
REDUNDANCY AND MUTUAL INFORMATION

A string is denoted xkj := (xj, xj+1, ..., xk). The prefix-free Kolmogorov complexity is K(u)
and algorithmic mutual information is J(u, v) := K(u) + K(v) −K(u, v). The Shannon
entropy is H(X) := E [− logP (X)], quantity EX being the expectation of X.

The Hilberg exponent is hilb
n→∞

S(n) :=

[
lim sup
n→∞

logS(n)

logn

]
+

, so hilb
n→∞

nβ = β if β ≥ 0.

For a discrete one-sided stochastic process (Xi)i∈N, we consider conditions:

(A) The complexity rate h := lim
n→∞

EK(Xn
1 )/n exists and hilb

n→∞

[
hn−H(Xn

1 )
]

= 0.

(B) The complexity does not decrease in time: EK(Xn
1 ) ≤ EK(X2n

n+1).

(C) The inverse complexity rate is finite, lim sup
n→∞

E
n

K(Xn
1 )
<∞. Thus h > 0 for (A).

(D) The alphabet is finite: Xi : Ω→ {a1, a2, ..., aD}, where D ∈ N.

Conditions (A) and (B) are satisfied by any stationary process with (D). For (A) and (B),

hilb
n→∞

[
EK(Xn

1 )− hn
]
≤ hilb

n→∞
E J(Xn

1 ;Xn
n+1). (1)

Condition hilb
n→∞

E J(Xn
1 ;Xn

n+1) > 0 is called the Hilberg condition, after Hilberg [8].

SANTA FE PROCESSES

The formal concept of facts can be most easily understood on the example of a certain stationary
ergodic process over a countably infinite alphabet called a Santa Fe process [2]. Let (Ki)i∈N be
an IID process in natural numbers with Zipf’s distribution

P (Ki = k) =
k−α

ζ(α)
, k ∈ N, α > 1, ζ(α) :=

∞∑
k=1

k−α. (2)

Moreover, let (zk)k∈N be an algorithmically random sequence, i.e., K(zk1) ≥ k − c for a
certain constant c < ∞ and all lengths k ∈ N. In the following, bits zk will be called facts.
Then the Santa Fe process (Xi)i∈N is a sequence of pairs

Xi = (Ki, zKi
). (3)

The Santa Fe process is a model of a text that consists of random statements of form „the k-th fact
equals zk”. These statements are non-contradictory, namely, if statements Xi and Xj describe
the same fact (Ki = Kj) then they assert the same value of this fact (zKi

= zKj
). Moreover,

facts zk are independent (the complexity of their concatenation is the highest), elementary
(they assume only two distinct values), and persistent (described faithfully at any time instant i).

FACTS AND REDUNDANCY

We say that a finite text xn1 describes first l facts of a fixed sequence (zk)k∈N by means of a
function g if l+1 = Ug(x

n
1 ; z∞1 ) := min

{
k ∈ N : g(k, xn1) 6= zk

}
. For a Santa Fe process,

the expected number of initial facts described by a random text Xn
1 grows as a power law

hilb
n→∞

EUg(X
n
1 ; z∞1 ) = 1/α ∈ (0, 1). (4)

In general, for any stochastic process (Xi)i∈N with (A), any algorithmically random sequence
(zk)k∈N, and any computable function g, we have

hilb
n→∞

EUg(X
n
1 ; z∞1 ) ≤ hilb

n→∞

[
EK(Xn

1 )− hn
]
. (5)

Processes (Xi)i∈N with hilb
n→∞

EUg(X
n
1 ; z∞1 ) > 0, called perigraphic, are incomputable.

WORDS AND MUTUAL INFORMATION

Consider the estimator of the Markov order of the process defined as

M(xn1) := min
{
k ≥ 0 : − logLk(x

n
1) ≤ K(xn1)

}
, (6)

where K(xn1) is the Kolmogorov complexity and Lk(xn1) is the maximum likelihood,

Lk(x
n
1) := maxQ

∏n
i=k+1Q(xi|xi−1

i−k), Q(xi|xi−1
i−k) ≥ 0,

∑
xi
Q(xi|xi−1

i−k) = 1. (7)

Function M(xn1) is a consistent estimator of the Markov order. Namely, for any stationary
ergodic process (Xi)i∈N with (D) we have lim

n→∞
M(Xn

1 ) = M almost surely, where

M := inf
{
k ≥ 0 : P (Xn

k+1|X
k
1 ) =

∏n
i=k+1P (Xi|Xi−1

i−k) for all n > k
}
. (8)

A proxy for the number of words is the subword complexity of the Markov order estimate

V (xn1) := V (M(xn1)|xn1), V (k|xn1) := #
{
xi+ki+1 : 0 ≤ i ≤ n− k

}
. (9)

For any stochastic process (Xi)i∈N that satisfies conditions (C) and (D), we have

hilb
n→∞

E J(Xn
1 ;Xn

n+1) ≤ hilb
n→∞

EV (Xn
1 ). (10)

Condition hilb
n→∞

EV (Xn
1 ) > 0 resembles Herdan-Heaps’ law for words.

Introduction

Several recent large-scale computational experiments in statistical language mod-
eling reported power-law tails of learning curves [10, 7, 9, 5, 6, 11]. Namely,
the difference between the cross entropy rate of the statistical language model
and the entropy rate of natural language decays as a power law with the amount
of training data. This is equivalent to a power-law growth of mutual informa-
tion between increasing blocks of text—the first observation thereof attributed
to Hilberg [8], see also [1]. This power-law growth occurs for languages as di-
verse as English, French, Russian, Chinese, Korean, and Japanese. Moreover,
we observe a universal language-independent value of the power-law exponent:
the mutual information between two blocks of length n is proportional to n0.8.

We advertise some mathematical theory of this phenomenon that we have been
developing for several years. Our results were resumed in the recently published
book [3] and the subsequent article [4].

The basic theory of power-law-tailed learning curves consists in furnishing the
proof of a theorem of form:

The number of distinct words used in a finite text is roughly
greater than the number of independent elementary

persistent facts described in this text.
We call this sort of a statement a theorem about facts and words. These theo-
rems come into a few distinct flavors and can be proved easily, paying a certain
attention to the formal understanding of the concepts of a fact and of a word.

Theorems about facts and words are an impossibility result that pertains to a
general communication system. This result seems paradoxical since we might
think that combining words we may express many more independent facts.

From a mathematical point of view, theorems about facts and words combine:

• Zipf’s and Herdan-Heaps’ laws for word frequency distributions,
• universal coding based on grammars and on normalized maximum likelihood,
• consistent (hidden) Markov order estimators,
• the concept of infinite excess entropy,
• the ergodic theorem and the ergodic decomposition,
• Kolmogorov complexity and algorithmic randomness.

Can theorems about facts and words be applied to natural language, computer
programs, DNA, or music? Are there other perigraphic processes besides Santa
Fe processes? Several related open questions were stated in [3] and [4].
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