Consistency of the Plug-In Estimator of the Entropy Rate for Ergodic Processes

Łukasz Dębowski Idebowsk@ipipan.waw.pl

Institute of Computer Science Polish Academy of Sciences

ISIT 2016, Barcelona

Title	Plug-in estimator	The number of distinct blocks	Open problems
0	●00000	00	O
Entropy e	estimation		

- Entropy estimation is well researched in the IID case:
 - Paninski (2004), *Estimating Entropy on* **m** *Bins Given Fewer Than* **m** *Samples.*
 - Valiant and Valiant (2011), An *n*/log(*n*)-Sample Estimator for Entropy and Support Size.
 - Jiao, Venkat, Han, and Weissman (2015), *Minimax estimation* of functionals of discrete distributions.
- What about the general ergodic case?
 - Universal compression (some upper bound, researched).
 - Plug-in estimator (some lower bound, not researched yet).

Title	Plug-in estimator	The number of distinct blocks	Open problems
0	0●0000		O
Some no	otation		

Entropy of a distribution: $H(p) = -\sum_{w:p(w)>0} p(w) \log p(w)$.

True distribution and block entropy:

$$p_k(w) = P(X_{i+1}^{i+k} = w),$$

$$H(k) = H(p_k).$$

Empirical distribution and plug-in estimator:

$$p_k(w, X_1^n) = \frac{1}{\lfloor n/k \rfloor} \sum_{i=1}^{\lfloor n/k \rfloor} 1\Big\{X_{i(k-1)+1}^{ik} = w\Big\},\$$
$$H(k, X_1^n) = H(p_k(\cdot, X_1^n)).$$

The plug-in estimator is biased and the bias is large:

$$\mathbb{E} H(k, X_1^n) \leq H(k) \text{ since } \mathbb{E} p_k(w, X_1^n) = p_k(w).$$
$$H(k, X_1^n) \leq \log \lfloor n/k \rfloor \text{ since } p_k(w, X_1^n) \geq \lfloor n/k \rfloor^{-1}.$$

For a fixed block length k and a stationary ergodic process, plug-in estimator is consistent and asymptotically unbiased:

 $\lim_{n \to \infty} H(k, X_1^n) = H(k) \text{ almost surely,}$ $\lim_{n \to \infty} \mathbb{E} H(k, X_1^n) = H(k).$

Can we estimate the entropy rate $h = \lim_{n \to \infty} H(k)/k$ if we let $k \to \infty$? What n = n(k) should we choose? Plug-in estimator 000●00 The number of distinct blocks

Open problems 0

A result by Marton and Shields (1994)

For the variational distance

$$|\boldsymbol{p}-\boldsymbol{q}|:=\sum_{\boldsymbol{w}}|\boldsymbol{p}(\boldsymbol{w})-\boldsymbol{q}(\boldsymbol{w})|\,,$$

we have

$$\lim_{k\to\infty}\left|p_k-p_k(\cdot,X_1^{n(k)})\right|=0,$$

if we put $n(k) \ge 2^{k(h+\epsilon)}$ for: IID processes, irreducible Markov chains, functions of irreducible Markov chains, ψ -mixing processes, and weak Bernoulli processes.

This result suggests that sample size $n(k) \approx 2^{k(h+\epsilon)}$ may be sufficient for estimation of block entropy H(k).

Our result

Theorem

Let $(X_i)_{i=-\infty}^{\infty}$ be a stationary ergodic process over a finite alphabet X. For any $\epsilon > 0$ and $n(k) \ge 2^{k(h+\epsilon)}$, we have

$$\lim_{k \to \infty} \mathbb{E} H(k, X_1^{n(k)})/k = h,$$

$$\lim_{k \to \infty} \inf H(k, X_1^{n(k)})/k = h \text{ a.s.},$$

$$\forall_{\eta > 0} \lim_{k \to \infty} P\left(H(k, X_1^{n(k)})/k - h > \eta\right) = 0.$$

This result is established using source coding in a more general setting than Marton and Shields (1994).

Let $D(k, X_1^n)$ be the number of distinct blocks of length k contained in the sample X_1^n . Formally,

$$D(k, X_1^n) = \left| \left\{ w \in \mathbb{X}^k : \exists_{i \in 1, \dots, \lfloor n/k \rfloor} X_{(i-1)k+1}^{ik} = w \right\} \right|.$$

Quantity

$$\begin{split} \mathcal{K}(k, X_1^n) &= 2\log k + \frac{n}{k} \left(H(k, X_1^n) + 2 \right) + \\ &+ 3k \log |\mathbb{X}| \left(D(k, X_1^n) + 1 \right) \end{split}$$

is an upper bound for the length of a k-block code for X_1^n .

Observation: $K(k, X_1^n) \ge nh$ so $H(k, X_1^{n(k)})/k \to h$ if the number of distinct blocks $D(k, X_1^{n(k)})$ grows sufficiently slow.

 Title
 Plug-in estimator
 The number of distinct blocks
 Open problems

 A new upper bound for the number of distinct blocks
 0
 0

By the Markov inequality,

$$\mathbb{E} D(k, X_1^n) \leq \sum_{w \in \mathbb{X}^k} \min \left[1, \mathbb{E} \left(\sum_{i=1}^{n/k} \mathbb{1} \left\{ X_{(i-1)k+1}^{i+k} = w \right\} \right) \right]$$
$$= \sum_{w \in \mathbb{X}^k} \min \left[1, \frac{n}{k} P(X_1^k = w) \right].$$

Putting $\sigma(y) = \min [exp(y), 1]$,

$$egin{aligned} &rac{k}{n}\mathbb{E}\,D(k,X_1^n) \leq \mathbb{E}\,\sigma\left(-\log P(X_1^k) - \lograc{n}{k}
ight) \ &\leq rac{1}{m} + \left(1 - rac{1}{m}
ight)\sigma\left(mH(X_1^k) - \lograc{n}{k}
ight). \end{aligned}$$

 \mathcal{I} — shift-invariant algebra.

Theorem

For a stationary process $(X_i)_{i=-\infty}^{\infty}$, natural numbers p and k, n = pk, and a real number $m \ge 1$,

$$\frac{H(X_1^n)}{n} - \frac{H(X_1^k|\mathcal{I})}{k} \leq \frac{2}{k} + \frac{2}{n}\log k + 3\log |\mathbb{X}| \times \\ \times \left(\frac{1}{m} + \left(1 - \frac{1}{m}\right)\sigma\left(mH(X_1^k|\mathcal{I}) - \log\frac{n}{k}\right) + \frac{k}{n}\right),$$

where $\sigma(y) = \min(\exp(y), 1)$.

The idea of the proof:

$$\frac{H(X_1^n)}{n} - \frac{H(X_1^k|\mathcal{I})}{k} \leq \mathbb{E}\left[\frac{K(k,X_1^n)}{n} - \frac{H(k,X_1^n)}{k}\right].$$

Does the equality

$$\lim_{k\to\infty} H(k, X_1^{n(k)})/k = h \text{ a.s.}$$

hold true in some cases?

What happens for $\lim_{k\to\infty} k^{-1} \log n(k) = h$? Can we set n(k) equal to some random stopping time, such as

$$n(k)=2^{\kappa(X_1^k)},$$

where $K(X_1^k)$ is a length of a universal code for X_1^k ?

The plug-in estimator is not optimal in the IID case. Can we propose a better estimator of the entropy rate for an arbitrary ergodic process?

www.ipipan.waw.pl/~ldebowsk