Hilberg Exponents: New Measures of Long Memory in the Process

Łukasz Dębowski Idebowsk@ipipan.waw.pl

Institute of Computer Science Polish Academy of Sciences

12th November 2015, Gifu

Title 0	Introduction •000000	Relating $\gamma_{ m P}^{\pm}$ and $\delta_{ m P}^{\pm}$ occococococ	Relating δ_{P}^+ and δ_{R}^+ 000	Evaluating $\gamma^{\pm}_{ extsf{Q}}$ and $\delta^{\pm}_{ extsf{Q}}$ 0000000	Conclusion

1 Introduction

- (2) Relating $\gamma^{\pm}_{
 m P}$ and $\delta^{\pm}_{
 m P}$
- 3 Relating δ_{P}^+ and δ_{R}^+
- (4) Evaluating $\gamma^{\pm}_{\mathsf{Q}}$ and $\delta^{\pm}_{\mathsf{Q}}$
- 5 Conclusion

Motivation: Hilberg's hypothesis

Introduction

Relating $\gamma_{\rm P}^{\pm}$ and $\delta_{\rm P}^{\pm}$

• According to a hypothesis by Hilberg (1990), the mutual information between two adjacent blocks of text in natural language grows like a power of the block length.

Relating $\delta_{\mathbf{p}}^+$ and $\delta_{\mathbf{p}}^+$

Evaluating γ^{\pm}_{0} and δ^{\pm}_{0}

Conclusion

- This property differentiates natural language from
 k-parameter sources, for which the mutual information is proportional to the logarithm of the block length.
- In 2011, we constructed processes, called Santa Fe processes, which feature the power-law growth of mutual information.
- In 2011, we also showed that Hilberg's hypothesis implies Herdan's law, some version of Zipf's law.
- In 2014, we showed experimentally that for a PPM-like code the estimates of mutual information grow as a power law for natural language and logarithmically for a **k**-parameter source.

P — a code (incomplete measure), i.e., it satisfies P(x₁ⁿ) ≥ 0 and the Kraft inequality ∑_{x₁ⁿ} P(x₁ⁿ) ≤ 1.
 For P (or for Q), we define the pointwise mutual information

$$I^{\mathsf{P}}(n) = -\log\mathsf{P}(\mathsf{X}^{0}_{-n+1}) - \log\mathsf{P}(\mathsf{X}^{n}_{1}) + \log\mathsf{P}(\mathsf{X}^{n}_{-n+1}).$$

In the formula log stands for the binary logarithm.

Define the positive logarithm

$$\log^+ x = \begin{cases} \log(x+1), & x \geq 0, \\ 0, & x < 0. \end{cases}$$

For a code \mathbf{P} we introduce

$$\begin{split} \gamma_{\mathsf{P}}^{+} &= \limsup_{\mathsf{n} \to \infty} \frac{\mathsf{log}^{+} \, \mathsf{I}^{\mathsf{P}}(\mathsf{n})}{\mathsf{log}\,\mathsf{n}}, \qquad \gamma_{\mathsf{P}}^{-} &= \liminf_{\mathsf{n} \to \infty} \frac{\mathsf{log}^{+} \, \mathsf{I}^{\mathsf{P}}(\mathsf{n})}{\mathsf{log}\,\mathsf{n}}, \\ \delta_{\mathsf{P}}^{+} &= \limsup_{\mathsf{n} \to \infty} \frac{\mathsf{log}^{+} \, \mathsf{E}_{\mathsf{Q}} \, \mathsf{I}^{\mathsf{P}}(\mathsf{n})}{\mathsf{log}\,\mathsf{n}}, \quad \delta_{\mathsf{P}}^{-} &= \liminf_{\mathsf{n} \to \infty} \frac{\mathsf{log}^{+} \, \mathsf{E}_{\mathsf{Q}} \, \mathsf{I}^{\mathsf{P}}(\mathsf{n})}{\mathsf{log}\,\mathsf{n}}. \end{split}$$

We call these: $\gamma_{\mathbf{p}}^+$ —the upper random Hilberg exponent, $\gamma_{\mathbf{p}}^-$ —the lower random Hilberg exponent, $\delta_{\mathbf{p}}^+$ —the upper expected Hilberg exponent, and $\delta_{\mathbf{p}}^-$ —the lower expected Hilberg exponent.

