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Motivation: Hilberg’s hypothesis

According to a hypothesis by Hilberg (1990), the mutual
information between two adjacent blocks of text in natural
language grows like a power of the block length.

This property differentiates natural language from
k-parameter sources, for which the mutual information is
proportional to the logarithm of the block length.

In 2011, we constructed processes, called Santa Fe processes,
which feature the power-law growth of mutual information.

In 2011, we also showed that Hilberg’s hypothesis implies
Herdan’s law, some version of Zipf’s law.

In 2014, we showed experimentally that for a PPM-like code
the estimates of mutual information grow as a power law for
natural language and logarithmically for a k-parameter source.
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Preliminaries

1 X — a countable alphabet,
(Ω,J ,Q) — probability space with Ω = XZ,
Xk : Ω 3 (xi)i∈Z 7→ xk ∈ X — random variables,
Q — a stationary measure (not necessarily ergodic),
Xmn = (Xi)n≤i≤m — blocks of symbols,
EQ X — expectation,
VarQ X — variance.

2 P — a code (incomplete measure), i.e., it satisfies P(xn1) ≥ 0
and the Kraft inequality

∑
xn1
P(xn1) ≤ 1.

For P (or for Q), we define the pointwise mutual information

IP(n) = − log P(X0−n+1)− log P(Xn1) + log P(Xn−n+1).

In the formula log stands for the binary logarithm.
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Hilberg exponents

Define the positive logarithm

log+ x =

{
log(x+ 1), x ≥ 0,
0, x < 0.

For a code P we introduce

γ+
P = lim sup

n→∞

log+ IP(n)

log n
, γ−P = lim inf

n→∞

log+ IP(n)

log n
,

δ+
P = lim sup

n→∞

log+ EQ IP(n)

log n
, δ−P = lim inf

n→∞

log+ EQ IP(n)

log n
.

We call these: γ+
P—the upper random Hilberg exponent, γ−P —the

lower random Hilberg exponent, δ+
P—the upper expected Hilberg

exponent, and δ−P —the lower expected Hilberg exponent.
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Basic observations

By definition,

γ+
P ≥ γ

−
P ≥ 0,

δ+
P ≥ δ

−
P ≥ 0.

For P = Q, Hilberg exponents quantify some sort of
long-range non-Markovian dependence in the process.

For an IID process or a hidden Markov process with a finite
number of hidden states, EQ IQ(n) ≤ D so δ±Q = 0.

For a k-parameter source, EQ IQ(n) ∝ k log n, so δ±Q = 0.

If EQ IQ(n) ∝ nβ where β ∈ [0, 1] then δ±Q = β.

There exist some non-Markovian but mixing sources, being a
generalization of Santa Fe processes, for which δ±Q ∈ (0, 1).
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Further simple observations

Inequalities

γ−P ≤ γ
+
P ≤ 1,

δ−P ≤ δ
+
P ≤ 1

hold in the following cases:
1 For P = Q — by the Shannon-McMillan-Breiman theorem

and by stationarity.
2 For P being universal almost surely and in expectation, that is

if for k(n) and l(n) being nondecreasing functions of n, where
k(n) + l(n)→∞ we have

lim
n→∞

1

k(n) + l(n) + 1

[
− log P(Xl(n)−k(n))

]
= hQ,

where hQ is the entropy rate of measure Q, and if

lim
n→∞

1

k(n) + l(n) + 1
EQ
[
− log P(Xl(n)−k(n))

]
= EQ hQ.
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A research program

There are many Hilberg exponents, for different measures and for
different codes. Seeking for some order, we may look for results of
three kinds:
1 For a fixed code P and a measure Q, we relate the random

exponents γ±P and the expected exponents δ±P .
2 For two codes P and R, we relate the exponents of a fixed

kind, say δ+
P and δ+

R for some measure Q.
3 For a fixed code P and a measure Q, we directly evaluate

exponents γ±P and δ±P .

In the following we will present some results of these three sorts.
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“Second-order” Shannon-McMillan-Breiman theorem

The original idea of the SMB theorem was to relate the
asymptotic growth of pointwise and expected entropies for an
ergodic process Q with P = Q.

In contrast, relating the random Hilberg exponents γ±Q and

the expected Hilberg exponents δ±Q means relating the speed
of growth of the pointwise and expected mutual informations,
which is a subtler effect than the SMB theorem.

