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Motivation: Hilberg's hypothesis

According to a hypothesis by Hilberg (1990), the mutual
information between two adjacent blocks of text in natural
language grows like a power of the block length.

This property differentiates natural language from
k-parameter sources, for which the mutual information is
proportional to the logarithm of the block length.

In 2011, we constructed processes, called Santa Fe processes,
which feature the power-law growth of mutual information.

In 2011, we also showed that Hilberg's hypothesis implies
Herdan's law, some version of Zipf's law.
In 2014, we showed experimentally that for a PPM-like code

the estimates of mutual information grow as a power law for
natural language and logarithmically for a k-parameter source.
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Preliminaries

@ X — a countable alphabet,
(R, J, Q) — probability space with Q = X7,
Xk : Q 3 (xi)icz — xx € X — random variables,
Q — a stationary measure (not necessarily ergodic),
X = (Xi)n<i<m — blocks of symbols,
Eq X — expectation,
Varq X — variance.
@ P — a code (incomplete measure), i.e., it satisfies P(x]) > 0
and the Kraft inequality Zx.l. P(x{) <1

For P (or for Q), we define the pointwise mutual information
IP(n) = —log P(X%, . ;) — log P(X]) + log P(X" ).

In the formula log stands for the binary logarithm.
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Hilberg exponents

Define the positive logarithm

log* x = log(x+1), x>0,
0, x < 0.

For a code P we introduce
log* IP(n)

. log* 17 (n)
Yp = limsup =

> = liminf
n— o0 logn ’ R n—co logn
st = logt EqI°(n) __ . logt EqIP(n)
p =limsup—————, 4, =liminf ———,
n—oo logn n—oc0 logn

We call these: 'y;—the upper random Hilberg exponent, «vp —the
lower random Hilberg exponent, 5,;"—the upper expected Hilberg
exponent, and d, —the lower expected Hilberg exponent.
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Basic observations

By definition,

e For P = Q, Hilberg exponents quantify some sort of
long-range non-Markovian dependence in the process.

@ For an IID process or a hidden Markov process with a finite
number of hidden states, Eq 19(n) < D so 63: =0.

o For a k-parameter source, Eq 19(n) o klogn, so 6% = 0.

o If EQ19(n) o n? where 3 € [0, 1] then 6(3& = .

@ There exist some non-Markovian but mixing sources, being a
generalization of Santa Fe processes, for which 53 € (0,1).
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Further simple observations

Inequalities
% < <1,
dp < o5 <1
hold in the following cases:
@ For P = Q — by the Shannon-McMillan-Breiman theorem
and by stationarity.
@ For P being universal almost surely and in expectation, that is
if for k(n) and I(n) being nondecreasing functions of n, where
k(n) 4+ I(n) — oo we have

. I(n)
| —log P(X = hq,
n300 k(n) + I(n) + 1 |~ 1og P(X )] = ha

where hgq is the entropy rate of measure Q, and if

: 1 ) ] _
% ke(m) +1(m) +1 0O |~ 1og P(X,))] = Eaha.
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A research program

There are many Hilberg exponents, for different measures and for
different codes. Seeking for some order, we may look for results of
three kinds:
@ For a fixed code P and a measure Q, we relate the random
exponents ’yf,t and the expected exponents 6f,t.
@ For two codes P and R, we relate the exponents of a fixed
kind, say 6;‘ and 5,‘{' for some measure Q.
© For a fixed code P and a measure Q, we directly evaluate
exponents 'ypi and Jljf.

In the following we will present some results of these three sorts.
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“Second-order” Shannon-McMillan-Breiman theorem

@ The original idea of the SMB theorem was to relate the
asymptotic growth of pointwise and expected entropies for an
ergodic process Q with P = Q.

@ In contrast, relating the random Hilberg exponents 'yét and

the expected Hilberg exponents 6% means relating the speed
of growth of the pointwise and expected mutual informations,
which is a subtler effect than the SMB theorem.

@ Thus relating 'yét and 53: could be called a “second-order”
analogue of the SMB theorem.



Relating vp~ and 8,
00®0000000

Our main result

For a code P with exponent 65 > 0, let us introduce

. log™ [Varq IP(n)/ EqIP(n)]
ep = limsup .
n— o0 logn

Theorem

For an ergodic measure Q over a finite alphabet, random Hilberg
exponents ’yét are almost surely constant. Moreover, we have
Q-almost surely

3§ >4 = 8§ — €q;
dq = 7q = 9q — €qs

where the left inequalities hold without restrictions, whereas the
right inequalities hold for 65 > 0.
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The fundamental idea of the proof

Our theorem can be demonstrated without invoking the ergodic
theorem. Instead, we use an auxiliary “Kolmogorov code”

S(x0) = 2~ KCdIF),

where K(x}|F) is the prefix-free Kolmogorov complexity of a string
x] given an object F on an additional infinite tape. The object F
can be another string or, here, a definition of measure Q.
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The first auxiliary result

Consider Kolmogorov code S and an ergodic Q over a finite
alphabet X. Exponents ~vg and 'y; are Q-almost surely constant.

The idea of the proof:
0 |K(x]|F) — K(x{1}|F)| < Ct.

@ Hence 'yg: are shift invariant.

© Hence 'ygt are constant on ergodic sources.
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Second auxiliary result (via Borel-Cantelli lemma)

Consider Kolmogorov code S. For 15(n) + B > 1, define

log* [Eq(1%(n) + B)~}]

C;‘ = limsup R

n—oco logn
. log® [Eq(1(n) +B) Y]
¢s = liminf .
n—00 |ogn

These will be called inverse expected Hilberg exponents.