By definition,

$$egin{aligned} &\gamma_{\mathsf{P}}^+ \geq \gamma_{\mathsf{P}}^- \geq \mathbf{0}, \ &\delta_{\mathsf{P}}^+ \geq \delta_{\mathsf{P}}^- \geq \mathbf{0}. \end{aligned}$$

- For **P** = **Q**, Hilberg exponents quantify some sort of long-range non-Markovian dependence in the process.
- For an IID process or a hidden Markov process with a finite number of hidden states, E_Q I^Q(n) ≤ D so δ[±]_Q = 0.
- For a **k**-parameter source, $E_Q I^Q(n) \propto k \log n$, so $\delta_Q^{\pm} = 0$.
- If $E_Q I^Q(n) \propto n^{\beta}$ where $\beta \in [0, 1]$ then $\delta_Q^{\pm} = \beta$.
- There exist some non-Markovian but mixing sources, being a generalization of Santa Fe processes, for which δ[±]_Ω ∈ (0, 1).

Inequalities

$$egin{aligned} &\gamma_{\mathsf{P}}^{-} \leq \gamma_{\mathsf{P}}^{+} \leq 1, \ &\delta_{\mathsf{P}}^{-} \leq \delta_{\mathsf{P}}^{+} \leq 1 \end{aligned}$$

hold in the following cases:

- For P = Q by the Shannon-McMillan-Breiman theorem and by stationarity.
- Por P being universal almost surely and in expectation, that is if for k(n) and l(n) being nondecreasing functions of n, where k(n) + l(n) → ∞ we have

$$\lim_{n\to\infty}\frac{1}{k(n)+l(n)+1}\left[-\log \mathsf{P}(\mathsf{X}_{-k(n)}^{l(n)})\right]=h_{\mathsf{Q}},$$

where $\boldsymbol{h}_{\boldsymbol{Q}}$ is the entropy rate of measure $\boldsymbol{Q},$ and if

$$\lim_{n \to \infty} \frac{1}{\mathsf{k}(n) + \mathsf{l}(n) + 1} \, \mathsf{E}_{\mathsf{Q}} \left[-\log \mathsf{P}(\mathsf{X}_{-\mathsf{k}(n)}^{\mathsf{l}(n)}) \right] = \mathsf{E}_{\mathsf{Q}} \, \mathsf{h}_{\mathsf{Q}}.$$

There are many Hilberg exponents, for different measures and for different codes. Seeking for some order, we may look for results of three kinds:

- For a fixed code **P** and a measure **Q**, we relate the random exponents $\gamma_{\mathbf{P}}^{\pm}$ and the expected exponents $\delta_{\mathbf{P}}^{\pm}$.
- **②** For two codes **P** and **R**, we relate the exponents of a fixed kind, say $\delta_{\mathbf{P}}^+$ and $\delta_{\mathbf{R}}^+$ for some measure **Q**.
- For a fixed code **P** and a measure **Q**, we directly evaluate exponents $\gamma_{\mathbf{P}}^{\pm}$ and $\delta_{\mathbf{P}}^{\pm}$.

In the following we will present some results of these three sorts.

- 2 Relating $\gamma_{
 m P}^{\pm}$ and $\delta_{
 m P}^{\pm}$
- 3 Relating δ_{P}^+ and δ_{R}^+
- (4) Evaluating $\gamma^{\pm}_{\mathsf{Q}}$ and $\delta^{\pm}_{\mathsf{Q}}$
- 5 Conclusion

- The original idea of the SMB theorem was to relate the asymptotic growth of pointwise and expected entropies for an ergodic process **Q** with **P** = **Q**.
- In contrast, relating the random Hilberg exponents $\gamma_{\mathbf{Q}}^{\pm}$ and the expected Hilberg exponents $\delta_{\mathbf{Q}}^{\pm}$ means relating the speed of growth of the pointwise and expected mutual informations, which is a subtler effect than the SMB theorem.
- Thus relating $\gamma_{\mathbf{Q}}^{\pm}$ and $\delta_{\mathbf{Q}}^{\pm}$ could be called a "second-order" analogue of the SMB theorem.

