := (X_1, X_2, X_3, ...)$$

This is a model of sequential data that contain a specified amount of randomness.

To specify a process, it suffices to specify conditional probabilities

$$P(X_{n+1} = x_{n+1} | X_1^n = x_1^n)$$

for all strings $x_1^n := (x_1, x_2, ..., x_n)$ and symbols x_{n+1} .

Stationary sources

We may also define particular variables as deterministic functions of previously defined random variables:

$$X_{n+1} = f(X_1^n) \iff P(X_{n+1} = f(x_1^n)|X_1^n = x_1^n) = 1.$$

Example 1: IID processes

Markov sources

Overview

00000

Independent identically distributed (IID) processes \supset fair coin. Formally, we have $X_1^n := (X_1, X_2, ..., X_n)$ such that

Stationary sources

$$P(X_1^n=x_1^n)=\prod_{i=1}^n\pi(x_i),\quad x_1^n\in\mathbb{X}^n.$$

Information theory

Sufficient statistic

Conclusion

References

We have $\mathbb{E} Z_i = 0$ and $\operatorname{Var} Z_i = 1$ for $Z_i := \frac{1\{X_i = x\} - \pi(x)}{\sqrt{\pi(x)(1 - \pi(x))}}$.

- Law of large numbers (LLN): The relative frequencies approach probabilities: $\lim_{n\to\infty}\sum_{i=1}^{n} Z_i/n = 0$ with probability 1.
- Central limit theorem (CLT):

The distribution of rescaled sample mean $\sum_{i=1}^{n} Z_i / \sqrt{n}$ approaches the Gauss distribution N(0,1) as $n \to \infty$.

Solution Law of the iterated logarithm (LIL): $\limsup_{n\to\infty} \left|\sum_{i=1}^{n} Z_{i}\right| / \sqrt{n \ln \ln n} = 1 \text{ with probability 1.}$

Example 2: A unifilar finite-state process

Overview

00000000

References

Example 3: Unifilar processes (definition)

Stationary sources

Markov sources

A process $(X_n)_{n \in \mathbb{N}}$ is called unifilar if there is another process $(Y_n)_{n \in \mathbb{N}}$, called the underlying process, such that each symbol X_n is a stochastic function of the corresponding state Y_n ,

Information theory

Sufficient statistic

Conclusion

References

$$P(X_n|Y_1^n, X_1^{n-1}) = \varepsilon(Y_n, X_n), \quad \text{(emission probability)}$$

and the next state Y_{n+1} is a deterministic function of the previous state Y_n and symbol X_n ,

 $Y_{n+1} = \delta(Y_n, X_n).$ (transition function)

Examples:

- Higher order Markov chains: $Y_n = X_{n-k}^{n-1}$ for a fixed k.
- Recurrent neural networks: Y_n hidden state of network.

• Any process:
$$Y_n = X_1^{n-1}$$
.

Thus, we often put restrictions on $(Y_n)_{n \in \mathbb{N}}$ (finite alphabet, etc.).

Example 4: Santa Fe processes

Markov sources

Overview

00000000

 A Santa Fe process is a stochastic process (X_i)_{i∈Z} where individual variables can be decomposed as pairs

$$X_i = (K_i, Z_{K_i})$$

Information theory

Sufficient statistic

References

Conclusion

with two processes $(K_i)_{i \in \mathbb{Z}}$ and $(Z_k)_{k \in \mathbb{N}}$.

Stationary sources

- The narration $(K_i)_{i \in \mathbb{Z}}$ consists of topics $K_i : \Omega \to \mathbb{N}$.
- The knowledge $(Z_k)_{k \in \mathbb{N}}$ consists of facts $Z_k : \Omega \to \{-1, 1\}$.
- Process (X_i)_{i∈Z} is a simple model of a non-contradictory text: Whenever a certain topic is discussed again (K_i = K_j), the same fact is reported (Z_{Ki} = Z_{Kj}).
- That said, we may assume narration (K_i)_{i∈Z} and knowledge (Z_k)_{k∈N} to be pretty arbitrary processes and investigate consequences of our particular choices.