Consider Kolmogorov code S and a stationary measure Q. Then:

(1] 6;‘ > 7;' Q-almost surely and ess supq 'y; > C;'.
@ 65 > essinfqrg and vg > (g Q-almost surely.
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A corollary

Corollary

For an ergodic measure Q over a finite alphabet, equalities

~& = ess supq 'y;' and vg = essinfq g hold Q-almost surely.

Hence, Q-almost surely we have
08 > > 45,
og 275 = ¢Gs -
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Third auxiliary result

Theorem

Consider Kolmogorov code S with F = Q, where Q is a stationary
measure. Then:

Q 05 =dq and 6 =8¢
Qv = 76 and 'yg' = 73' Q-almost surely.

(By Shannon-Fano coding and Barron's inequality.)
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Fourth, the last auxiliary result

For a code P with exponent 65 > 0, let us introduce

. log™ [Varq IP(n)/ Eq IP(n)]
ep = limsup .
n— o0 logn

Consider Kolmogorov code S and a stationary measure Q. If
85 > 0 then (§ > 68 —es and (g > b5 — es.

(By Markov inequality.)

Consider Kolmogorov code S with F = Q, where Q is a stationary
measure. If g > 0 then es = eq.

(By Shannon-Fano coding and Barron's inequality.)
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Resuming, our main result

Theorem

For an ergodic measure Q over a finite alphabet, random Hilberg
exponents ’yat are almost surely constant. Moreover, we have
Q-almost surely

58 > > 6 — <o,
dq = 7q = 9q — €a;

where the left inequalities hold without restrictions, whereas the
right inequalities hold for 6o > 0.
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An alternative expression for 63

Denote HP(n) := — log P(X}). Suppose that
li 1 EqHP(n) = Eqh
Jim_—Eq (n) = Eqhq

and suppose that Eq IP(n) > —D for a certain D > 0. Then

e log™ Eq IP(n) . log™ Eq [HP(n) — hqn]
0p = limsup ———— = = limsup
n— o0 logn n—oco logn
follows from the telescope sum
> EQ IP(2kn)

EqH(n) —hn =) St
k=0
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A hierarchy of approximations of block entropy

Q@ R(X}) = 2-lcen] — 5 computable universal code.

@ P(X}) = 27K(X1) — the unconditional Kolmogorov code.
@ Q(XY) — the underlying measure.

Q@ E(XY]) = Q(X}|Z) — the random ergodic measure.

@ H'(n) =HT(n; X;‘”XHE)") — the plugin entropy estimator.
We have

Eq HR(n) > EqHP(n) > EqH%(n) > Eq H¥(n) > EqH'(n),
whereas the common rate of these is Eq hq. Hence
+ + + + +
O0g 2 0p =2 0g = 6 > 07.

The difference J,J{ — 6; can be arbitrarily close to 1.
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@ Evaluating 'yéc and 6%



Memoryless sources and hidden Markov processes

@ For IID processes, 56‘2 = 0 and hence 'yét = 0 since there is
no dependence in the process.

@ For Markov processes over a finite alphabet and hidden
Markov processes with a finite number of hidden states, we
also have 6% = 0 and hence 'yg = 0, since the expected
mutual information is bounded for measures of those
processes by the data-processing inequality.



Mixture Bernoulli process

Some simple example of a process with unbounded mutual
information is the mixture of Bernoulli processes over the alphabet
X = {0, 1}, which we will call the mixture Bernoulli process:

>, = ! n T
Q ny _ / @2 i=1 % (1 — Q)" Zi=1%id9 = ( n ) .
(xl) 0 ( ) n+1 Zi 1 Xi
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Mixture Bernoulli process (continued)

0 n
T, = Z X, sn=2xi.
i=—n+1 i=1

For the mixture Bernoulli process, 63: = ’yét =0. \

Proof: XO_n+1 and X7 are independent given T, and S,,. Hence
Q(Tn)Q(Sn)

Q(Tn, Sn)
so Eq 19(n) = Ig(Tx; Sn). Variable S, assumes under Q each

value in {0, 1, ...,n} with equal probability (n + 1)~1. Hence
0 < 1g(Ta; Sn) < Hq(Sn) = log(n+ 1), which implies the claim.

19(n) = — log
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Santa Fe process

The Santa Fe process (X;)icz is a sequence of variables
Xi = (Ki, Zk;),
where processes (K;)icz and (Zk)ken with
Q(Z«=0)=Q(Z« =1)=1/2,  (Z)ken ~ IID,
Q(Ki = k) =k~ P/¢(B7), (Ki)iez ~ 11D,

where 3 € (0, 1) is a parameter and ¢{(x) = Y o, k™*.

Variable Y = "2, 27kZ, could be considered a random real
parameter of the process but the distribution of the process
(Xi)iez is not a differentiable function of this parameter.

So, the Santa Fe process is not a 1-parameter source.



Santa Fe process (continued)

For the Santa Fe process, 63 = 'yét = 3.




A process with 63 #Z 0q

Consider a sequence of numbers (ak)ken where ax € {0, 1}. Let

X; = (Ki, Yk,),

where Yy = axZy, whereas processes (Ki)icz and (Zx)ken are
independent and distributed as for the original Santa Fe process.

There exists such a sequence (ak)ken that for the modified
Santa Fe process, we have 63 = 3 and dq =0.
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Conclusion

@ We have defined Hilberg exponents — the bounding rates of
the power-law growth of mutual information in a process.

@ There are surprisingly many meaningful Hilberg exponents,
for different measures and different codes.

@ We have begun sorting out order in this menagerie
but surely there are some interesting hard open problems.
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