For a code **P** with exponent $\delta_{\mathsf{P}}^- > 0$, let us introduce

$$\epsilon_{\mathsf{P}} = \limsup_{\mathsf{n} \to \infty} \frac{\log^{+} \left[\mathsf{Var}_{\mathsf{Q}} \, \mathsf{I}^{\mathsf{P}}(\mathsf{n}) / \, \mathsf{E}_{\mathsf{Q}} \, \mathsf{I}^{\mathsf{P}}(\mathsf{n}) \right]}{\log \mathsf{n}}.$$

Theorem

For an ergodic measure **Q** over a finite alphabet, random Hilberg exponents $\gamma_{\mathbf{Q}}^{\pm}$ are almost surely constant. Moreover, we have **Q**-almost surely

$$egin{aligned} \delta_{\mathsf{Q}}^+ &\geq \gamma_{\mathsf{Q}}^+ \geq \delta_{\mathsf{Q}}^+ - \epsilon_{\mathsf{Q}}, \ \delta_{\mathsf{Q}}^- &\geq \gamma_{\mathsf{Q}}^- \geq \delta_{\mathsf{Q}}^- - \epsilon_{\mathsf{Q}}, \end{aligned}$$

where the left inequalities hold without restrictions, whereas the right inequalities hold for $\delta_{\Omega}^{-} > 0$.

Our theorem can be demonstrated without invoking the ergodic theorem. Instead, we use an auxiliary "Kolmogorov code"

$$\mathsf{S}(\mathsf{x}_1^\mathsf{n}) = 2^{-\mathsf{K}(\mathsf{x}_1^\mathsf{n}|\mathsf{F})},$$

where $K(x_1^n|F)$ is the prefix-free Kolmogorov complexity of a string x_1^n given an object F on an additional infinite tape. The object F can be another string or, here, a definition of measure Q.

Theorem

Consider Kolmogorov code **S** and an ergodic **Q** over a finite alphabet \mathbb{X} . Exponents $\gamma_{\mathbf{S}}^-$ and $\gamma_{\mathbf{S}}^+$ are **Q**-almost surely constant.

The idea of the proof:

2 Hence $\gamma_{\rm S}^{\pm}$ are shift invariant.

• Hence $\gamma_{\rm S}^{\pm}$ are constant on ergodic sources.

Consider Kolmogorov code **S**. For $I^{S}(n) + B \ge 1$, define

$$\begin{split} \zeta_{\mathsf{S}}^{+} &= \limsup_{\mathsf{n} \to \infty} \frac{\log^{+} \left[\mathsf{E}_{\mathsf{Q}}(\mathsf{I}^{\mathsf{S}}(\mathsf{n}) + \mathsf{B})^{-1}\right]^{-1}}{\log \mathsf{n}}, \\ \zeta_{\mathsf{S}}^{-} &= \liminf_{\mathsf{n} \to \infty} \frac{\log^{+} \left[\mathsf{E}_{\mathsf{Q}}(\mathsf{I}^{\mathsf{S}}(\mathsf{n}) + \mathsf{B})^{-1}\right]^{-1}}{\log \mathsf{n}}. \end{split}$$

These will be called inverse expected Hilberg exponents.

Theorem

Consider Kolmogorov code **S** and a stationary measure **Q**. Then: • $\delta_{S}^{+} \ge \gamma_{S}^{+}$ **Q**-almost surely and ess sup_Q $\gamma_{S}^{+} \ge \zeta_{S}^{+}$. • $\delta_{S}^{-} \ge \text{ess inf}_{Q} \gamma_{S}^{-}$ and $\gamma_{S}^{-} \ge \zeta_{S}^{-}$ **Q**-almost surely.

Corollary

For an ergodic measure **Q** over a finite alphabet, equalities $\gamma_{\rm S}^+ = \operatorname{ess\,sup}_{\rm Q} \gamma_{\rm S}^+$ and $\gamma_{\rm S}^- = \operatorname{ess\,inf}_{\rm Q} \gamma_{\rm S}^-$ hold **Q**-almost surely. Hence, **Q**-almost surely we have

$$\delta_{\mathsf{S}}^+ \ge \gamma_{\mathsf{S}}^+ \ge \zeta_{\mathsf{S}}^+, \ \delta_{\mathsf{S}}^- \ge \gamma_{\mathsf{S}}^- \ge \zeta_{\mathsf{S}}^-.$$

Theorem

Consider Kolmogorov code **S** with $\mathbf{F} = \mathbf{Q}$, where **Q** is a stationary measure. Then:

•
$$\delta_{S}^{-} = \delta_{Q}^{-}$$
 and $\delta_{S}^{+} = \delta_{Q}^{+}$.
• $\gamma_{S}^{-} = \gamma_{Q}^{-}$ and $\gamma_{S}^{+} = \gamma_{Q}^{+}$ Q-almost surely.