Example 5: Large language models

Markov sources

Overview

0000

Large language models are also certain stochastic sources.

Stationary sources

In language models based on transformers, probabilities $P(X_t|X_{t-M}^{t-1})$ are computed by stacking two mechanisms:

- embeddings vectors x_t corresponding to words/concepts,
- attention a nonlinear operation on embeddings

$$y_t = \sum_{s=t-M}^{t-1} \frac{\exp(x_t \cdot x_s)}{\sum_{r=t-M}^{t-1} \exp(x_t \cdot x_r)} x_s.$$

Information theory

Sufficient statistic

Conclusion

References

The GPT-3 language model:

- Number of parameters: N = 175 billions (800 GB RAM).
- Context length: M = 2048 words.
- Training data: Common Crawl (410 bln, 60%), WebText2 (19 bln, 22%), books (67 bln, 16%), Wikipedia (3 bln, 3%).

Hierarchy of stochastic processes:

- Fair-coin process
- IID processes
- Markov processes
- Hidden Markov processes
- Stationary processes
- Asymptotically mean stationary (AMS) processes
- Non-stationary processes

Intro 0000	Overview 00000000	Markov sources ●0000	Stationary sources	Information theory 00000	Sufficient statistic	Conclusion 00	References
---------------	----------------------	-------------------------	--------------------	-----------------------------	----------------------	------------------	------------

1 Overview

3 Stationary sources

Information theory

5 Sufficient statistic

A stochastic process $(X_i)_{i \in \mathbb{N}}$ over a countable alphabet \mathbb{X} is called a Markov process if for all $n \in \mathbb{N}$, we have

$$P(X_1^n = x_1^n) = \pi(x_1) \prod_{i=2}^n \tau(x_{i-1}, x_i)$$

for some vector $\pi : \mathbb{X} \to [0, 1]$, called the initial distribution, and some matrix $\tau : \mathbb{X} \times \mathbb{X} \to [0, 1]$, called the transition matrix.

Communicating classes

Markov sources

Overview

For a Markov process with a given transition matrix τ , we say that x leads to y and write it as $x \to y$ if

Information theory

Sufficient statistic

References

$$P(X_n = y \text{ for some } n \in \mathbb{N} | X_1 = x) > 0.$$

We also write $x \leftrightarrow y$ if $x \rightarrow y$ and $y \rightarrow x$.

Relation \leftrightarrow is an equivalence relation on \mathbb{X} , i.e., it is

Stationary sources

- reflexive: $x \leftrightarrow x$,
- symmetric: $x \leftrightarrow y$ if and only if $y \leftrightarrow x$,
- transitive: $x \leftrightarrow y$ and $y \leftrightarrow z$ implies $x \leftrightarrow z$.

The communicating class of x is defined as

$$[x] := \{y \in \mathbb{X} : x \leftrightarrow y\}.$$

Communicating classes are disjoint and partition space X.

Stationary sources

A transition matrix τ or the respective Markov process are called irreducible if space X is the single communicating class.

Information theory

Sufficient statistic

References

Conclusion

A Markov process is called (in)finite if space X is (in)finite.

A distribution $\bar{\pi}$ is called invariant for a given transition matrix τ if

$$\sum_{y\in\mathbb{X}}ar{\pi}(y) au(y,x)=ar{\pi}(x) \quad ext{for all } x\in\mathbb{X}.$$

Theorem

Overview

Markov sources

00000

- Let (X_i)_{i∈ℕ} be a finite Markov process. Then an invariant distribution exists but need not be unique.
- Let (X_i)_{i∈ℕ} be an irreducible Markov process. Then the invariant distribution is unique if it exists.