Thus relating γ±Q and δ±Q could be called a “second-order”
analogue of the SMB theorem.
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Our main result

For a code P with exponent δ−P > 0, let us introduce

εP = lim sup
n→∞

log+
[
VarQ IP(n)/EQ IP(n)

]
log n

.

Theorem

For an ergodic measure Q over a finite alphabet, random Hilberg
exponents γ±Q are almost surely constant. Moreover, we have
Q-almost surely

δ+
Q ≥ γ

+
Q ≥ δ

+
Q − εQ,

δ−Q ≥ γ
−
Q ≥ δ

−
Q − εQ,

where the left inequalities hold without restrictions, whereas the
right inequalities hold for δ−Q > 0.
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The fundamental idea of the proof

Our theorem can be demonstrated without invoking the ergodic
theorem. Instead, we use an auxiliary “Kolmogorov code”

S(xn1) = 2−K(xn1|F),

where K(xn1|F) is the prefix-free Kolmogorov complexity of a string
xn1 given an object F on an additional infinite tape. The object F
can be another string or, here, a definition of measure Q.
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The first auxiliary result

Theorem

Consider Kolmogorov code S and an ergodic Q over a finite
alphabet X. Exponents γ−S and γ+

S are Q-almost surely constant.

The idea of the proof:
1
∣∣K(xn1|F)− K(xt+nt+1|F)

∣∣ ≤ Ct.
2 Hence γ±S are shift invariant.

3 Hence γ±S are constant on ergodic sources.
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Second auxiliary result (via Borel-Cantelli lemma)

Consider Kolmogorov code S. For IS(n) + B ≥ 1, define

ζ+
S = lim sup

n→∞

log+
[
EQ(IS(n) + B)−1

]−1
log n

,

ζ−S = lim inf
n→∞

log+
[
EQ(IS(n) + B)−1

]−1
log n

.

These will be called inverse expected Hilberg exponents.

Theorem

Consider Kolmogorov code S and a stationary measure Q. Then:
1 δ+
S ≥ γ

+
S Q-almost surely and ess supQ γ

+
S ≥ ζ

+
S .

2 δ−S ≥ ess infQ γ
−
S and γ−S ≥ ζ

−
S Q-almost surely.
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A corollary

Corollary

For an ergodic measure Q over a finite alphabet, equalities
γ+
S = ess supQ γ

+
S and γ−S = ess infQ γ

−
S hold Q-almost surely.

Hence, Q-almost surely we have

δ+
S ≥ γ

+
S ≥ ζ

+
S ,

δ−S ≥ γ
−
S ≥ ζ

−
S .
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Third auxiliary result

Theorem

Consider Kolmogorov code S with F = Q, where Q is a stationary
measure. Then:
1 δ−S = δ−Q and δ+

S = δ+
Q .

2 γ−S = γ−Q and γ+
S = γ+

Q Q-almost surely.

(By Shannon-Fano coding and Barron’s inequality.)
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Fourth, the last auxiliary result

For a code P with exponent δ−P > 0, let us introduce

εP = lim sup
n→∞

log+
[
VarQ IP(n)/EQ IP(n)

]
log n

.

Theorem

Consider Kolmogorov code S and a stationary measure Q. If
δ−S > 0 then ζ+

S ≥ δ
+
S − εS and ζ−S ≥ δ

−
S − εS.

(By Markov inequality.)

Theorem

Consider Kolmogorov code S with F = Q, where Q is a stationary
measure. If δ−Q > 0 then εS = εQ.

(By Shannon-Fano coding and Barron’s inequality.)
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Resuming, our main result

Theorem

For an ergodic measure Q over a finite alphabet, random Hilberg
exponents γ±Q are almost surely constant. Moreover, we have
Q-almost surely

δ+
Q ≥ γ

+
Q ≥ δ

+
Q − εQ,

δ−Q ≥ γ
−
Q ≥ δ

−
Q − εQ,

where the left inequalities hold without restrictions, whereas the
right inequalities hold for δ−Q > 0.
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An alternative expression for δ+
P