(By Shannon-Fano coding and Barron's inequality.)

For a code **P** with exponent $\delta_{\mathsf{P}}^- > 0$, let us introduce

$$\epsilon_{\mathsf{P}} = \limsup_{\mathsf{n} \to \infty} \frac{\mathsf{log}^+ \left[\mathsf{Var}_{\mathsf{Q}} \: \mathsf{I}^{\mathsf{P}}(\mathsf{n}) / \: \mathsf{E}_{\mathsf{Q}} \: \mathsf{I}^{\mathsf{P}}(\mathsf{n})\right]}{\mathsf{log} \: \mathsf{n}}$$

Theorem

Consider Kolmogorov code **S** and a stationary measure **Q**. If $\delta_{\mathsf{S}}^- > \mathbf{0}$ then $\zeta_{\mathsf{S}}^+ \ge \delta_{\mathsf{S}}^+ - \epsilon_{\mathsf{S}}$ and $\zeta_{\mathsf{S}}^- \ge \delta_{\mathsf{S}}^- - \epsilon_{\mathsf{S}}$.

(By Markov inequality.)

Theorem

Consider Kolmogorov code **S** with $\mathbf{F} = \mathbf{Q}$, where **Q** is a stationary measure. If $\delta_{\mathbf{Q}} > \mathbf{0}$ then $\epsilon_{\mathbf{S}} = \epsilon_{\mathbf{Q}}$.

(By Shannon-Fano coding and Barron's inequality.)

Theorem

For an ergodic measure Q over a finite alphabet, random Hilberg exponents γ_Q^\pm are almost surely constant. Moreover, we have Q-almost surely

$$egin{aligned} \delta^+_{\mathbf{Q}} \geq \gamma^+_{\mathbf{Q}} \geq \delta^+_{\mathbf{Q}} - \epsilon_{\mathbf{Q}}, \ \delta^-_{\mathbf{Q}} \geq \gamma^-_{\mathbf{Q}} \geq \delta^-_{\mathbf{Q}} - \epsilon_{\mathbf{Q}}, \end{aligned}$$

where the left inequalities hold without restrictions, whereas the right inequalities hold for $\delta_{\Omega}^{-} > 0$.

Introduction

- 2 Relating $\gamma^{\pm}_{
 m P}$ and $\delta^{\pm}_{
 m P}$
- 3 Relating δ_{P}^+ and δ_{R}^+
- 4 Evaluating $\gamma^{\pm}_{\mathsf{Q}}$ and $\delta^{\pm}_{\mathsf{Q}}$

5 Conclusion

Denote $H^{P}(n) := -\log P(X_{1}^{n})$. Suppose that

$$\lim_{n\to\infty}\frac{1}{n}\,\mathsf{E}_{\mathsf{Q}}\,\mathsf{H}^{\mathsf{P}}(\mathsf{n})=\mathsf{E}_{\mathsf{Q}}\,\mathsf{h}_{\mathsf{Q}}$$

and suppose that $E_Q \, l^P(n) \geq -D$ for a certain D>0. Then

$$\delta_{\mathsf{P}}^{+} = \limsup_{\mathsf{n} \to \infty} \frac{\mathsf{log}^{+} \mathsf{E}_{\mathsf{Q}} \, \mathsf{I}^{\mathsf{P}}(\mathsf{n})}{\mathsf{log} \, \mathsf{n}} = \limsup_{\mathsf{n} \to \infty} \frac{\mathsf{log}^{+} \mathsf{E}_{\mathsf{Q}} \left[\mathsf{H}^{\mathsf{P}}(\mathsf{n}) - \mathsf{h}_{\mathsf{Q}}\mathsf{n}\right]}{\mathsf{log} \, \mathsf{n}}$$

follows from the telescope sum

$$\mathsf{E}_{\mathsf{Q}}\,\mathsf{H}^{\mathsf{P}}(\mathsf{n})-\mathsf{hn}=\sum_{\mathsf{k}=0}^{\infty}rac{\mathsf{E}_{\mathsf{Q}}\,\mathsf{I}^{\mathsf{P}}(2^{\mathsf{k}}\mathsf{n})}{2^{\mathsf{k}+1}}.$$