Ergodic theorem

Markov sources

00000

Overview

Intro

We inductively define random variables called passage times

$$T_0^x := 0, \qquad T_n^x := \inf \left\{ n \in \mathbb{N} : n > T_{n-1}^x, X_n = x \right\}.$$

Information theory

Sufficient statistic

Conclusion

References

The successive recurrence times are $R_n^x := T_{n+1}^x - T_n^x$.

Stationary sources

Random variables $R_1^x, R_2^x, R_3^x, ...$ form an IID process.

Theorem (ergodic theorem)

Let $(X_i)_{i \in \mathbb{N}}$ be an irreducible Markov process such that the invariant distribution $\overline{\pi}$ exists. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} 1\{X_i = x\} = \frac{1}{\mathbb{E} R_i^{x}} = \bar{\pi}(x) \text{ a.s.}$$

Intro Overview Markov sources Stationary sources In 0000 0000000 00000 00000 00000	Information theory 00000	Sufficient statistic	Conclusion	References
--	-----------------------------	----------------------	------------	------------

1 Overview

2 Markov sources

Stationary sources

Information theory

5 Sufficient statistic

Stationary processes

Markov sources

Intro

Overview

A stochastic process $(X_i)_{i \in \mathbb{Z}}$ is called stationary if for all $t \in \mathbb{Z}$, all $k \in \mathbb{N}$ and all strings x_1^k , we have

Stationary sources

0000

Sufficient statistic

References

Conclusion

$$P(X_{t+1}^{t+k} = x_1^k) = P(X_1^k = x_1^k).$$

Example: Markov sources with an invariant initial distribution.

Theorem (Birkhoff ergodic theorem)

For any stationary process $(X_i)_{i \in \mathbb{Z}}$, all $k \in \mathbb{N}$, and all strings x_1^k , there exist limits

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} 1 \left\{ X_{i+1}^{i+k} = x_1^k \right\} \text{ a.s.}$$

$$\lim_{n \to \infty} a_n := a \iff \inf_{n \in \mathbb{N}} \sup_{k \ge n} a_k = a = \sup_{n \in \mathbb{N}} \inf_{k \ge n} a_k$$

Ergodic processes

Markov sources

Overview

A stationary process $(X_i)_{i\in\mathbb{Z}}$ is called ergodic if for all $k\in\mathbb{N}$ and all strings x_1^k , we have

Information theory

Sufficient statistic

References

Stationary sources

0000

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{1} \Big\{ X_{i+1}^{i+k} = x_1^k \Big\} = P(X_1^k = x_1^k) \text{ a.s.}$$

Examples: Markov sources with an invariant initial distribution and an irreducible transition matrix; IID processes.

Theorem (ergodicity criterion)

A stationary process $(X_i)_{i \in \mathbb{Z}}$ is ergodic if for all $k \in \mathbb{N}$ and all strings x_1^k , we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}P(X_1^k=x_1^k,X_{i+1}^{i+k}=x_1^k)=P(X_1^k=x_1^k)^2.$$

Intro Overview Markov sources Stationary sources Information theory Sufficient statistic Conclusion References Ergodic decomposition and prior distributions

- Just like any stationary Markov process can be decomposed into irreducible Markov processes, any stationary process can be decomposed into ergodic processes.
- The important difference is that a stationary Markov process can decompose into countably many ergodic components, whereas a general stationary process can decompose into uncountably many ergodic components.
- Non-ergodic processes are Bayesian mixtures of ergodic processes, where the prior distribution can be arbitrary.
- For example, non-ergodic Santa Fe process $X_i = (K_i, Z_{K_i})$ where $(Z_k)_{k \in \mathbb{N}}$ is an IID process decomposes into uncountably many IID Santa Fe processes $X_i = (K_i, z_{K_i})$ where $(z_k)_{k \in \mathbb{N}}$ are realizations of process $(Z_k)_{k \in \mathbb{N}}$.