Denote HP(n) := − log P(Xn1). Suppose that

lim
n→∞

1

n
EQHP(n) = EQ hQ

and suppose that EQ IP(n) ≥ −D for a certain D > 0. Then

δ+
P = lim sup

n→∞

log+ EQ IP(n)

log n
= lim sup
n→∞

log+ EQ
[
HP(n)− hQn

]
log n

follows from the telescope sum

EQHP(n)− hn =
∞∑
k=0

EQ IP(2kn)

2k+1
.
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A hierarchy of approximations of block entropy

1 R(Xn1) = 2−|C(Xn1)| — a computable universal code.
2 P(Xn1) = 2−K(Xn1) — the unconditional Kolmogorov code.
3 Q(Xn1) — the underlying measure.
4 E(Xn1) = Q(Xn1|I) — the random ergodic measure.

5 HT(n) = HT(n;Xn(|X|+ε)
n

1 ) — the plugin entropy estimator.

We have

EQHR(n) ≥ EQHP(n) ≥ EQHQ(n) ≥ EQHE(n) ≥ EQHT(n),

whereas the common rate of these is EQ hQ. Hence

δ+
R ≥ δ

+
P ≥ δ

+
Q ≥ δ

+
E ≥ δ

+
T .

The difference δ+
P − δ

+
E can be arbitrarily close to 1.
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Memoryless sources and hidden Markov processes

For IID processes, δ±Q = 0 and hence γ±Q = 0 since there is
no dependence in the process.

For Markov processes over a finite alphabet and hidden
Markov processes with a finite number of hidden states, we
also have δ±Q = 0 and hence γ±Q = 0, since the expected
mutual information is bounded for measures of those
processes by the data-processing inequality.
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Mixture Bernoulli process

Some simple example of a process with unbounded mutual
information is the mixture of Bernoulli processes over the alphabet
X = {0, 1}, which we will call the mixture Bernoulli process:

Q(xn1) =

∫ 1
0
θ
∑n
i=1 xi(1− θ)n−

∑n
i=1 xidθ =

1

n+ 1

(
n∑n
i=1 xi

)−1
.
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Mixture Bernoulli process (continued)

Tn =
0∑

i=−n+1
Xi, Sn =

n∑
i=1

Xi.

Theorem

For the mixture Bernoulli process, δ±Q = γ±Q = 0.

Proof: X0−n+1 and Xn1 are independent given Tn and Sn. Hence

IQ(n) = − log
Q(Tn)Q(Sn)

Q(Tn, Sn)

so EQ IQ(n) = IQ(Tn; Sn). Variable Sn assumes under Q each
value in {0, 1, ..., n} with equal probability (n+ 1)−1. Hence
0 ≤ IQ(Tn; Sn) ≤ HQ(Sn) = log(n+ 1), which implies the claim.
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Santa Fe process

The Santa Fe process (Xi)i∈Z is a sequence of variables

Xi = (Ki,ZKi),

where processes (Ki)i∈Z and (Zk)k∈N with

Q(Zk = 0) = Q(Zk = 1) = 1/2, (Zk)k∈N ∼ IID,

Q(Ki = k) = k−1/β/ζ(β−1), (Ki)i∈Z ∼ IID,

where β ∈ (0, 1) is a parameter and ζ(x) =
∑∞
k=1 k

−x.

Variable Y =
∑∞
k=1 2

−kZk could be considered a random real
parameter of the process but the distribution of the process
(Xi)i∈Z is not a differentiable function of this parameter.

So, the Santa Fe process is not a 1-parameter source.
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Santa Fe process (continued)

Theorem

For the Santa Fe process, δ±Q = γ±Q = β.
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A process with δ+
Q 6= δ−Q

Consider a sequence of numbers (ak)k∈N where ak ∈ {0, 1}. Let

Xi = (Ki,YKi),

where Yk = akZk, whereas processes (Ki)i∈Z and (Zk)k∈N are
independent and distributed as for the original Santa Fe process.

Theorem

There exists such a sequence (ak)k∈N that for the modified
Santa Fe process, we have δ+

Q = β and δ−Q = 0.
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Conclusion

We have defined Hilberg exponents — the bounding rates of
the power-law growth of mutual information in a process.

There are surprisingly many meaningful Hilberg exponents,
for different measures and different codes.

We have begun sorting out order in this menagerie
but surely there are some interesting hard open problems.
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