A hierarchy of approximations of block entropy

•
$$R(X_1^n) = 2^{-|C(X_1^n)|}$$
 — a computable universal code.

Relating $\delta_{\mathbf{p}}^+$ and $\delta_{\mathbf{p}}^+$

Evaluating $\gamma_{\rm Q}^{\pm}$ and $\delta_{\rm Q}^{\pm}$

Conclusion

Q(X₁ⁿ) — the underlying measure.

Relating $\gamma^{\pm}_{
m P}$ and $\delta^{\pm}_{
m P}$

- $E(X_1^n) = Q(X_1^n | \mathcal{I})$ the random ergodic measure.
- **3** $H^{\mathsf{T}}(n) = H^{\mathsf{T}}(n; X_1^{n(|\mathbb{X}|+\epsilon)^n})$ the plugin entropy estimator.

We have

Introduction

$E_Q\,H^R(n)\geq E_Q\,H^P(n)\geq E_Q\,H^Q(n)\geq E_Q\,H^E(n)\geq E_Q\,H^T(n),$

whereas the common rate of these is $E_Q h_Q$. Hence

$$\delta_{\mathsf{R}}^+ \ge \delta_{\mathsf{P}}^+ \ge \delta_{\mathsf{Q}}^+ \ge \delta_{\mathsf{E}}^+ \ge \delta_{\mathsf{T}}^+.$$

The difference $\delta_{\mathsf{P}}^+ - \delta_{\mathsf{E}}^+$ can be arbitrarily close to 1.

Title 0	Introduction 0000000	Relating $\gamma_{ m P}^{\pm}$ and $\delta_{ m P}^{\pm}$ occoccccc	Relating δ_{P}^+ and δ_{R}^+	Evaluating γ_{Q}^{\pm} and δ_{Q}^{\pm} $_{igodot 000000}$	Conclusion

Introduction

- 2 Relating $\gamma^{\pm}_{
 m P}$ and $\delta^{\pm}_{
 m P}$
- 3 Relating δ_{P}^+ and δ_{R}^+
- $\textcircled{4} \quad \text{Evaluating } \gamma_{\mathsf{Q}}^{\pm} \text{ and } \delta_{\mathsf{Q}}^{\pm}$

5 Conclusion

$\begin{array}{c|cccc} \hline \text{Title} & \text{Introduction} & \text{Relating } \gamma_{p}^{\pm} \text{ and } \delta_{p}^{\pm} & \text{Relating } \delta_{p}^{\pm} \text{ and } \delta_{R}^{\pm} & \text{Evaluating } \gamma_{Q}^{\pm} \text{ and } \delta_{Q}^{\pm} & \text{Conclusion} \\ \hline \text{Operator operator oper$

- For IID processes, $\delta_{\mathbf{Q}}^{\pm} = \mathbf{0}$ and hence $\gamma_{\mathbf{Q}}^{\pm} = \mathbf{0}$ since there is no dependence in the process.
- For Markov processes over a finite alphabet and hidden Markov processes with a finite number of hidden states, we also have $\delta_{\mathbf{Q}}^{\pm} = \mathbf{0}$ and hence $\gamma_{\mathbf{Q}}^{\pm} = \mathbf{0}$, since the expected mutual information is bounded for measures of those processes by the data-processing inequality.

Some simple example of a process with unbounded mutual information is the mixture of Bernoulli processes over the alphabet $\mathbb{X} = \{0, 1\}$, which we will call the mixture Bernoulli process:

$$Q(x_1^n) = \int_0^1 \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i} d\theta = \frac{1}{n+1} {\binom{n}{\sum_{i=1}^n x_i}}^{-1}.$$

$$T_n = \sum_{i=-n+1}^0 X_i, \qquad \qquad S_n = \sum_{i=1}^n X_i$$

Theorem

For the mixture Bernoulli process,
$$\delta^{\pm}_{\mathbf{Q}} = \gamma^{\pm}_{\mathbf{Q}} = \mathbf{0}$$
.