Intro 0000	Overview 00000000	Markov sources 00000	Stationary sources	Information theory ●0000	Sufficient statistic	Conclusion 00	References
				•••••			

1 Overview

2 Markov sources

3 Stationary sources

Information theory

5 Sufficient statistic

Intro Overview Markov sources Stationary sources Information theory Sufficient statistic Conclusion References Ocoo Block entropy

The block entropy a stationary process $(X_i)_{i \in \mathbb{Z}}$ is

$$H(n) := H(X_1^n) = H(X_1, ..., X_n) = H(X_{i+1}, ..., X_{i+n}).$$

For convenience, we also put H(0) = 0.

We have

$$\Delta H(n) := H(n) - H(n-1) = H(X_n | X_1^{n-1}),$$

$$\Delta^2 H(n) := H(n) - 2H(n-1) + H(n-2) = -I(X_1; X_n | X_2^{n-1}).$$

Remark: Block entropy H(n) is non-negative $(H(n) \ge 0)$, non-decreasing $(\Delta H(n) \ge 0)$ and concave $(\Delta^2 H(n) \le 0)$.

The entropy rate of a stationary process $(X_i)_{i \in \mathbb{Z}}$ is

$$h = \lim_{n \to \infty} \Delta H(n) = H(1) + \sum_{n=2}^{\infty} \Delta^2 H(n) = \lim_{n \to \infty} \frac{H(n)}{n}$$

We have $0 \le h \le H(1)$.

For a Markov process with invariant distribution $\bar{\pi}$ and matrix τ ,

$$h = \sum_{x} \bar{\pi}(x) \left[-\sum_{x'} \tau(x, x') \log \tau(x, x')
ight]$$

Theorem (Shannon-McMillan-Breiman theorem)

For any stationary ergodic process $(X_i)_{i \in \mathbb{Z}}$, we have

$$\lim_{n\to\infty}\frac{1}{n}\left[-\log P(X_1^n)\right]=h \ a.s.$$

Excess entropy

Markov sources

Overview

Intro

The excess entropy of a stationary process $(X_i)_{i \in \mathbb{Z}}$ is

Stationary sources

$$E = \lim_{n \to \infty} I(X_{-n+1}^{0}; X_{1}^{n}) = \lim_{n \to \infty} [2H(n) - H(2n)]$$

=
$$\lim_{n \to \infty} [H(n) - nh] = \sum_{n=1}^{\infty} [\Delta H(n) - h] = -\sum_{n=2}^{\infty} (n-1)\Delta^{2}H(n).$$

Information theory

00000

Sufficient statistic

Conclusion

References

For a Markov process with invariant distribution $\bar{\pi}$ and matrix au,

$$E = H(1) - h = \sum_{x} \overline{\pi}(x) \left[\sum_{x'} \tau(x, x') \log \frac{\tau(x, x')}{\overline{\pi}(x')} \right]$$

Theorem (ergodic decomposition of excess entropy)

For any process $(X_i)_{i \in \mathbb{Z}}$ and parameter $\Theta = f(X_{-\infty}^t) = g(X_{t+1}^\infty)$,

$$E = I(X_{-\infty}^t; X_{t+1}^{\infty}) = H(\Theta) + I(X_{-\infty}^t; X_{t+1}^{\infty}|\Theta)$$

Hilberg exponent

Overview

Intro

Markov sources

For a stationary process, we have the Hilberg exponent

Stationary sources

$$\beta := \underset{n \to \infty}{\text{hilb}} \left(H(X_1^n) - nh \right) = \underset{n \to \infty}{\text{hilb}} I(X_1^n; X_{n+1}^{2n}) \in [0, 1],$$

Information theory

0000

Sufficient statistic

References

where to measure power-law growth, we introduce the operator

$$\underset{n\to\infty}{\text{hilb}} S(n) := \left[\limsup_{n\to\infty} \frac{\log S(n)}{\log n}\right]_+$$

In particular, we obtain

$$\underset{n\to\infty}{\text{hilb}} n^{\beta} = \beta \text{ if } \beta \ge 0.$$

Theorem (excess bound)

If
$$\lim_{n \to \infty} S(n)/n = s$$
 and $S(n) \geq ns$ then

$$\underset{n\to\infty}{\operatorname{hilb}}\left(S(n)-ns\right)=\underset{n\to\infty}{\operatorname{hilb}}\left(2S(n)-S(2n)\right).$$

Intro 0000	Overview 00000000	Markov sources	Stationary sources	Information theory 00000	Sufficient statistic ●00000	Conclusion	References
---------------	----------------------	----------------	--------------------	-----------------------------	--------------------------------	------------	------------

1 Overview

2 Markov sources

3 Stationary sources

Information theory

Hilberg's law

Markov sources

Overview

Intro

• $\beta := \operatorname{hilb}_{n \to \infty} (H(X_1^n) - nh) = \operatorname{hilb}_{n \to \infty} I(X_1^n; X_{n+1}^{2n}) \in [0, 1].$

Information theory

Sufficient statistic

000000

Conclusion

References

• Finite unifilar processes have $\beta = 0$.

Stationary sources

• Santa Fe processes $X_i = (K_i, Z_{K_i})$ with Zipfian narration

$$(K_i)_{i\in\mathbb{Z}}\sim \mathsf{IID}, \quad P(K_i=k)\sim rac{1}{k^{lpha}}, \quad lpha>1,$$

and uniformly distributed knowledge

$$(Z_k)_{k\in\mathbb{N}}\sim \operatorname{IID}, \quad P(Z_k=\pm 1)=\frac{1}{2},$$

are strongly nonergodic, we have $E = \infty$ and $\beta = 1/\alpha$.

Relationship $\beta > 0$ is called Hilberg's law.

Sufficient statistics (summaries)

Markov sources

Stationary sources

A sufficient statistic $T_{X \to Y}$ is a function of variable X such that variables X and Y are independent given $T_{X \to Y}$.

Information theory

Sufficient statistic

000000

Conclusion

References

We observe

Overview

$$I(X; Y) = I(T_{X \to Y}; Y) + \underbrace{I(X; Y | T_{X \to Y})}_{0}$$

= $I(T_{X \to Y}; T_{Y \to X}) + \underbrace{I(T_{X \to Y}; Y | T_{Y \to X})}_{0}$
= $I(T_{X \to Y}; T_{Y \to X}) \le \min \{H(T_{X \to Y}), H(T_{Y \to X})\}.$

The minimal sufficient statistic yields an insight into the divergence of excess entropy E and a bound for the Hilberg exponent β .

Example 1: Finite-state process

Stationary sources

Markov sources

Intro

Overview

Consider a unifilar process $(X_i)_{i \in \mathbb{Z}}$ such that the underlying process $(Y_i)_{i \in \mathbb{Z}}$ has exactly K distinct states. We have

$$I(X_{1}^{n}; X_{n+1}^{2n}) \leq I(X_{1}^{n}, Y_{n+1}; X_{n+1}^{2n})$$

= $I(Y_{n+1}; X_{n+1}^{2n}) + \underbrace{I(X_{1}^{n}; X_{n+1}^{2n} | Y_{n+1})}_{0}$
 $\leq H(Y_{n+1}) \leq \log K,$

Information theory

Sufficient statistic

Conclusion

References

since samples X_1^n and X_{n+1}^{2n} are indpendent given state Y_{n+1} .

This process has $E \leq \log K$ and $\beta = 0$.