Proof: X_{-n+1}^0 and X_1^n are independent given T_n and S_n . Hence

$$I^Q(n) = -\log \frac{Q(T_n)Q(S_n)}{Q(T_n,S_n)}$$

so $\mathsf{E}_Q \: \mathsf{I}^Q(n) = \mathsf{I}_Q(\mathsf{T}_n;\mathsf{S}_n)$. Variable S_n assumes under Q each value in $\{0,1,...,n\}$ with equal probability $(n+1)^{-1}$. Hence $0 \leq \mathsf{I}_Q(\mathsf{T}_n;\mathsf{S}_n) \leq \mathsf{H}_Q(\mathsf{S}_n) = \mathsf{log}(n+1)$, which implies the claim.

The Santa Fe process $(X_i)_{i\in\mathbb{Z}}$ is a sequence of variables

$$X_i = (K_i, Z_{K_i}), \quad$$

where processes $(K_i)_{i\in\mathbb{Z}}$ and $(Z_k)_{k\in\mathbb{N}}$ with

$$\begin{split} & \mathsf{Q}(\mathsf{Z}_\mathsf{k}=0) = \mathsf{Q}(\mathsf{Z}_\mathsf{k}=1) = 1/2, \qquad (\mathsf{Z}_\mathsf{k})_{\mathsf{k}\in\mathbb{N}}\sim\mathsf{IID}, \\ & \mathsf{Q}(\mathsf{K}_\mathsf{i}=\mathsf{k}) = \mathsf{k}^{-1/\beta}/\zeta(\beta^{-1}), \qquad (\mathsf{K}_\mathsf{i})_{\mathsf{i}\in\mathbb{Z}}\sim\mathsf{IID}, \end{split}$$

where $\beta \in (0, 1)$ is a parameter and $\zeta(x) = \sum_{k=1}^{\infty} k^{-x}$.

Variable $Y = \sum_{k=1}^{\infty} 2^{-k} Z_k$ could be considered a random real parameter of the process but the distribution of the process $(X_i)_{i \in \mathbb{Z}}$ is not a differentiable function of this parameter.

So, the Santa Fe process is not a 1-parameter source.

Theorem

For the Santa Fe process,
$$\delta_{\mathbf{Q}}^{\pm} = \gamma_{\mathbf{Q}}^{\pm} = \beta$$
.

Consider a sequence of numbers $(a_k)_{k\in\mathbb{N}}$ where $a_k\in\{0,1\}.$ Let

 $X_i = (K_i, Y_{K_i}), \quad$

where $Y_k = a_k Z_k$, whereas processes $(K_i)_{i \in \mathbb{Z}}$ and $(Z_k)_{k \in \mathbb{N}}$ are independent and distributed as for the original Santa Fe process.

Theorem

There exists such a sequence $(a_k)_{k \in \mathbb{N}}$ that for the modified Santa Fe process, we have $\delta_Q^+ = \beta$ and $\delta_Q^- = 0$.

	Title 0	Introduction 0000000	Relating $\gamma_{ m P}^{\pm}$ and $\delta_{ m P}^{\pm}$ occoccccccccccccccccccccccccccccccccc	Relating δ_{P}^+ and δ_{R}^+	Evaluating γ_{Q}^{\pm} and δ_{Q}^{\pm} occocc	Conclusion ●○
--	------------	-------------------------	--	--	---	------------------

Introduction

- (2) Relating $\gamma^{\pm}_{
 m P}$ and $\delta^{\pm}_{
 m P}$
- 3 Relating δ_{P}^+ and δ_{R}^+
- (4) Evaluating $\gamma^{\pm}_{\mathsf{Q}}$ and $\delta^{\pm}_{\mathsf{Q}}$

- We have defined Hilberg exponents the bounding rates of the power-law growth of mutual information in a process.
- There are surprisingly many meaningful Hilberg exponents, for different measures and different codes.
- We have begun sorting out order in this menagerie but surely there are some interesting hard open problems.

www.ipipan.waw.pl/~ldebowsk