Example 2: Biased coin with a prior

Consider a process where we first draw a probability $\theta \in [0, 1]$ and then we repeatedly toss a biased coin—formally, Bernoulli(θ):

Sufficient statistic

References

Conclusion

$$P(X_1^n = x_1^n | \Theta = \theta) = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i}$$

We have the Markov chain

Markov sources

$$X_1^n \to \sum_{i=1}^n X_i \to \Theta \to \sum_{i=n+1}^{2n} X_i \to X_{n+1}^{2n}.$$

Hence

Intro

Overview

$$I(X_1^n; X_{n+1}^{2n}) = I\left(\sum_{i=1}^n X_i; \sum_{i=n+1}^{2n} X_i\right) \le H\left(\sum_{i=1}^n X_i\right) \le \log(n+1).$$

This process is strongly nonergodic, has $E = \infty$ but $\beta = 0$.

Example 3: Santa Fe process

Markov sources

Santa Fe process $X_i = (K_i, Z_{K_i})$ with Zipfian narration

Stationary sources

$$(K_i)_{i\in\mathbb{Z}}\sim \mathsf{IID}, \quad P(K_i=k)\sim \frac{1}{k^{\alpha}}, \quad \alpha>1,$$

Information theory

Sufficient statistic

Conclusion

References

and uniformly distributed knowledge

$$(Z_k)_{k\in\mathbb{N}}\sim \mathsf{IID}, \quad P(Z_k=\pm 1)=rac{1}{2}.$$

Denote $\{X_1^n\} := \{X_i : 1 \le i \le n\}$. We have the Markov chain $X_1^n \to \{X_1^n\} \to (Z_k)_{k \in \mathbb{N}} \to \{X_{n+1}^{2n}\} \to X_{n+1}^{2n}$.

Hence

Overview

 $\mathbb{E}\min\mathbb{N}\setminus\{X_1^n\}\cap\{X_{n+1}^{2n}\}\lesssim I(X_1^n;X_{n+1}^{2n})\lesssim\mathbb{E}\,\#\{X_1^n\}\log\max\{X_1^n\}\,.$ We have Herdan-Heaps' law $\#\{X_1^n\}\sim n^{1/\alpha}$.

This process is strongly nonergodic, has $E = \infty$ and $\beta = 1/\alpha$.

Minimal sufficient statistic for natural language?

Stationary sources

Overview

Markov sources

• What is the minimal sufficient statistic for natural language?

Information theory

Sufficient statistic

Conclusion

References

- Is it closer to $\sum_{i=1}^{n} X_i$ or to $\{X_i : 1 \le i \le n\}$? (data aggregation vs. data memorization)
- Think of embeddings at the levels of word, sentence, paragraph, chapter, book, etc.
- Think also of a mental representation of factual knowledge. If it is unbounded, we likely have Hilberg's law.
- How to model the pressure to forget useless facts?
- Different people remember different things.—Purposeful randomization of memories or different initial conditions?

• A memory theory (refinement of unifilar processes) is in need:

- Memories have a non-trivial structure (symbols, vecs, freqs).
- Memories operate at various time scales.
- Memories operate in parallel and in complexes.
- Memories are unbounded but finite and prone to forgetting.
- Given memories, generation of texts may be simple.
- We need an appropriate level of abstraction—somewhere between Markov chains and general (AMS) processes!

The road to wisdom? Well, it's plain And simple to express: Err and err and err and err again, but less and less and less.

- P. Billingsley. *Ergodic Theory and Information*. Wiley & Sons, 1965.
- T. M. Cover and J. A. Thomas. *Elements of Information Theory,* 2nd ed. Wiley & Sons, 2006.
- J. P. Crutchfield and D. P. Feldman. Regularities unseen, randomness observed: The entropy convergence hierarchy. *Chaos*, 15:25–54, 2003.
- Ł. Dębowski. Information Theory Meets Power Laws: Stochastic Processes and Language Models. Wiley & Sons, 2021.
- Ł. Dębowski. A short course in universal coding. Book manuscript in preparation, 2024.
- J. R. Norris. Markov Chains. Cambridge University Press, 1997.